Abstract Interpretation

Semantics and applications to verification

Xavier Rival

École Normale Supérieure
April 6th, 2018

Program of this lecture

Towards a more realistic abstract interpreter

Today:

- more general soundness proof:
using γ, and requiring no monotonicity in the abstract level
- more general abstract domain:
signs is good for introduction only, we want to see constants, intervals...
- extended language with expressions i.e., not only three address arithmetic
- more general abstract iteration technique: convergence guaranteed even with infinite height domain

Outline

(1) Another Soundness Relation
(2) Revisiting Abstract Iteration
(3) Conclusion

About soundness relations

Several formalisms available:

- abstraction function $\alpha: C \rightarrow A$, returns the best approximation
- concretization function $\gamma: A \rightarrow C$, returns the meaning of an abstract element
- Galois connection $(C, \subseteq) \underset{\alpha}{\stackrel{\gamma}{\leftrightarrows}}(A, \sqsubseteq)$

Limitations of our previous abstract interpreter:

- uses the best abstraction function α all the time
- tries to establish equality $\llbracket P \rrbracket^{\sharp} \circ \alpha=\alpha \circ \llbracket P \rrbracket$ but fails... indeed, some operators may only compute an over-approximation
- proves $\alpha \circ \llbracket P \rrbracket \sqsubseteq \llbracket P \rrbracket \sharp \circ \alpha$ at the cost of proving monotonicity of $\llbracket P \rrbracket^{\sharp}$

Alternate approach
Use γ only and prove $\llbracket P \rrbracket \circ \gamma \subseteq \gamma \circ \llbracket P \rrbracket^{\sharp}$

A language with expressions

We now consider the denotational semantics of our imperative language:

- variables \mathbb{X} : finite, predefined set of variables
- values $\mathbb{V}: \mathbb{V}_{\text {int }} \cup \mathbb{V}_{\text {float }} \cup \ldots$
- expressions are allowed (not just three address instructions)
- conditions are simplified compared to initial language

Syntax

e ::=	$v(v \in \mathbb{V})\|\mathrm{x}(\mathrm{x} \in \mathbb{X})\| \mathrm{e}+\mathrm{e}\|\mathrm{e} * \mathrm{e}\|$.	expressions
c ::=	$\mathrm{x}<\mathrm{v}\|\mathrm{x}=\mathrm{v}\| \ldots$	basic conditions
i : $:=$	$\mathrm{x}:=\mathrm{e}$	assignment
\|	input(x)	random value input
\|	if(c) b else b	condition
\|	while(c) b	loop
b ::=	\{i; ...;i; \}	block, program(\mathbb{P})

Semantics of expressions and conditions (refresher)

We have defined a few lectures ago:

- a semantics for expressions, defined by induction over the syntax:

$$
\begin{aligned}
\llbracket \mathrm{e} \rrbracket: \mathbb{M} \longrightarrow \mathbb{V} & \uplus\{\Omega\} \\
\llbracket v \rrbracket(m) & =v \\
\llbracket \mathrm{x} \rrbracket(m) & =m(\mathrm{x}) \\
\llbracket \mathrm{e}_{0}+\mathrm{e}_{1} \rrbracket(m) & =\llbracket \mathrm{e}_{0} \rrbracket(m) \pm \llbracket \mathrm{e}_{1} \rrbracket(m) \\
\llbracket \mathrm{e}_{0} / \mathrm{e}_{1} \rrbracket(m) & = \begin{cases}\Omega & \text { if } \llbracket \mathrm{e}_{1} \rrbracket(m)=0 \\
\llbracket \mathrm{e}_{0} \rrbracket(m) / \llbracket \mathrm{e}_{1} \rrbracket(m) & \text { otherwise }\end{cases}
\end{aligned}
$$

- a semantics for conditions, following the same principle:

$$
\llbracket c \rrbracket: \mathbb{M} \longrightarrow \mathbb{V}_{\text {bool }} \uplus\{\Omega\}
$$

Semantics of satements (refresher)

We have also defined:

Denotational semantics of programs

We use the denotational semantics $\llbracket \mathrm{i} \rrbracket_{\mathcal{D}}: \mathcal{P}(\mathbb{M}) \longrightarrow \mathcal{P}(\mathbb{M})$ by:

$$
\begin{aligned}
\llbracket \mathrm{x}:=\mathrm{e} \rrbracket_{\mathcal{D}}(\mathcal{M}) & =\{m[\mathrm{x} \leftarrow \llbracket \mathrm{e} \rrbracket(m)] \mid m \in \mathcal{M}\} \\
\llbracket \operatorname{input}(\mathrm{x}) \rrbracket_{\mathcal{D}}(\mathcal{M}) & =\{m[\mathrm{x} \leftarrow v] \mid v \in \mathbb{V} \wedge m \in \mathcal{M}\}
\end{aligned}
$$

$\llbracket \mathrm{if}(\mathrm{c}) \mathrm{b}_{0}$ else $\mathrm{b}_{1} \rrbracket_{\mathcal{D}}(\mathcal{M})=\llbracket \mathrm{b}_{0} \rrbracket_{\mathcal{D}}(\{m \in \mathcal{M} \mid \llbracket c \rrbracket(m)=$ TRUE $\})$

$$
\cup \llbracket \mathrm{b}_{1} \rrbracket_{\mathcal{D}}(\{m \in \mathcal{M} \mid \llbracket \mathrm{c} \rrbracket(m)=\text { FALSE }\})
$$

$\llbracket w h i l e(c) \mathrm{b} \rrbracket_{\mathcal{D}}(\mathcal{M})=\left\{m \in \operatorname{Ifp} F_{\mathcal{D}} \mid \llbracket \mathrm{c} \rrbracket(m)=\right.$ FALSE $\}$
where $F_{\mathcal{D}}: \mathcal{M}^{\prime} \longmapsto \mathcal{M} \cup \llbracket \mathrm{b} \rrbracket_{\mathcal{D}}\left(\left\{m \in \mathcal{M}^{\prime} \mid \llbracket c \rrbracket(m)=\right.\right.$ TRUE $\left.\}\right)$

$$
\llbracket i_{0} ; i_{1} \rrbracket_{\mathcal{D}}(\mathcal{M})=\llbracket i_{1} \rrbracket_{\mathcal{D}} \circ \llbracket i_{0} \rrbracket_{\mathcal{D}}(\mathcal{M})
$$

- As before, we seek for an abstract interpretation of $\llbracket i \rrbracket_{\mathcal{D}}$
- We first need to set up the abstraction relation

Towards a more general abstraction

We compose two abstractions:

- non relational abstraction: the values a variable may take is abstracted separately from the other variables
- parameter value abstraction: an abstract value describes a set of concrete values (not necessarily the lattice of sign anymore) defined by $(\mathcal{P}(\mathbb{Z}), \subseteq) \underset{\alpha_{\mathcal{V}}}{\stackrel{\gamma_{\mathcal{V}}}{\leftrightarrows}}\left(D_{\mathcal{V}}^{\sharp}, \sqsubseteq\right)$
Definitions are quite similar:

Abstraction

- concrete domain: $(\mathcal{P}(\mathbb{X} \rightarrow \mathbb{Z}), \subseteq)$
- abstract domain: $\left(D^{\sharp}, \sqsubseteq\right)$, where $D^{\sharp}=\mathbb{X} \rightarrow D_{\mathcal{V}}^{\sharp}$ and \sqsubseteq is the pointwise ordering
- Galois connection $(\mathcal{P}(\mathbb{Z}), \subseteq) \underset{\alpha}{\stackrel{\gamma}{\leftrightarrows}}\left(D^{\sharp}, \sqsubseteq\right)$, defined by

$$
\begin{aligned}
\alpha: \mathcal{M} & \longmapsto\left(\alpha \mathcal{V}\left(\left\{\sigma_{0} \mid \sigma \in \mathcal{M}\right\}\right), \ldots, \alpha \mathcal{V}\left(\left\{\sigma_{n-1} \mid \sigma \in \mathcal{M}\right\}\right)\right) \\
\gamma: \mathcal{M}^{\sharp} & \longmapsto\left\{\sigma \in \mathbb{Z}^{n} \mid \forall i, \sigma_{i} \in \gamma_{\mathcal{V}}\left(M_{i}^{\sharp}\right)\right\}
\end{aligned}
$$

Abstract semantics of sequences (revised)

We search for an abstract semantics $\llbracket P \rrbracket^{\sharp}: D^{\sharp} \rightarrow D^{\sharp}$ such that:

$$
\llbracket P \rrbracket \circ \gamma \subseteq \gamma \circ \llbracket P \rrbracket^{\sharp}
$$

We still aim for a proof by induction over the syntax of programs Sequences / composition forced us to require monotonicity last time:

- we assume $\llbracket P_{0} \rrbracket \circ \gamma \subseteq \gamma \circ \llbracket P_{0} \rrbracket^{\sharp}$
- we assume $\llbracket P_{1} \rrbracket \circ \gamma \subseteq \gamma \circ \llbracket P_{1} \rrbracket^{\sharp}$
- since $\llbracket P_{0} ; P_{1} \rrbracket=\llbracket P_{1} \rrbracket \circ \llbracket P_{0} \rrbracket$, we search for something similar in the abstract level

$$
\begin{aligned}
\llbracket P_{1} \rrbracket \circ \llbracket P_{0} \rrbracket \circ \gamma & \subseteq \llbracket P_{1} \rrbracket \circ \gamma \circ \llbracket P_{0} \rrbracket^{\sharp} & \text { (by induction) } \\
& \subseteq \gamma \circ \llbracket P_{1} \rrbracket^{\sharp} \circ \llbracket P_{0} \rrbracket^{\sharp} & \text { (by induction) }
\end{aligned}
$$

No more requirement that $\llbracket P \rrbracket^{\sharp}$ be monotone (much better!)

Abstract semantics of expressions

Analysis of an expression

- the semantics $\llbracket \mathrm{e} \rrbracket: \mathbb{M} \longrightarrow \mathbb{V}$ of an expression evaluates it into a value
- thus, the abstract semantics should evaluate it into an abstract value:

$$
\llbracket \mathrm{e} \rrbracket^{\sharp}: D^{\sharp} \longrightarrow D_{\mathcal{V}}^{\sharp}
$$

Since we use the concrete semantics as a guide, we need:

- abstraction for constants:
i.e., a function $\phi_{\mathcal{V}}: \mathbb{V} \rightarrow D_{\mathcal{V}}^{\sharp}$ such that $\forall v \in \mathbb{V}, v \in \gamma_{\mathcal{V}}\left(\phi_{\mathcal{V}}(v)\right)$ note: if $\alpha_{\mathcal{V}}$ exists, then we may take $v \longmapsto \alpha_{\mathcal{V}}(\{v\})$ note: if it is too hard to compute, we may take something coarser
- abstract operators:
i.e., for each binary operator \oplus, an abstract operator \oplus^{\sharp} such that:

$$
\forall v_{0}^{\sharp}, v_{1}^{\sharp} \in D_{\mathcal{V}}^{\sharp},\left\{v_{0} \oplus v_{1} \mid \forall i, v_{i} \in \gamma_{\mathcal{V}}\left(v_{i}^{\sharp}\right)\right\} \subseteq \gamma_{\mathcal{V}}\left(v_{0}^{\sharp} \oplus^{\sharp} v_{1}^{\sharp}\right)
$$

Abstract semantics of expressions

Analysis of expressions: definition
We define $\llbracket \mathrm{e} \rrbracket^{\sharp}: D^{\sharp} \longrightarrow D_{\mathcal{V}}^{\sharp}$ by:

$$
\begin{aligned}
\llbracket v \rrbracket^{\sharp}\left(M^{\sharp}\right) & =\phi_{\nu}(v) \\
\llbracket \mathrm{x} \rrbracket^{\sharp}\left(M^{\sharp}\right) & =M^{\sharp}(\mathrm{x}) \\
\llbracket \mathrm{e}_{0} \oplus \mathrm{e}_{1} \rrbracket^{\sharp}\left(M^{\sharp}\right) & =\llbracket \mathrm{e}_{0} \rrbracket^{\sharp}\left(M^{\sharp}\right) \oplus^{\sharp} \llbracket \mathrm{e}_{1} \rrbracket^{\sharp}\left(M^{\sharp}\right)
\end{aligned}
$$

Analysis of expressions: soundness
For all expression e and for all abstract memory state $M^{\sharp} \in D^{\sharp}$, we have:

$$
\forall m \in \gamma\left(M^{\sharp}\right), \llbracket e \rrbracket(m) \text { returns no error } \Longrightarrow \llbracket e \rrbracket(m) \in \gamma \mathcal{V}\left(\llbracket e \rrbracket^{\sharp}\left(M^{\sharp}\right)\right)
$$

Proof:

- basic induction over the syntax
- relies on the soundness of each operation

Analysis of an assignment

We now rely on the abstract semantics of expressions:

$$
\llbracket \mathrm{x}=\mathrm{e} \rrbracket^{\sharp}\left(M^{\sharp}\right)=M^{\sharp}\left[\mathrm{x} \leftarrow \llbracket \mathrm{e} \rrbracket^{\sharp}\left(M^{\sharp}\right)\right]
$$

- soundness proof is very similar
- but now, is given in terms of γ

Abstract semantics of conditions

Analysis of a condition

- the semantics $\llbracket c \rrbracket: \mathbb{M} \longrightarrow \mathbb{V}_{\text {bool }}$ of a condition evaluates it into a boolean value (or an error)
- but the semantics relies on its functional inverse: e.g., $\{m \in \mathbb{M} \mid \llbracket c \rrbracket(m)=$ TRUE $\}$ or $\{m \in \mathbb{M} \mid \llbracket c \rrbracket(m)=$ FALSE $\}$
- thus, the abstract semantics should tell which memories satisfy a condition:

$$
\begin{gathered}
\llbracket c \rrbracket^{\sharp}: \mathbb{V}_{\text {bool }} \times D^{\sharp} \longrightarrow D^{\sharp} \\
\forall b \in \mathbb{V}_{\text {bool }}, \forall m \in \gamma\left(M^{\sharp}\right), \llbracket c \rrbracket(m)=b \Longrightarrow m \in \gamma\left(\llbracket c \rrbracket^{\sharp}\left(b, M^{\sharp}\right)\right)
\end{gathered}
$$

- we assume that the abstract domain provides such a function $\llbracket c \rrbracket^{\sharp}: \mathbb{V}_{\text {bool }} \times D^{\sharp} \longrightarrow D^{\sharp}$
- we will implement some when considering specific domains

We will see more general principles soon

Analysis of a condition statement

Abstraction of concrete union:

- we assume a sound abstract union operation join ${ }_{\mathcal{V}}^{\sharp}$ over the value abstract domain:

$$
\forall v_{0}^{\sharp}, v_{1}^{\sharp}, \gamma \mathcal{V}\left(v_{0}^{\sharp}\right) \cup \gamma \mathcal{V}\left(v_{1}^{\sharp}\right) \subseteq \gamma_{\mathcal{V}}\left(\operatorname{join}_{\mathcal{V}}^{\sharp}\left(v_{0}^{\sharp}, v_{1}^{\sharp}\right)\right)
$$

it may be $\sqcup_{\mathcal{V}}$ if it exists, but could over-approximate it

- we let join ${ }^{\sharp}$ be the pointwise extension of join ${ }_{V}^{\sharp}$
- it is also sound: $\forall M_{0}^{\sharp}, M_{1}^{\sharp}, \gamma\left(M_{0}^{\sharp}\right) \cup \gamma\left(M_{1}^{\sharp}\right) \subseteq \gamma\left(\right.$ join $\left.^{\sharp}\left(M_{0}^{\sharp}, M_{1}^{\sharp}\right)\right)$

We derive:

$$
\begin{aligned}
& \llbracket \text { if (c) } P_{0} \text { else } P_{1} \rrbracket^{\sharp}\left(M^{\sharp}\right)= \\
& \quad \text { join }^{\sharp}\left(\llbracket P_{0} \rrbracket^{\sharp}\left(\llbracket \mathrm{c} \rrbracket^{\sharp}\left(\operatorname{TRUE}, M^{\sharp}\right)\right), \llbracket P_{1} \rrbracket^{\sharp}\left(\llbracket \mathrm{c} \rrbracket^{\sharp}\left(\text { FALSE }, M^{\sharp}\right)\right)\right)
\end{aligned}
$$

Proof of soundness:

- similar as in the previous course
- relies on the soundness of $\llbracket \mathrm{c} \rrbracket^{\sharp}, \llbracket P_{0} \rrbracket^{\sharp}, \llbracket P_{1} \rrbracket^{\sharp}$ and join ${ }^{\sharp}$

Analysis of a loop

Again, quite similar to the previous course:

- statement while(c) P, with abstract pre-condition M^{\sharp}
- we assume $\llbracket c \rrbracket^{\sharp}$ and $\llbracket P \rrbracket^{\sharp}$ sound abstract semantics for the condition and the loop body
- we derive, using a new version of the fixpoint transfer theorem (exercise):

$$
\begin{aligned}
& \llbracket \text { while }(c) P \rrbracket^{\sharp}\left(M^{\sharp}\right)=\llbracket c \rrbracket^{\sharp}\left(\text { FALSE, } \text { Ifp }_{M^{\sharp}} F^{\sharp}\right) \\
& \text { where } F^{\sharp}: M_{0}^{\sharp} \longmapsto \operatorname{join}^{\sharp}\left(M_{0}^{\sharp}, \llbracket P \rrbracket^{\sharp}\left(\llbracket c \rrbracket^{\sharp}\left(\operatorname{TRUE}, M_{0}^{\sharp}\right)\right)\right)
\end{aligned}
$$

Computation of abstract iterates:

$$
\left\{\begin{aligned}
M_{0}^{\sharp} & =M^{\sharp} \\
M_{n+1}^{\sharp} & =\operatorname{join}^{\sharp}\left(M_{n}^{\sharp}, \llbracket P \rrbracket^{\sharp}\left(\llbracket c \rrbracket^{\sharp}\left(\operatorname{TRUE}, M_{n}^{\sharp}\right)\right)\right)
\end{aligned}\right.
$$

Exit condition: when successive iterates are equal

Static analysis

We can now summarize the definition of our static analysis:

Definition

$$
\begin{aligned}
& \llbracket P_{0} ; P_{1} \rrbracket^{\sharp}\left(M^{\sharp}\right)=\llbracket P_{1} \rrbracket^{\sharp} \circ \llbracket P_{0} \rrbracket^{\sharp}\left(M^{\sharp}\right) \\
& \llbracket \mathrm{x}=\mathrm{e} \rrbracket^{\sharp}\left(M^{\sharp}\right)=M^{\sharp}\left[\mathrm{x} \leftarrow \llbracket \mathrm{e} \rrbracket^{\sharp}\left(M^{\sharp}\right)\right] \\
& {[\operatorname{input}())^{\sharp}\left(M^{\sharp}\right)=M^{\sharp}[x \leftarrow T]} \\
& \llbracket i f(\mathrm{c}) P_{0} \text { else } P_{1} \rrbracket^{\sharp}\left(M^{\sharp}\right)=\operatorname{join}^{\sharp}\left(\llbracket P_{0} \rrbracket^{\sharp}\left(\llbracket \mathrm{c} \rrbracket^{\sharp}\left(\text { TRUE }, M^{\sharp}\right)\right)\right. \text {, } \\
& \left.\llbracket P_{1} \rrbracket^{\sharp}\left(\llbracket \subset \rrbracket^{\sharp}\left(\text { FALSE }, M^{\sharp}\right)\right)\right) \\
& \llbracket \text { while(c) } P \rrbracket^{\sharp}\left(M^{\sharp}\right)=\llbracket c \rrbracket^{\sharp}\left(\text { FALSE, } \text { Ifp }_{M \sharp} F^{\sharp}\right) \\
& \text { where } F^{\sharp}: M_{0}^{\sharp} \longmapsto \text { join }{ }^{\sharp}\left(M_{0}^{\sharp}, \llbracket P \rrbracket^{\sharp}\left(\llbracket c \rrbracket^{\sharp}\left(\text { TRUE }, M_{0}^{\sharp}\right)\right)\right)
\end{aligned}
$$

And, by induction over the syntax, we can prove:

Soundness

For all program $P, \forall M^{\sharp} \in D^{\sharp}, \llbracket P \rrbracket \circ \gamma\left(M^{\sharp}\right) \subseteq \gamma \circ \llbracket P \rrbracket^{\sharp}\left(M^{\sharp}\right)$

Outline

(1) Another Soundness Relation
(2) Revisiting Abstract Iteration
(3) Conclusion

Limitations related to abstract iteration

We need a finite height lattice:

- otherwise the computation of Ifp F^{\sharp} may not converge as was the case when we discussed WLP calculus
- consequence 1: so far, the abstract domain of intervals is out...
- consequence 2: if the number of variables is not fixed or bounded, we cannot prove convergence at this point

Even when the abstract domain $D_{\mathcal{V}}^{\#}$ is of finite height, this height may be huge: then abstract computations are very costly!

We now need a more general abstract iteration technique

Intuition from search for an unknown inductive property:
(1) look at the base case and following cases
(2) try to generalize them

Widening iteration: search for inductive abstract properties

Computing invariants about infinite executions with widening ∇

- Widening ∇ over-approximates \cup : soundness guarantee
- Widening ∇ guarantees the termination of the analyses
- Typical choice of ∇ : remove unstable constraints

Example: iteration of the translation $(2,1)$, with octagonal polyhedra (i.e., convex polyhedra the axes of which are either at a 0° or 45° angle)

iteration 1

iteration 2: stable!

- Initially: 3 constraints
- After one iteration: 2 constraints, then stable

Widening operator

Widening operator: Definition

A widening operator over an abstract domain D^{\sharp} is a binary operator ∇ such that:

- $\forall M_{0}^{\sharp}, M_{1}^{\sharp}, \gamma\left(M_{0}^{\sharp}\right) \cup \gamma\left(M_{1}^{\sharp}\right) \subseteq \gamma\left(M_{0}^{\sharp} \nabla M_{1}^{\sharp}\right)$
- if $\left(N_{k}^{\sharp}\right)_{k \in \mathbb{N}}$ is a sequence of elements of D^{\sharp} the sequence $\left(M_{k}^{\sharp}\right)_{k \in \mathbb{N}}$ defined below is stationary:

$$
\begin{aligned}
M_{0}^{\sharp} & =N_{0}^{\sharp} \\
M_{k+1}^{\sharp} & =M_{k}^{\sharp} \nabla N_{k+1}^{\sharp}
\end{aligned}
$$

- Intuition:
point 1 expresses over-approximation of concrete union point 2 enforces termination
- Alternate definitions exist:
e.g., using \sqsubseteq instead of \subseteq over concretizations

Widening operator in a finite height domain

Theorem

We assume that $\left(D^{\sharp}, \sqsubseteq\right)$ is a finite height domain and that \sqcup is the least upper bound over D^{\sharp}.
Then \sqcup defines a widening over D^{\sharp}.

Proof:

(1) since $M_{0}^{\sharp} \sqsubseteq M_{0}^{\sharp} \sqcup M_{1}^{\sharp}$, we have $\gamma\left(M_{0}^{\sharp}\right) \sqsubseteq \gamma\left(M_{0}^{\sharp} \sqcup M_{1}^{\sharp}\right)$
(2) a sequence of iterates $\left(M_{k}^{\sharp}\right)_{k \in \mathbb{N}}$ is an increasing chain, so if every increasing chain is finite, it will eventually stabilize

Applications:

- obvious widening operators for the lattices of constants, signs...
- abstract iteration algorithms are also the same

A widening operator in an infinite height domain
We consider the value lattice of semi intervals with left bound 0 :

- $D_{\mathcal{V}}^{\sharp}=\{\perp\} \uplus \mathbb{Z}_{+}^{\star} \uplus\{+\infty\} ; \gamma_{\mathcal{V}}(v)=\{0,1, \ldots, v\}$
- $\forall v^{\sharp}, \perp \sqsubseteq v^{\sharp}$ and if $v_{0}^{\sharp} \leq v_{1}^{\sharp}$, then $v_{0}^{\sharp} \sqsubseteq v_{1}^{\sharp}$

We define the widening operator below:
Widening operator

$$
\begin{aligned}
\perp \nabla v^{\sharp} & =v^{\sharp} \\
v^{\sharp} \nabla \perp & =v^{\sharp} \\
v_{0}^{\sharp} \nabla v_{1}^{\sharp} & = \begin{cases}v_{0}^{\sharp} & \text { if } v_{0}^{\sharp} \geq v_{1}^{\sharp} \\
+\infty & \text { if } v_{0}^{\sharp}<v_{1}^{\sharp}\end{cases}
\end{aligned}
$$

Examples: $\quad[0,8] \nabla[0,6]=[0,8] \quad[0,8] \nabla[0,9]=[0,+\infty[$
Widening for intervals
Exercise: generalize this definition for both bounds

Fixpoint approximation using a widening operator

Theorem: widening based fixpoint approximation

We assume (C, \subseteq) is a complete lattice and that (A, \sqsubseteq) is an abstract domain with a concretization function $\gamma: A \rightarrow C$ and a widening operator ∇. Moreover, we assume that:

- f is continuous (so it has a least fixpoint $\operatorname{lfp} f=\bigcup_{n \in \mathbb{N}} f^{n}(\emptyset)$)
- $f \circ \gamma \subseteq \gamma \circ f^{\sharp}$

We let the sequence $\left(M_{k}^{\sharp}\right)_{k \in \mathbb{N}}$ be defined by:

$$
\begin{aligned}
M_{0}^{\sharp} & =\perp \\
M_{k+1}^{\sharp} & =M_{k}^{\sharp} \nabla f^{\sharp}\left(M_{k}^{\sharp}\right)
\end{aligned}
$$

Then:
(1) $\left(M_{k}^{\sharp}\right)_{k \in \mathbb{N}}$ is stationary and we write $M_{\text {lim }}^{\sharp}$ for its limit
(2) Ifp $f \subseteq \gamma\left(M_{\lim }^{\sharp}\right)$

Fixpoint approximation using a widening operator, proof

We assume all the assumptions of the theorem, and prove the two points:
(1) Sequence convergence: We let $\left\{\begin{aligned} N_{0}^{\sharp} & =\perp \\ N_{k+1}^{\sharp} & =f^{\sharp}\left(M_{k}^{\sharp}\right)\end{aligned}\right.$

Then, convergence follows directly from the definition of widening.
There exists a rank K from which all iterates are stable.
(2) Soundness of the limit:

We prove by induction over k that $\forall I \geq k, f^{k}(\emptyset) \subseteq \gamma\left(M_{1}^{\sharp}\right)$:

- the result clearly holds for $k=0$;
- if the result holds at rank k and $I \geq k$ then:

$$
\begin{aligned}
f^{k+1}(\emptyset) & =f\left(f^{k}(\emptyset)\right) & & \\
& \subseteq f\left(\gamma\left(M_{l}^{\sharp}\right)\right) & & \text { by induction } \\
& \subseteq \gamma\left(f_{l}^{\sharp}\left(M_{l}^{\sharp}\right)\right) & & \text { since } f \circ \gamma \subseteq \gamma \circ f^{\sharp} \\
& \subseteq \gamma\left(M_{l}^{\sharp} \nabla f^{\sharp}\left(M_{l}^{\sharp}\right)\right) & & \text { by definition of } \nabla \\
& =\gamma\left(M_{l+1}^{\sharp}\right) & &
\end{aligned}
$$

When $\left(M_{k}^{\sharp}\right)_{k \in \mathbb{N}}$ converges, $\forall I \geq K, M_{l}^{\sharp}=M_{K}^{\sharp}=M_{\infty}^{\sharp}$, thus $\forall k, f^{k}(\emptyset) \subseteq \gamma\left(M_{\infty}^{\sharp}\right)$ thus Ifp $f \subseteq \gamma\left(M_{\infty}^{\sharp}\right)$

Example widening iteration

$$
\begin{aligned}
& \text { int } x=0 ; \\
& \text { while(TRUE)\{ } \\
& \begin{array}{r}
\text { if }(x<10000)\{ \\
x=x+1 ; \\
\} \text { else }\{ \\
x=-x ;
\end{array} \\
& \text { \} }
\end{aligned}
$$

Example widening iteration

$$
\begin{aligned}
& \text { int } \mathrm{x}=0 \text {; } \\
& x \in[0,0] \\
& \text { while(TRUE) }\{ \\
& \text { if }(\mathrm{x}<10000)\{ \\
& \mathrm{x}=\mathrm{x}+1 \text {; } \\
& \text { \} else \{ } \\
& \mathrm{x}=-\mathrm{x} \text {; } \\
& \text { \} } \\
& \text { \} }
\end{aligned}
$$

Example widening iteration

$$
\begin{aligned}
& \text { int } \mathrm{x}=0 ; \\
& \begin{array}{r}
\mathrm{x} \in[0,0] \\
\text { while(TRUE) }\{ \\
\mathrm{x} \in[0,0] \\
\text { if }(\mathrm{x}<10000)\{ \\
\mathrm{x}=\mathrm{x}+1 ; \\
\} \text { else }\{ \\
\mathrm{x}=-\mathrm{x}
\end{array} \\
& \text { \} } \\
& \}
\end{aligned}
$$

Entry into the loop

Example widening iteration

$$
\begin{aligned}
& \text { int } \mathrm{x}=0 \text {; } \\
& x \in[0,0] \\
& \text { while(TRUE) }\{ \\
& x \in[0,0] \\
& \text { if }(\mathrm{x}<10000)\{ \\
& \mathrm{x} \in[0,0] \\
& \mathrm{x}=\mathrm{x}+1 \text {; } \\
& \text { \} else \{ } \\
& x \in \emptyset \\
& \mathrm{x}=-\mathrm{x} \text {; } \\
& \text { \} } \\
& \text { \} }
\end{aligned}
$$

Only the "true" branch may be taken

Example widening iteration

$$
\begin{aligned}
& \text { int } \mathrm{x}=0 ; \\
& \begin{aligned}
& \mathrm{x} \in[0,0] \\
& \text { while(TRUE) }\{ \\
& \mathrm{x} \in[0,0] \\
& \text { if }(\mathrm{x}<<10000)\{ \\
& \mathrm{x} \in[0,0] \\
& \mathrm{x}=\mathrm{x}+1 ; \\
& \mathrm{x} \in[1,1] \\
&\} \text { else }\{ \\
& \mathrm{x} \in \emptyset \\
& \mathrm{x}=-\mathrm{x} ; \\
& \mathrm{x} \in \emptyset \\
&\} \\
&\}
\end{aligned}
\end{aligned}
$$

Incrementation

Example widening iteration

$$
\begin{aligned}
& \text { int } \mathrm{x}=0 \text {; } \\
& x \in[0,0] \\
& \text { while(TRUE)\{ } \\
& x \in[0,0] \\
& \text { if }(\mathrm{x}<10000)\{ \\
& \mathrm{x} \in[0,0] \\
& \mathrm{x}=\mathrm{x}+1 \text {; } \\
& \mathrm{x} \in[1,1] \\
& \text { \} else \{ } \\
& x \in \emptyset \\
& \mathrm{x}=-\mathrm{x} \text {; } \\
& \mathrm{x} \in \emptyset \\
& \text { \} } \\
& x \in[1,1] \\
& \text { \} }
\end{aligned}
$$

Abstract union at the end of the condition

Example widening iteration

$$
\begin{aligned}
& \text { int } \mathrm{x}=0 \text {; } \\
& x \in[0,0] \\
& \text { while(TRUE) }\{ \\
& x \in[0,+\infty[\\
& \text { if }(\mathrm{x}<10000)\{ \\
& \mathrm{x} \in[0,0] \\
& \mathrm{x}=\mathrm{x}+1 \text {; } \\
& \mathrm{x} \in[1,1] \\
& \text { \} else \{ } \\
& x \in \emptyset \\
& \mathrm{x}=-\mathrm{x} \text {; } \\
& \mathrm{x} \in \emptyset \\
& \text { \} } \\
& \mathrm{x} \in[1,1] \\
& \text { \} }
\end{aligned}
$$

Widening at loop head

Example widening iteration

$$
\begin{aligned}
& \text { int } \mathrm{x}=0 \text {; } \\
& x \in[0,0] \\
& \text { while(TRUE) }\{ \\
& x \in[0,+\infty[\\
& \text { if }(\mathrm{x}<10000)\{ \\
& \mathrm{x} \in[0,9999] \\
& \mathrm{x}=\mathrm{x}+1 \text {; } \\
& \mathrm{x} \in[1,1] \\
& \text { \} else \{ } \\
& x \in[10000,+\infty[\\
& \mathrm{x}=-\mathrm{x} \text {; } \\
& \mathrm{x} \in \emptyset \\
& \text { \} } \\
& \mathrm{x} \in[1,1] \\
& \text { \} }
\end{aligned}
$$

Now both branches may be taken

Example widening iteration

$$
\begin{aligned}
& \text { int } \mathrm{x}=0 \text {; } \\
& x \in[0,0] \\
& \text { while(TRUE)\{ } \\
& x \in[0,+\infty[\\
& \text { if }(\mathrm{x}<10000)\{ \\
& \mathrm{x} \in[0,9999] \\
& \mathrm{x}=\mathrm{x}+1 \text {; } \\
& x \in[1,10000] \\
& \text { \} else \{ } \\
& x \in[10000,+\infty[\\
& \mathrm{x}=-\mathrm{x} \text {; } \\
& \mathrm{x} \in]-\infty,-10000] \\
& \text { \} } \\
& \mathrm{x} \in[1,1] \\
& \text { \} }
\end{aligned}
$$

Numerical assignments

Example widening iteration

```
int \(\mathrm{x}=0\);
        \(x \in[0,0]\)
while(TRUE) \(\{\)
                        \(x \in[0,+\infty[\)
        if \((\mathrm{x}<10000)\{\)
        \(\mathrm{x} \in[0,9999]\)
        \(\mathrm{x}=\mathrm{x}+1\);
            \(x \in[1,10000]\)
    \} else \{
        \(x \in[10000,+\infty[\)
        \(\mathrm{x}=-\mathrm{x}\);
        \(\mathrm{x} \in]-\infty,-10000]\)
    \}
        \(\mathrm{x} \in]-\infty, 10000]\)
\}
```

Abstract union at the end of the condition

Example widening iteration

$$
\begin{aligned}
& \text { int } \mathrm{x}=0 \text {; } \\
& x \in[0,0] \\
& \text { while(TRUE) }\{ \\
& \mathrm{x} \in]-\infty,+\infty[\\
& \text { if }(\mathrm{x}<10000)\{ \\
& \mathrm{x} \in[0,9999] \\
& \mathrm{x}=\mathrm{x}+1 \text {; } \\
& x \in[1,10000] \\
& \text { \} else \{ } \\
& x \in[10000,+\infty[\\
& \mathrm{x}=-\mathrm{x} \text {; } \\
& \mathrm{x} \in]-\infty,-10000] \\
& \text { \} } \\
& \mathrm{x} \in]-\infty, 10000] \\
& \text { \} }
\end{aligned}
$$

Widening at loop head

Example widening iteration

$$
\begin{aligned}
& \text { int } \mathrm{x}=0 \text {; } \\
& x \in[0,0] \\
& \text { while(TRUE)\{ } \\
& \mathrm{x} \in]-\infty,+\infty[\\
& \text { if }(\mathrm{x}<10000)\{ \\
& \mathrm{x} \in]-\infty, 9999] \\
& \mathrm{x}=\mathrm{x}+1 \text {; } \\
& x \in[1,10000] \\
& \text { \} else \{ } \\
& x \in[10000,+\infty[\\
& \mathrm{x}=-\mathrm{x} \text {; } \\
& \mathrm{x} \in]-\infty,-10000] \\
& \text { \} } \\
& x \in]-\infty, 10000] \\
& \text { \} }
\end{aligned}
$$

Both branches may be taken

Example widening iteration

```
int \(\mathrm{x}=0\);
        \(x \in[0,0]\)
while(TRUE)\{
            \(\mathrm{x} \in]-\infty,+\infty[\)
        if \((\mathrm{x}<10000)\{\)
        \(\mathrm{x} \in]-\infty, 9999]\)
        \(\mathrm{x}=\mathrm{x}+1\);
            \(\mathrm{x} \in]-\infty, 10000\) ]
        \} else \{
            \(x \in[10000,+\infty[\)
        \(\mathrm{x}=-\mathrm{x}\);
            \(\mathrm{x} \in]-\infty,-10000]\)
    \}
    \(\mathrm{x} \in]-\infty, 10000]\)
\}
```

Numerical assignments

Example widening iteration

$$
\begin{aligned}
& \text { int } \mathrm{x}=0 \text {; } \\
& x \in[0,0] \\
& \text { while(TRUE) }\{ \\
& \mathrm{x} \in]-\infty,+\infty[\\
& \text { if }(\mathrm{x}<10000)\{ \\
& \mathrm{x} \in]-\infty, 9999] \\
& \mathrm{x}=\mathrm{x}+1 \text {; } \\
& \mathrm{x} \in]-\infty, 10000 \text {] } \\
& \text { \} else \{ } \\
& x \in[10000,+\infty[\\
& \mathrm{x}=-\mathrm{x} \text {; } \\
& \mathrm{x} \in]-\infty,-10000] \\
& \text { \} } \\
& \mathrm{x} \in]-\infty, 10000] \\
& \text { \} }
\end{aligned}
$$

Stable! No information at loop head, but still, some interesting information inside the loop

Loop unrolling

From the example, we observe that intervals widening is imprecise:

- quickly goes to $-\infty$ or $+\infty$
- ignores possible stable bounds

Can we do better ?
Yes, we can... many techniques improve standard widening

Loop unrolling: postpone widening

We fix an index I, and postpone widening until after I

$$
\begin{aligned}
M_{0}^{\sharp} & =\perp & & \\
M_{k+1}^{\sharp} & =\operatorname{join}^{\sharp}\left(M_{k}^{\sharp}, f^{\sharp}\left(M_{k}^{\sharp}\right)\right) & & \text { if } k<1 \\
M_{k+1}^{\sharp} & =M_{k}^{\sharp} \nabla f^{\sharp}\left(M_{k}^{\sharp}\right) & & \text { otherwise }
\end{aligned}
$$

- Typically, k is set to 1 or $2 \ldots$
- Proof of a new fixpoint approximation theorem: very similar

Widening with threshold

Now, let us improve the widening itself:

- the standard ∇ operator of intervals goes straight to ∞
- we can slow down the process

Threshold widening

Let \mathcal{T} be a finite set of integers, called thresholds. We let the threshold widening be defined by:

$$
\begin{aligned}
\perp \nabla v^{\sharp} & =v^{\sharp} \\
v^{\sharp} \nabla \perp & =v^{\sharp} \\
v_{0}^{\sharp} \nabla v_{1}^{\sharp} & = \begin{cases}v_{0}^{\sharp} & \text { if } v_{0}^{\sharp} \geq v_{1}^{\sharp} \\
\min \left\{v^{\sharp} \in \mathcal{T} \mid \forall i, v_{i}^{\sharp} \leq v^{\sharp}\right\} & \text { if }\left\{v^{\sharp} \in \mathcal{T} \mid \forall i, v_{i}^{\sharp} \leq v^{\sharp}\right\} \neq \emptyset \\
+\infty & \text { otherwise }\end{cases}
\end{aligned}
$$

- Proof of the widening property: exercise
- Example with $\mathcal{L}=\{10\}$:

$$
[0,8] \nabla[0,9]=[0,10] \quad[0,8] \nabla[0,15]=[0,+\infty[
$$

Techniques related to iterations

No widening after visiting a branch for the first time:

- loop unrolling postpones widening for a finite number of times
- there are finitely many branches in any block of code branch: condition block entry or inner loop entry

Principle

Mark program branches and apply widening only when no new branch was visited during the previous iteration

Post-fixpoint iteration:

- observation: if $f \circ \gamma \subseteq \gamma \circ f^{\sharp}$ and Ifp $f \subseteq \gamma\left(M^{\sharp}\right)$, then: $\operatorname{Ifp} f=f(\operatorname{lfp} f) \subseteq f \circ \gamma\left(M^{\sharp}\right) \subseteq \gamma \circ f^{\sharp}\left(M^{\sharp}\right)$
- so $f^{\sharp}\left(M^{\sharp}\right)$ also approximates Ifp f, and may be better

Principle

After an abstract invariant is found, perform additional iterations

Example widening iteration, more precise

Classical techniques:

- add test values and neighbors as thresholds
- alternate join and widening
- no widening after visiting a new branch

$$
\begin{aligned}
& \text { int } \mathrm{x}=0 ; \\
& \text { while(TRUE)\{ } \\
& \begin{array}{r}
\text { if }(\mathrm{x}<10000)\{ \\
\mathrm{x}=\mathrm{x}+1 ; \\
\text { \} else }\{ \\
\quad \mathrm{x}=-\mathrm{x} ;
\end{array} \\
& \text { \} }
\end{aligned}
$$

$$
\text { if }(\mathrm{x}<10000)\{\quad 9999 \text { will be a threshold value at loop head }
$$

Example widening iteration, more precise

Classical techniques:

- add test values and neighbors as thresholds
- alternate join and widening
- no widening after visiting a new branch

$$
\text { if }(x<10000)\{\quad 9999 \text { will be a threshold value at loop head }
$$

$$
\begin{aligned}
& \text { int } \mathrm{x}=0 \text {; } \\
& x \in[0,0] \\
& \text { while(TRUE) }\{ \\
& \mathrm{x}=\mathrm{x}+1 \text {; } \\
& \text { \} else \{ } \\
& \mathrm{x}=-\mathrm{x} ; \\
& \text { \} } \\
& \text { \} }
\end{aligned}
$$

Example widening iteration, more precise

Classical techniques:

- add test values and neighbors as thresholds
- alternate join and widening
- no widening after visiting a new branch

```
int }\textrm{x}=0\mathrm{ ;
        x\in[0,0]
    while(TRUE){
            x\in[0,0]
        if(x<10000){ 9999 will be a threshold value at loop head
            x = x + 1;
        } else {
        x = -x;
        }
    }
```

Entering the loop

Example widening iteration, more precise

Classical techniques:

- add test values and neighbors as thresholds
- alternate join and widening
- no widening after visiting a new branch

```
int \(\mathrm{x}=0\);
        \(x \in[0,0]\)
    while(TRUE) \(\{\)
                \(x \in[0,0]\)
        if \((x<10000)\) \{ 9999 will be a threshold value at loop head
            \(\mathrm{x} \in[0,0]\)
            \(\mathrm{x}=\mathrm{x}+1\);
        \} else \{
            \(x \in \emptyset\)
            \(\mathrm{x}=-\mathrm{x}\);
        \}
    \}
```

Only true branch possible

Example widening iteration, more precise

Classical techniques:

- add test values and neighbors as thresholds
- alternate join and widening
- no widening after visiting a new branch

```
int \(\mathrm{x}=0\);
        \(x \in[0,0]\)
    while(TRUE) \(\{\)
        \(x \in[0,0]\)
        if \((x<10000)\{\quad 9999\) will be a threshold value at loop head
            \(x \in[0,0]\)
        \(\mathrm{x}=\mathrm{x}+1\);
            \(\mathrm{x} \in[1,1]\)
        \} else \{
        \(x \in \emptyset\)
        \(\mathrm{x}=-\mathrm{x}\);
        \(x \in \emptyset\)
    \}
    \}
Incrementation of interval
```


Example widening iteration, more precise

Classical techniques:

- add test values and neighbors as thresholds
- alternate join and widening
- no widening after visiting a new branch

```
int \(\mathrm{x}=0\);
        \(x \in[0,0]\)
    while(TRUE) \(\{\)
        \(x \in[0,0]\)
        if \((x<10000)\{\quad 9999\) will be a threshold value at loop head
            \(\mathrm{x} \in[0,0]\)
            \(\mathrm{x}=\mathrm{x}+1\);
            \(\mathrm{x} \in[1,1]\)
        \} else \{
        \(x \in \emptyset\)
        \(\mathrm{x}=-\mathrm{x}\);
            \(x \in \emptyset\)
        \}
        \(\mathrm{x} \in[1,1]\)
    \}
```

Propagation

Example widening iteration, more precise

Classical techniques:

- add test values and neighbors as thresholds
- alternate join and widening
- no widening after visiting a new branch

```
int \(\mathrm{x}=0\);
        \(x \in[0,0]\)
    while(TRUE) \(\{\)
            \(x \in[0,1]\)
        if \((x<10000)\{\quad 9999\) will be a threshold value at loop head
            \(\mathrm{x} \in[0,0]\)
            \(\mathrm{x}=\mathrm{x}+1\);
            \(\mathrm{x} \in[1,1]\)
    \} else \{
        \(x \in \emptyset\)
        \(\mathrm{x}=-\mathrm{x}\);
            \(x \in \emptyset\)
        \}
        \(\mathrm{x} \in[1,1]\)
    \}
```

Join at loop head

Example widening iteration, more precise

Classical techniques:

- add test values and neighbors as thresholds
- alternate join and widening
- no widening after visiting a new branch

```
int \(\mathrm{x}=0\);
        \(x \in[0,0]\)
while(TRUE) \(\{\)
            \(x \in[0,1]\)
        if \((x<10000)\) \{ 9999 will be a threshold value at loop head
            \(x \in[0,1]\)
            \(\mathrm{x}=\mathrm{x}+1\);
            \(\mathrm{x} \in[1,1]\)
        \} else \{
        \(x \in \emptyset\)
        \(\mathrm{x}=-\mathrm{x}\);
            \(x \in \emptyset\)
    \}
        \(x \in[1,1]\)
\}
```

Still only the true branch is possible

Example widening iteration, more precise

Classical techniques:

- add test values and neighbors as thresholds
- alternate join and widening
- no widening after visiting a new branch

```
int \(\mathrm{x}=0\);
        \(x \in[0,0]\)
    while(TRUE) \(\{\)
        \(x \in[0,1]\)
        if \((x<10000)\) \{ 9999 will be a threshold value at loop head
        \(x \in[0,1]\)
        \(\mathrm{x}=\mathrm{x}+1\);
        \(\mathrm{x} \in[1,2]\)
    \} else \{
        \(x \in \emptyset\)
        \(\mathrm{x}=-\mathrm{x}\);
        \(x \in \emptyset\)
    \}
        \(x \in[1,1]\)
\}
```

Incrementation of interval

Example widening iteration, more precise

Classical techniques:

- add test values and neighbors as thresholds
- alternate join and widening
- no widening after visiting a new branch

```
int \(\mathrm{x}=0\);
        \(x \in[0,0]\)
    while(TRUE) \(\{\)
        \(x \in[0,1]\)
        if \((x<10000)\{\quad 9999\) will be a threshold value at loop head
            \(\mathrm{x} \in[0,1]\)
            \(\mathrm{x}=\mathrm{x}+1\);
            \(\mathrm{x} \in[1,2]\)
        \} else \{
        \(x \in \emptyset\)
        \(\mathrm{x}=-\mathrm{x}\);
            \(x \in \emptyset\)
    \}
        \(\mathrm{x} \in[1,2]\)
    \}
```

Propagation

Example widening iteration, more precise

Classical techniques:

- add test values and neighbors as thresholds
- alternate join and widening
- no widening after visiting a new branch

```
int \(\mathrm{x}=0\);
        \(x \in[0,0]\)
    while(TRUE) \(\{\)
                \(x \in[0,9999] \quad\) instead of \([0,+\infty[\)
        if \((x<10000)\) \{ 9999 will be a threshold value at loop head
            \(x \in[0,1]\)
            \(\mathrm{x}=\mathrm{x}+1\);
            \(x \in[1,2]\)
    \} else \{
        \(x \in \emptyset\)
        \(\mathrm{x}=-\mathrm{x}\);
            \(x \in \emptyset\)
    \}
        \(x \in[1,2]\)
\}
```

Widening at the loop head, + threshold

Example widening iteration, more precise

Classical techniques:

- add test values and neighbors as thresholds
- alternate join and widening
- no widening after visiting a new branch

```
int \(\mathrm{x}=0\);
        \(x \in[0,0]\)
    while(TRUE) \(\{\)
        \(x \in[0,9999]\) instead of \([0,+\infty[\)
        if \((\mathrm{x}<10000)\) \{ 9999 will be a threshold value at loop head
        \(\mathrm{x} \in[0,9999]\)
        \(\mathrm{x}=\mathrm{x}+1\);
            \(x \in[1,2]\)
    \} else \{
        \(x \in \emptyset\)
        \(\mathrm{x}=-\mathrm{x}\);
            \(x \in \emptyset\)
    \}
        \(x \in[1,2]\)
    \}
```

Now both branches are possible...

Example widening iteration, more precise

Classical techniques:

- add test values and neighbors as thresholds
- alternate join and widening
- no widening after visiting a new branch

```
int \(\mathrm{x}=0\);
        \(x \in[0,0]\)
while(TRUE) \(\{\)
            \(x \in[0,9999]\) instead of \([0,+\infty[\)
        if \((x<10000)\) \{ 9999 will be a threshold value at loop head
            \(\mathrm{x} \in[0,9999]\)
            \(\mathrm{x}=\mathrm{x}+1\);
            \(x \in[1,10000]\)
    \} else \{
        \(x \in \emptyset\)
        \(\mathrm{x}=-\mathrm{x}\);
            \(x \in \emptyset\)
    \}
        \(x \in[1,2]\)
\}
```

Numerical assignments

Example widening iteration, more precise

Classical techniques:

- add test values and neighbors as thresholds
- alternate join and widening
- no widening after visiting a new branch

```
int \(\mathrm{x}=0\);
        \(x \in[0,0]\)
    while(TRUE) \(\{\)
        \(x \in[0,9999]\) instead of \([0,+\infty[\)
        if \((x<10000)\) \{ 9999 will be a threshold value at loop head
        \(\mathrm{x} \in[0,9999]\)
        \(\mathrm{x}=\mathrm{x}+1\);
        \(x \in[1,10000]\)
    \} else \{
        \(x \in \emptyset\)
        \(\mathrm{x}=-\mathrm{x}\);
        \(x \in \emptyset\)
    \}
        \(\mathrm{x} \in[1,10000]\)
    \}
```

Join at the end of the loop

Example widening iteration, more precise

Classical techniques:

- add test values and neighbors as thresholds
- alternate join and widening
- no widening after visiting a new branch

```
int \(\mathrm{x}=0\);
        \(x \in[0,0]\)
    while(TRUE) \(\{\)
        \(x \in[0,10000] \quad\) instead of \(]-\infty,+\infty[\)
        if \((\mathrm{x}<10000)\) \{ 9999 will be a threshold value at loop head
        \(\mathrm{x} \in[0,9999]\)
        \(\mathrm{x}=\mathrm{x}+1\);
            \(x \in[1,10000]\)
    \} else \{
        \(x \in \emptyset\)
        \(\mathrm{x}=-\mathrm{x}\);
            \(x \in \emptyset\)
    \}
        \(x \in[1,10000]\)
    \}
```

Join after widening

Example widening iteration, more precise

Classical techniques:

- add test values and neighbors as thresholds
- alternate join and widening
- no widening after visiting a new branch

```
int \(\mathrm{x}=0\);
        \(x \in[0,0]\)
    while(TRUE) \(\{\)
        \(x \in[0,10000]\) instead of \(]-\infty,+\infty[\)
        if \((x<10000)\) \{ 9999 will be a threshold value at loop head
        \(\mathrm{x} \in[0,9999]\)
        \(\mathrm{x}=\mathrm{x}+1\);
            \(x \in[1,10000]\)
    \} else \{
        \(x \in[10000,10000] \quad\) instead of \([10000,+\infty[\)
        \(\mathrm{x}=-\mathrm{x}\);
        \(x \in \emptyset\)
    \}
        \(x \in[1,10000]\)
\}
```

True branch stable, false branch visited for the first time

Example widening iteration, more precise

Classical techniques:

- add test values and neighbors as thresholds
- alternate join and widening
- no widening after visiting a new branch

```
int \(\mathrm{x}=0\);
        \(x \in[0,0]\)
    while(TRUE) \(\{\)
                \(x \in[0,10000]\) instead of \(]-\infty,+\infty[\)
        if \((x<10000)\) \{ 9999 will be a threshold value at loop head
        \(\mathrm{x} \in[0,9999]\)
        \(\mathrm{x}=\mathrm{x}+1\);
            \(x \in[1,10000]\)
    \} else \{
        \(x \in[10000,10000] \quad\) instead of \([10000,+\infty[\)
        \(\mathrm{x}=-\mathrm{x}\);
            \(x \in[-10000,-10000]\)
    \}
        \(\mathrm{x} \in[1,10000]\)
\}
```

True branch stable, false branch visited for the first time

Example widening iteration, more precise

Classical techniques:

- add test values and neighbors as thresholds
- alternate join and widening
- no widening after visiting a new branch

```
int \(\mathrm{x}=0\);
        \(x \in[0,0]\)
    while(TRUE) \(\{\)
        \(\mathrm{x} \in[0,10000]\) instead of \(]-\infty,+\infty[\)
        if \((x<10000)\) \{ 9999 will be a threshold value at loop head
        \(\mathrm{x} \in[0,9999]\)
        \(\mathrm{x}=\mathrm{x}+1\);
            \(x \in[1,10000]\)
    \} else \{
        \(x \in[10000,10000]\) instead of \([10000,+\infty[\)
        \(\mathrm{x}=-\mathrm{x}\);
    \(x \in[-10000,-10000]\)
    \}
        \(x \in[-10000,10000]\)
\}
```

Join at the end of the loop

Example widening iteration, more precise

Classical techniques:

- add test values and neighbors as thresholds
- alternate join and widening
- no widening after visiting a new branch

```
int \(\mathrm{x}=0\);
        \(x \in[0,0]\)
    while(TRUE) \(\{\)
        \(x \in[-10000,10000]\) instead of \(]-\infty,+\infty[\)
        if \((x<10000)\{\quad 9999\) will be a threshold value at loop head
        \(\mathrm{x} \in[0,9999]\)
        \(\mathrm{x}=\mathrm{x}+1\);
            \(x \in[1,10000]\)
        \} else \{
        \(x \in[10000,10000]\) instead of \([10000,+\infty[\)
        \(\mathrm{x}=-\mathrm{x}\);
        \(x \in[-10000,-10000]\)
        \}
        \(x \in[-10000,10000]\)
\}
```

Join again: no widening after visiting a new branch

Example widening iteration, more precise

Classical techniques:

- add test values and neighbors as thresholds
- alternate join and widening
- no widening after visiting a new branch

```
int \(\mathrm{x}=0\);
        \(x \in[0,0]\)
    while(TRUE) \(\{\)
                \(x \in[-10000,10000]\) instead of \(]-\infty,+\infty[\)
        if \((x<10000)\) \{ 9999 will be a threshold value at loop head
        \(x \in[-10000,9999]\)
        \(\mathrm{x}=\mathrm{x}+1\);
            \(x \in[1,10000]\)
        \} else \{
        \(x \in[10000,10000]\) instead of \([10000,+\infty[\)
        \(\mathrm{x}=-\mathrm{x}\);
            \(x \in[-10000,-10000]\)
        \}
        \(x \in[-10000,10000]\)
\}
```

Branches

Example widening iteration, more precise

Classical techniques:

- add test values and neighbors as thresholds
- alternate join and widening
- no widening after visiting a new branch

```
int \(\mathrm{x}=0\);
        \(x \in[0,0]\)
    while(TRUE) \(\{\)
        \(x \in[-10000,10000]\) instead of \(]-\infty,+\infty[\)
        if \((x<10000)\) \{ \(\quad 9999\) will be a threshold value at loop head
        \(\mathrm{x} \in[-10000,9999]\)
        \(\mathrm{x}=\mathrm{x}+1\);
        \(x \in[-9999,10000]\)
    \} else \{
        \(x \in[10000,10000]\) instead of \([10000,+\infty[\)
        \(\mathrm{x}=-\mathrm{x}\);
        \(x \in[-10000,-10000]\)
    \}
        \(x \in[-10000,10000]\)
\}
```

Incrementation of interval in true branch; false branch stable

Example widening iteration, more precise

Classical techniques:

- add test values and neighbors as thresholds
- alternate join and widening
- no widening after visiting a new branch

```
int \(\mathrm{x}=0\);
        \(x \in[0,0]\)
    while(TRUE) \(\{\)
                \(\mathrm{x} \in[-10000,10000]\) instead of \(]-\infty,+\infty[\)
        if \((x<10000)\{\quad 9999\) will be a threshold value at loop head
        \(\mathrm{x} \in[-10000,9999]\)
        \(\mathrm{x}=\mathrm{x}+1\);
            \(x \in[-9999,10000]\)
    \} else \{
        \(x \in[10000,10000]\) instead of \([10000,+\infty[\)
        \(\mathrm{x}=-\mathrm{x}\);
        \(x \in[-10000,-10000]\)
    \}
        \(x \in[-10000,10000]\)
    \}
```

Everything is stable; exact ranges inferred

Widening and monotonicity

Remarks about the widening over intervals:

- it is monotone in its second argument,
- but it is not monotone in its first argument!

In fact, interesting widenings are not monotone in their first argument:
Let $\left(D^{\sharp}, \sqsubseteq\right)$ be an infinite height domain, with a widening ∇ that is stable $\left(\forall v^{\sharp}, v^{\sharp} \nabla v^{\sharp}=v^{\sharp}\right)$ and such that $\forall v_{0}^{\sharp}, v_{1}^{\sharp}, \forall i, v_{i}^{\sharp} \sqsubseteq v_{0}^{\sharp} \nabla v_{1}^{\sharp}$. Then, ∇ is not monotone in its first argument (proof: Patrick Cousot).

Proof: we assume it is, let $w_{0}^{\sharp} \sqsubset w_{1}^{\sharp} \sqsubset \ldots$ be an infinite chain over D^{\sharp} and define $v_{0}^{\sharp}=w_{0}^{\sharp}, v_{k+1}^{\sharp}=v_{k}^{\sharp} \nabla w_{k+1}^{\sharp}$; we prove by induction that $v_{k}^{\sharp}=w_{k}^{\sharp}$:

- clear at rank 0
- we assume that $v_{k}^{\sharp}=w_{k}^{\sharp}$: then $v_{k+1}^{\sharp}=v_{k}^{\sharp} \nabla w_{k+1}^{\sharp}$, so $w_{k+1}^{\sharp} \sqsubseteq v_{k+1}^{\sharp}$;

$$
\text { moreover, } v_{k+1}^{\sharp}=v_{k}^{\sharp} \nabla w_{k+1}^{\sharp}=w_{k}^{\sharp} \nabla w_{k+1}^{\sharp} \sqsubseteq w_{k+1}^{\sharp} \nabla w_{k+1}^{\sharp}=w_{k+1}^{\sharp}
$$

This contradicts the widening definition: the sequence should be stationary.

Outline

(1) Another Soundness Relation

(2) Revisiting Abstract Iteration
(3) Conclusion

Summary

This lecture:

- abstraction and its formalization
- computation of an abstract semantics in a very simplified case

Next lectures:

- construction of a few non trivial abstractions
- more general ways to compute sound abstract properties

Update on projects...

