Abstract Interpretation

Semantics and applications to verification

Xavier Rival

École Normale Supérieure

March 30th, 2018

Program of this lecture

Studied so far:

- semantics: behaviors of programs
- properties: safety, liveness, security...
- approaches to verification: typing, use of proof assistants, model checking

Today's lecture: introduction to abstract interpretation a general framework for comparing semantics introduced by Patrick Cousot and Radhia Cousot (1977)

- abstraction: use of a lattice of predicates
- computing abstract over-approximations, while preserving soundness
- computing abstract over-approximations for loops, using fixpoints as a basis

Outline

(1) Abstraction

- Notion of abstraction
- Abstraction and concretization functions
- Galois connections
(2) Abstract interpretation
(3) Application of abstract interpretation

Abstraction example 1: signs

Abstraction: defined by a family of properties to use in proofs

Example:

- objects under study: sets of mathematical integers
- abstract elements: signs

Lattice of signs

- \perp denotes only \emptyset
- \pm denotes any set of positive integers
- $\underline{0}$ denotes any subset of $\{0\}$
- 二 denotes any set of negative integers
- \top denotes any set of integers

Note: the order in the abstract lattice corresponds to inclusion...

Abstraction example 1: signs

Definition: abstraction relation

- concrete elements: elements of the original lattice $(c \in \mathcal{P}(\mathbb{Z}))$
- abstract elements: predicate (a: ". $\in\{\underline{+}, \underline{0}, \ldots\}$ ")
- abstraction relation: $c \vdash_{\mathcal{S}}$ a when a describes c

Examples:

- $\{1,2,3,5,7,11,13,17,19,23, \ldots\} \vdash_{\mathcal{S}} \pm$
- $\{1,2,3,5,7,11,13,17,19,23, \ldots\} \vdash_{\mathcal{S}} \top$

We use abstract elements to reason about operations:

- if $c_{0} \vdash_{\mathcal{S}} \pm$ and $c_{1} \vdash_{\mathcal{S}} \pm$, then $\left\{x_{0}+x_{1} \mid x_{i} \in c_{i}\right\} \vdash \mathcal{S} \pm$
- if $c_{0} \vdash_{\mathcal{S}} \pm$ and $c_{1} \vdash_{\mathcal{S}} \pm$, then $\left\{x_{0} \cdot x_{1} \mid x_{i} \in c_{i}\right\} \vdash \mathcal{S} \pm$
- if $c_{0} \vdash_{\mathcal{S}} \pm$ and $c_{1} \vdash \mathcal{S} \underline{0}$, then $\left\{x_{0} \cdot x_{1} \mid x_{i} \in c_{i}\right\} \vdash \mathcal{S} \underline{0}$
- if $c_{0} \vdash_{\mathcal{S}} \pm$ and $c_{1} \vdash_{\mathcal{S}} \perp$, then $\left\{x_{0} \cdot x_{1} \mid x_{i} \in c_{i}\right\} \vdash \mathcal{S} \perp$

Abstraction example 1: signs

We can also consider the union operation:

- if $c_{0} \vdash_{\mathcal{S}} \pm$ and $c_{1} \vdash_{\mathcal{S}} \pm$, then $c_{0} \cup c_{1} \vdash_{\mathcal{S}} \pm$
- if $c_{0} \vdash_{\mathcal{S}} \pm$ and $c_{1} \vdash_{\mathcal{S}} \perp$, then $c_{0} \cup c_{1} \vdash \mathcal{S} \pm$

But, what can we say about $c_{0} \cup c_{1}$, when $c_{0} \vdash_{\mathcal{S}} \underline{0}$ and $c_{1} \vdash_{\mathcal{S}} \pm$?

- clearly, $c_{0} \cup c_{1} \vdash_{\mathcal{S}} \top \ldots$
- but no other relation holds
- in the abstract, we do not rule out negative values

We can extend the initial lattice:

- $\geqq 0$ denotes any set of positive or null integers
- $\leqq 0$ denotes any set of negative or null integers
- $\neq 0$ denotes any set of non null integers
- if $c_{0} \vdash_{\mathcal{S}} \pm$ and $c_{1} \vdash_{\mathcal{S}} \underline{0}$, then $c_{0} \cup c_{1} \vdash_{\mathcal{S}} \geq 0$

Abstraction example 2: constants

Definition: abstraction based on constants

- concrete elements: $\mathcal{P}(\mathbb{Z})$
- abstract elements: $\perp, \top, \underline{n}$ where $n \in \mathbb{Z}$

$$
\left(D_{\mathcal{C}}^{\sharp}=\{\perp, \top\} \cup\{\underline{n} \mid n \in \mathbb{Z}\}\right)
$$

- abstraction relation: $c \vdash_{\mathcal{C}} \underline{n} c \subseteq\{n\}$

We obtain a flat lattice:

Abstract reasoning:

- if $c_{0} \vdash_{\mathcal{C}} \underline{n_{0}}$ and $c_{1} \vdash_{\mathcal{C}} \underline{n_{1}}$, then $\left\{k_{0}+k_{1} \mid k_{i} \in c_{i}\right\} \vdash_{\mathcal{C}} \underline{n_{0}+n_{1}}$

Abstraction example 3: Parikh vector

Definition: Parikh vector abstraction

- concrete elements: $\mathcal{P}\left(\mathcal{A}^{\star}\right)$ (sets of words over alphabet \mathcal{A})
- abstract elements: $\{\perp, \top\} \cup(\mathcal{A} \rightarrow \mathbb{N})$
- abstraction relation: $c \vdash_{\mathfrak{F}} \phi: \mathcal{A} \rightarrow \mathbb{N}$ if and only if:

$$
\forall w \in c, \forall a \in \mathcal{A}, \text { a appears } \phi(a) \text { times in } w
$$

Abstract reasoning:

- concatenation: if $\phi_{0}, \phi_{1}: \mathcal{A} \rightarrow \mathbb{N}$ and c_{0}, c_{1} are such that $c_{i} \vdash_{\mathfrak{F}} \phi_{i}$,

$$
\left\{w_{0} \cdot w_{1} \mid w_{i} \in c_{i}\right\} \vdash_{\mathfrak{P}} \phi_{0}+\phi_{1}
$$

Information preserved, information deleted:

- very precise information about the number of occurrences
- the order of letters is totally abstracted away (lost)

Abstraction example 4: interval abstraction

Definition: abstraction based on intervals

- concrete elements: $\mathcal{P}(\mathbb{Z})$
- abstract elements: $\perp,(a, b)$ where $a \in\{-\infty\} \cup \mathbb{Z}, b \in \mathbb{Z} \cup\{+\infty\}$ and $a \leq b$
- abstraction relation:

$$
\begin{aligned}
& \emptyset \vdash_{\mathcal{I}} \perp \\
& S \vdash_{\mathcal{I}}^{\top} \\
& S \vdash_{\mathcal{I}}(a, b) \Longleftrightarrow \forall x \in S, a \leq x \leq b
\end{aligned}
$$

Operations: TD

Abstraction example 5: non relational abstraction

Definition: non relational abstraction

- concrete elements: $\mathcal{P}(X \rightarrow Y)$, inclusion ordering
- abstract elements: $X \rightarrow \mathcal{P}(Y)$, pointwise inclusion ordering
- abstraction relation: $c \vdash_{\mathcal{N R}} a \Longleftrightarrow \forall \phi \in c, \forall x \in X, \phi(x) \in a(x)$

Information preserved, information deleted:

- very precise information about the image of the functions in c
- relations such as (for given $x_{0}, x_{1} \in X, y_{0}, y_{1} \in Y$) the following are lost:

$$
\begin{aligned}
& \forall \phi \in c, \phi\left(x_{0}\right)=\phi\left(x_{1}\right) \\
& \forall \phi \in c, \forall x, x^{\prime} \in X, \phi(x) \neq y_{0} \vee \phi\left(x^{\prime}\right) \neq y_{1}
\end{aligned}
$$

Notion of abstraction relation

Concrete order: so far, always inclusion

- the tighter the concrete set, the fewer behaviors
- smaller concrete sets correspond to more precise properties

Abstraction relation

Intuitively, the abstraction relation also describes implication: $c \vdash a$ effectively means "the property described by a implies that described by c

Advantage on static analysis (hint about the following lectures):

- abstract predicates are a lot easier to manipulate than sets of concrete states or logical formulas
- we can still derive concrete facts from abstract predicates

Abstraction relation and monotonicity

Order relations, abstraction relation and monotonicity

- both orders and the abstraction relation describe ordering
- we derive from transitivity there monotonicity properties i.e., chains of implications compose

Abstraction relation: $c \vdash a$ when c satisfies a

- if $c_{0} \subseteq c_{1}$ and c_{1} satisfies a, in all our examples, c_{0} also satisfies a

Abstract order: in all our examples,

- it matches the abstraction relation as well: if $a_{0} \sqsubseteq a_{1}$ and c satisfies a_{0}, then c also satisfies a_{1}
- great advantage: we can reason about implication in the abstract, without looking back at the concrete properties

We will now formalize this in detail...

Outline

(1) Abstraction

- Notion of abstraction
- Abstraction and concretization functions
- Galois connections
(2) Abstract interpretation
(3) Application of abstract interpretation

Towards adjoint functions

We consider a concrete lattice (C, \subseteq) and an abstract lattice (A, \sqsubseteq).
So far, we used abstraction relations, that are consistent with orderings:
Abstraction relation compatibility

- $\forall c_{0}, c_{1} \in C, \forall a \in A, c_{0} \subseteq c_{1} \wedge c_{1} \vdash a \Longrightarrow c_{0} \vdash a$
- $\forall c \in C, \forall a_{0}, a_{1} \in A, c \vdash a_{0} \wedge a_{0} \sqsubseteq a_{1} \Longrightarrow c \vdash a_{1}$

When we have a c (resp., a) and try to map it into a compatible a (resp. a $c)$, the abstraction relation is not a convenient tool. Hence, we shall use adjoint functions between C and A.

- from concrete to abstract: abstraction
- from abstract to concrete: concretization

Concretization function

Our first adjoint function:

Definition: concretization function
Concretization function $\gamma: A \rightarrow C$ (if it exists) is a monotone function that maps abstract a into the weakest (i.e., most general) concrete c that satisfies a (i.e., $c \vdash a$).

Notes:

- in common cases, there exists a γ
- $c \vdash a$ if and only if $c \subseteq \gamma(a)$
- a concretization that is not monotone with respect to the "logical ordering" would not make sense
- in fact, in some cases, we will even define γ before we define an ordering, and let γ define the ordering!

Concretization function: a few examples

Signs abstraction:

Constants abstraction:

Non relational abstraction:

$$
\begin{aligned}
\gamma_{\mathcal{N R}}:(X \rightarrow \mathcal{P}(Y)) & \longrightarrow \mathcal{P}(X \rightarrow Y) \\
\Phi & \longmapsto\{\phi: X \rightarrow Y \mid \forall x \in X, \phi(x) \in \Phi(x)\}
\end{aligned}
$$

Parikh vector abstraction: exercise!

Abstraction function

Our second adjoint function:

Definition: abstraction function
An abstraction function $\alpha: C \rightarrow A$ (if it exists) is a monotone function that maps concrete c into the most precise abstract a that soundly describes c (i.e., $c \vdash a$).

Note:

- in quite a few cases (including some in this course), there is no α
- for the same reason as γ a non monotone α (with respect to logical ordering) would not make sense

Summary on adjoint functions:

- α returns the most precise abstract predicate that holds true for its argument
this is called the best abstraction
- γ returns the most general concrete meaning of its argument

Abstraction: a few examples

Constants abstraction:

$$
\alpha_{\mathcal{C}}: \quad(c \subseteq \mathbb{Z}) \longmapsto \begin{cases}\perp & \text { if } c=\emptyset \\ \frac{n}{\top} & \text { if } c=\{n\} \\ \text { otherwise }\end{cases}
$$

Non relational abstraction:

$$
\begin{array}{rll}
\alpha_{\mathcal{N R}}: \mathcal{P}(X \rightarrow Y) & \longrightarrow X \rightarrow \mathcal{P}(Y) \\
c & \longmapsto(x \in X) \mapsto\{\phi(x) \mid \phi \in c\}
\end{array}
$$

Signs abstraction and Parikh vector abstraction: exercises

Outline

(1) Abstraction

- Notion of abstraction
- Abstraction and concretization functions
- Galois connections
(2) Abstract interpretation
(3) Application of abstract interpretation

Tying definitions of abstraction relation

So far, we have:

- abstraction $\alpha: C \rightarrow A$
- concretization $\gamma: A \rightarrow C$

How to tie them together ?
They should agree on a same abstraction relation \vdash !
This means:

$$
\begin{aligned}
& \forall c \in C, \forall a \in A, \\
& c \vdash a \\
& \Longleftrightarrow c \subseteq \gamma(a) \\
& \Longleftrightarrow \alpha(c) \sqsubseteq a
\end{aligned}
$$

This observation is at the basis of the definition of Galois connections

Galois connection

Definition: Galois connection

A Galois connection is defined by a:

- a concrete lattice (C, \subseteq),
- an abstract lattice (A, \sqsubseteq),
- an abstraction function $\alpha: C \rightarrow A$
- and a concretization function $\gamma: A \rightarrow C$
such that:

$$
\forall c \in C, \forall a \in A, \alpha(c) \sqsubseteq a \Longleftrightarrow c \subseteq \gamma(a) \quad(\Longleftrightarrow c \vdash a)
$$

Notation:

$$
(C, \subseteq) \underset{\alpha}{\stackrel{\gamma}{\longleftrightarrow}}(A, \sqsubseteq)
$$

Note: in practice, we shall rarely use \vdash; we use α, γ instead

Example: constants abstraction and Galois connection

Constants lattice $D_{\mathcal{C}}^{\sharp}=\{\perp, \top\} \uplus\{\underline{n} \mid n \in \mathbb{Z}\}$

$$
\begin{array}{rlrlr}
\alpha_{\mathcal{C}}(c) & =\perp & \text { if } c=\emptyset & \gamma_{\mathcal{C}}(\top) & \longmapsto \mathbb{Z} \\
\alpha_{\mathcal{C}}(c) & =\underline{n} \quad \text { if } c=\{n\} & \gamma_{\mathcal{C}}(\underline{n}) & \longmapsto\{n\} \\
\alpha_{\mathcal{C}}(c) & =\frac{\top}{} \text { otherwise } & \gamma_{\mathcal{C}}(\perp) & \longmapsto \emptyset
\end{array}
$$

Thus:

- if $c=\emptyset, \forall a, c \subseteq \gamma_{\mathcal{C}}(a)$, i.e., $c \subseteq \gamma_{\mathcal{C}}(a) \Longleftrightarrow \alpha_{\mathcal{C}}(c)=\perp \sqsubseteq a$
- if $c=\{n\}$,
$\alpha_{\mathcal{C}}(\{n\})=\underline{n} \sqsubseteq c \Longleftrightarrow c=\underline{n} \vee c=\top \Longleftrightarrow c=\{n\} \subseteq \gamma_{\mathcal{C}}(a)$
- if c has at least two distinct elements $n_{0}, n_{1}, \alpha_{\mathcal{C}}(c)=T$ and $c \subseteq \gamma_{\mathcal{C}}(a) \Rightarrow a=\top$, i.e., $c \subseteq \gamma_{\mathcal{C}}(a) \Longleftrightarrow \alpha_{\mathcal{C}}(c)=\perp \sqsubseteq a$

Constant abstraction: Galois connection
$c \subseteq \gamma_{\mathcal{C}}(a) \Longleftrightarrow \alpha_{\mathcal{C}}(c) \sqsubseteq a$, therefore, $(\mathcal{P}(\mathbb{Z}), \subseteq) \underset{\alpha_{\mathcal{C}}}{\stackrel{\gamma_{\mathcal{C}}}{\leftrightarrows}}\left(D_{\mathcal{C}}^{\sharp}, \sqsubseteq\right)$

Example: non relational abstraction Galois connection

We have defined:

$$
\begin{array}{lll}
\alpha_{\mathcal{N R}}:(c \subseteq(X \rightarrow Y)) & \longmapsto(x \in X) \mapsto\{f(x) \mid f \in c\} \\
\gamma_{\mathcal{N R}}:(\Phi \in(X \rightarrow \mathcal{P}(Y))) & \longmapsto\{f: X \rightarrow Y \mid \forall x \in X, f(x) \in \Phi(x)\}
\end{array}
$$

Let $c \in \mathcal{P}(X \rightarrow Y)$ and $\Phi \in(X \rightarrow \mathcal{P}(Y))$; then:

$$
\begin{aligned}
\alpha_{\mathcal{N R}}(c) \sqsubseteq \Phi & \Longleftrightarrow \forall x \in X, \alpha_{\mathcal{N R}}(c)(x) \subseteq \Phi(x) \\
& \Longleftrightarrow \forall x \in X,\{f(x) \mid f \in c\} \subseteq \Phi(x) \\
& \Longleftrightarrow \forall f \in c, \forall x \in X, f(x) \in \Phi(x) \\
& \Longleftrightarrow \forall f \in c, f \in \gamma_{\mathcal{N R}}(\Phi) \\
& \Longleftrightarrow c \subseteq \gamma_{\mathcal{N R}}(\Phi)
\end{aligned}
$$

Non relational abstraction: Galois connection

 $c \subseteq \gamma_{\mathcal{N R}}(a) \Longleftrightarrow \alpha_{\mathcal{N R}}(c) \sqsubseteq a$, therefore,$$
(\mathcal{P}(X \rightarrow Y), \subseteq) \underset{\alpha_{\mathcal{N R}}}{\stackrel{\gamma_{\mathcal{N}}}{\leftrightarrows}}(X \rightarrow \mathcal{P}(Y), \sqsubseteq)
$$

Galois connection properties

Galois connections have many useful properties.
In the next few slides, we consider a Galois connection $(C, \subseteq) \underset{\alpha}{\stackrel{\gamma}{\leftrightarrows}}(A, \sqsubseteq)$ and establish a few interesting properties.

Extensivity, contractivity

- $\alpha \circ \gamma$ is contractive: $\forall a \in A, \alpha \circ \gamma(a) \sqsubseteq a$
- $\gamma \circ \alpha$ is extensive: $\forall c \in C, c \subseteq \gamma \circ \alpha(c)$

Proof:

- let $a \in A$; then, $\gamma(a) \subseteq \gamma(a)$, thus $\alpha(\gamma(a)) \sqsubseteq a$
- let $c \in C$; then, $\alpha(c) \sqsubseteq \alpha(c)$, thus $c \subseteq \gamma(\alpha(c))$

Galois connection properties

Monotonicity of adjoints

- α is monotone
- γ is monotone

Proof:

- monotonicity of α : let $c_{0}, c_{1} \in C$ such that $c_{0} \subseteq c_{1}$; by extensivity of $\gamma \circ \alpha, c_{1} \subseteq \gamma\left(\alpha\left(c_{1}\right)\right)$, so by transitivity, $c_{0} \subseteq \gamma\left(\alpha\left(c_{1}\right)\right)$ by definition of the Galois connnection, $\alpha\left(c_{0}\right) \sqsubseteq \alpha\left(c_{1}\right)$
- monotonicity of γ : same principle

Note: many proofs can be derived by duality
Duality principle applied for Galois connections

$$
\text { If }(C, \subseteq) \underset{\alpha}{\stackrel{\gamma}{\longrightarrow}}(A, \sqsubseteq) \text {, then }(A, \sqsupseteq) \underset{\gamma}{\stackrel{\alpha}{\longrightarrow}}(C, \supseteq)
$$

Galois connection properties

Iteration of adjoints

- $\alpha \circ \gamma \circ \alpha=\alpha$
- $\gamma \circ \alpha \circ \gamma=\gamma$
- $\alpha \circ \gamma($ resp., $\gamma \circ \alpha)$ is idempotent, hence a lower (resp., upper) closure operator

Proof:

- $\alpha \circ \gamma \circ \alpha=\alpha$:
let $c \in C$, then $\gamma \circ \alpha(c) \subseteq \gamma \circ \alpha(c)$ hence, by the Galois connection property, $\alpha \circ \gamma \circ \alpha(c) \sqsubseteq \alpha(c)$ moreover, $\gamma \circ \alpha$ is extensive and α monotone, so $\alpha(c) \sqsubseteq \alpha \circ \gamma \circ \alpha(c)$ thus, $\alpha \circ \gamma \circ \alpha(c)=\alpha(c)$
- the second point can be proved similarly (duality); the others follow

Galois connection properties

Properties on iterations of adjoint functions:

Galois connection properties

α preserves least upper bounds

$$
\forall c_{0}, c_{1} \in C, \alpha\left(c_{0} \cup c_{1}\right)=\alpha\left(c_{0}\right) \sqcup \alpha\left(c_{1}\right)
$$

By duality:

$$
\forall a_{0}, a_{1} \in A, \gamma\left(c_{0} \sqcap c_{1}\right)=\gamma\left(c_{0}\right) \sqcap \gamma\left(c_{1}\right)
$$

Proof:

First, we observe that $\alpha\left(c_{0}\right) \sqcup \alpha\left(c_{1}\right) \sqsubseteq \alpha\left(c_{0} \cup c_{1}\right)$, i.e. $\alpha\left(c_{0} \cup c_{1}\right)$ is an upper bound of $\left\{\alpha\left(c_{0}\right), \alpha\left(c_{1}\right)\right\}$.
We now prove it is the least upper bound. For all $a \in A$:

$$
\begin{aligned}
\alpha\left(c_{0} \cup c_{1}\right) \sqsubseteq a & \Longleftrightarrow c_{0} \cup c_{1} \subseteq \gamma(a) \\
& \Longleftrightarrow c_{0} \subseteq \gamma(a) \wedge c_{1} \subseteq \gamma(a) \\
& \Longleftrightarrow \alpha\left(c_{0}\right) \sqsubseteq a \wedge \alpha\left(c_{1}\right) \sqsubseteq a \\
& \Longleftrightarrow \alpha\left(c_{0}\right) \sqcup \alpha\left(c_{1}\right) \sqsubseteq a
\end{aligned}
$$

Note: when C, A are complete lattices, this extends to families of elements

Galois connection properties

Uniqueness of adjoints

- given $\gamma: A \rightarrow C$, there exists at most one $\alpha: C \rightarrow A$ such that $(C, \subseteq) \underset{\alpha}{\stackrel{\gamma}{\longleftrightarrow}}(A, \sqsubseteq)$, and, if it exists, $\alpha(c)=\sqcap\{a \in A \mid c \subseteq \gamma(a)\}$
- similarly, given $\alpha: C \rightarrow A$, there exists at most one $\gamma: A \rightarrow C$ such that $(C, \subseteq) \underset{\alpha}{\stackrel{\gamma}{\leftrightarrows}}(A, \sqsubseteq)$, and it is defined dually

Proof of the first point (the other follows by duality):
we assume that there exists an α so that we have a Galois connection and prove that, $\alpha(c)=\sqcap\{a \in A \mid c \subseteq \gamma(a)\}$ for a given $c \in C$.

- if $a \in A$ is such that $c \subseteq \gamma(a)$, then $\alpha(c) \sqsubseteq a$ thus, $\alpha(c)$ is a lower bound of $\{a \in A \mid c \subseteq \gamma(a)\}$.
- since $c \subseteq \gamma(\alpha(c)), \alpha(c) \in\{a \in A \mid c \subseteq \gamma(a)\}$, so $\alpha(c)$ is the greatest lower bound of $\{a \in A \mid c \subseteq \gamma(a)\}$.
Thus, $\alpha(c)$ is the least upper bound of $\{a \in A \mid c \subseteq \gamma(a)\}$

Construction of adjoint functions

The adjoint uniqueness property is actually a very strong property:

- it allows to construct an abstraction from a concretization
- ... or to understand why no abstraction can be constructed :-)

Turning an adjoint into a Galois connection (1)

Let (C, \subseteq) and (A, \sqsubseteq) be two lattices, such that any subset of A as a greatest lower bound and let $\gamma:(A, \sqsubseteq) \rightarrow(C, \subseteq)$ be a monotone function.

Then, the function below defines a Galois connection:

$$
\alpha(c)=\sqcap\{a \in A \mid c \subseteq \gamma(a)\}
$$

Example of abstraction with no α : when \sqcap is not defined on all families, e.g., lattice of convex polyedra, abstracting sets of points in \mathbb{R}^{2}.

Exercise: state the dual property and apply the same principle to the concretization

Galois connection characterization

A characterization of Galois connections
Let (C, \subseteq) and (A, \sqsubseteq) be two lattices, and $\alpha: C \rightarrow A$ and $\gamma: A \rightarrow C$ be two monotone functions, such that:

- $\alpha \circ \gamma$ is contractive
- $\gamma \circ \alpha$ is extensive

Then, we have a Galois connection

$$
(C, \subseteq) \underset{\alpha}{\stackrel{\gamma}{\Longrightarrow}}(A, \sqsubseteq)
$$

Proof:

- let $c \in C$ and $a \in A$ such that $\alpha(c) \sqsubseteq a$. then: $\quad \gamma(\alpha(c)) \subseteq \gamma(a)$ (as γ is monotone) $c \subseteq \gamma(\alpha(c))$ (as $\gamma \circ \alpha$ is extensive) thus, $c \subseteq \gamma(a)$, by transitivity
- the other implication can be proved by duality

Outline

(1) Abstraction
(2) Abstract interpretation

- Abstract computation
- Fixpoint transfer
(3) Application of abstract interpretation

4 Conclusion

Constructing a static analysis

We have set up a notion of abstraction:

- it describes sound approximations of concrete properties with abstract predicates
- there are several ways to formalize it (abstraction, concretization...)
- we now wish to compute sound abstract predicates

In the following, we assume

- a Galois connection

$$
(C, \subseteq) \underset{\alpha}{\stackrel{\gamma}{\leftrightarrows}}(A, \sqsubseteq)
$$

- a concrete semantics 【.】, with a constructive definition i.e., $\llbracket P \rrbracket$ is defined by constructive equations $(\llbracket P \rrbracket=f(\ldots))$, least fixpoint formula $\left(\llbracket P \rrbracket=\mathbf{I f p}_{\emptyset} f\right) \ldots$

Abstract transformer

A fixed concrete element c_{0} can be abstracted by $\alpha\left(c_{0}\right)$.
We now consider a monotone concrete function $f: C \rightarrow C$

- given $c \in C, \alpha \circ f(c)$ abstracts the image of c by f
- if $c \in C$ is abstracted by $a \in A$, then $f(c)$ is abstracted by $\alpha \circ f \circ \gamma(a)$:

$$
\begin{aligned}
& c \subseteq \gamma(a) \\
& f(c) \subseteq f(\gamma(a)) \\
& \alpha(f(c)) \subseteq \alpha(f(\gamma(a)))
\end{aligned}
$$

by assumption by monotonicity of f

Definition: best and sound abstract transformers

- the best abstract transformer approximating f is $f^{\sharp}=\alpha \circ f \circ \gamma$
- a sound abstract transformer approximating f is any operator $f^{\sharp}: A \rightarrow A$, such that $\alpha \circ f \circ \gamma \sqsubseteq f^{\sharp}$ (or equivalently, $f \circ \gamma \subseteq \gamma \circ f^{\sharp}$)

Example: lattice of signs

- $f: D_{\mathcal{C}}^{\sharp} \rightarrow D_{\mathcal{C}}^{\sharp}, c \mapsto\{-n \mid n \in c\}$
- $f^{\sharp}=\alpha \circ f \circ \gamma$

Lattice of signs:
Abstract negation operator:

- here, the best abstract transformer is very easy to compute
- no need to use an approximate one

Abstract n-ary operators

We can generalize this to n-ary operators, such as boolean operators and arithmetic operators

Definition: sound and exact abstract operators

Let $g: C^{n} \rightarrow C$ be an n-ary operator, monotone in each component. Then:

- the best abstract operator approximating g is defined by:

$$
\begin{array}{rll}
g^{\sharp}: & A^{n} & \longmapsto A \\
& \left(a_{0}, \ldots, a_{n-1}\right) & \longmapsto \alpha \circ g\left(\gamma\left(a_{0}\right), \ldots, \gamma\left(a_{n-1}\right)\right)
\end{array}
$$

- a sound abstract transformer approximating g is any operator $g^{\sharp}: A^{n} \rightarrow A$, such that $\forall\left(a_{0}, \ldots, a_{n-1}\right) \in A^{n}, \alpha \circ g\left(\gamma\left(a_{0}\right), \ldots, \gamma\left(a_{n-1}\right)\right) \sqsubseteq g^{\sharp}\left(a_{0}, \ldots, a_{n-1}\right)$
(i.e., equivalently, $g\left(\gamma\left(a_{0}\right), \ldots, \gamma\left(a_{n-1}\right)\right) \subseteq \gamma \circ g^{\sharp}\left(a_{0}, \ldots, a_{n-1}\right)$

Example: lattice of signs arithmetic operators

Application:

- $\oplus: C^{2} \rightarrow C,\left(c_{0}, c_{1}\right) \mapsto\left\{n_{0}+n_{1} \mid n_{i} \in c_{i}\right\}$
- $\otimes: C^{2} \rightarrow C,\left(c_{0}, c_{1}\right) \mapsto\left\{n_{0} \cdot n_{1} \mid n_{i} \in c_{i}\right\}$

Best abstract operators:

\oplus^{\sharp}	\perp	$\overline{ }$	$\underline{0}$	\pm	\top
\perp	\perp	\perp	\perp	\perp	\perp
$\overline{-}$	\perp	$\overline{ }$	$\overline{ }$	\top	\top
$\underline{0}$	\perp	$\overline{ }$	$\underline{0}$	\pm	\top
\pm	\perp	\bar{T}	$\underline{ \pm}$	\pm	\top
\top	\perp	\top	\bar{T}	\bar{T}	\top

\otimes^{\sharp}	\perp	$\overline{ }$	$\underline{0}$	$\underline{ \pm}$	\top
\perp	\perp	\perp	\perp	\perp	\perp
$\overline{ }$	\perp	\pm	$\underline{0}$	$\overline{ }$	\top
$\underline{0}$	\perp	$\underline{0}$	$\underline{0}$	$\underline{0}$	$\underline{0}$
$\underline{ \pm}$	\perp	$\overline{ }$	$\underline{0}$	$\underline{ \pm}$	\top
$\bar{\top}$	\perp	\bar{T}	$\underline{0}$	$\bar{\top}$	\top

Example of loss in precision:

- $\{8\} \in \gamma_{\mathcal{S}}(\pm)$ and $\{-2\} \in \gamma_{\mathcal{S}}($ (二)
- $\oplus^{\sharp}(\pm, \underline{-})=\top$ is a lot worse than $\alpha_{\mathcal{S}}(\oplus(\{8\},\{-2\}))= \pm$

Example: lattice of signs set operators

Best abstract operators approximating \cup and \cap :

\cup^{\sharp}	\perp	-	0	+	T
\perp	\perp	-	$\underline{0}$	\pm	T
-	-	-	T	T	T
$\underline{0}$	$\underline{0}$	T	$\underline{0}$	T	T
\pm	\pm	T	T	\pm	T
T	T	T	T	T	T

\cap^{\sharp}	\perp	$\overline{ }$	$\underline{0}$	\pm	\top
\perp	\perp	\perp	\perp	\perp	\perp
$\overline{-}$	\perp	$\overline{ }$	\perp	\perp	$\overline{ }$
$\underline{0}$	\perp	\perp	$\underline{0}$	\perp	$\underline{0}$
\pm	\perp	\perp	\perp	\pm	$\underline{+}$
\top	\perp	\simeq	$\underline{0}$	\pm	\top

Example of loss in precision:

- $\gamma($ (二) $\cup \gamma(\pm)=\{n \in \mathbb{Z} \mid n \neq 0\} \subset \gamma(\top)$

Outline

(1) Abstraction
(2) Abstract interpretation

- Abstract computation
- Fixpoint transfer
(3) Application of abstract interpretation

4 Conclusion

Fixpoint transfer

What about loops ? semantic functions defined by fixpoints ?

Theorem: exact fixpoint transfer
We assume (C, \subseteq) and (A, \sqsubseteq) are complete lattices. We consider a Galois connection $(C, \subseteq) \underset{\alpha}{\stackrel{\gamma}{\leftrightarrows}}(A, \sqsubseteq)$, two functions $f: C \rightarrow C$ and $f^{\sharp}: A \rightarrow A$ and two elements $c_{0} \in C, a_{0} \in A$ such that:

- f is continuous
- f^{\sharp} is monotone
- $\alpha \circ f=f^{\sharp} \circ \alpha$
- $\alpha\left(c_{0}\right)=a_{0}$

Then:

- both f and $f \sharp$ have a least-fixpoint (by Tarski's fixpoint theorem)
- $\alpha\left(\mathbf{I f} \mathbf{p}_{c_{0}} f\right)=\mathbf{I f p}_{\mathrm{a}_{0}} f^{\sharp}$

Fixpoint transfer: proof

- $\alpha\left(\operatorname{lfp}_{c_{0}} f\right)$ is a fixpoint of f^{\sharp} since:

$$
\begin{aligned}
f^{\sharp}\left(\alpha\left(\mathbf{I f} \mathbf{p}_{c_{0}} f\right)\right) & =\alpha\left(f\left(\mathbf{I f} \mathbf{p}_{c_{0}} f\right)\right) & & \text { since } \alpha \circ f=f^{\sharp} \circ \alpha \\
& =\alpha\left(\mathbf{I f} \mathbf{p}_{c_{0}} f\right) & & \text { by definition of the fixpoints }
\end{aligned}
$$

- To show that $\alpha\left(\operatorname{Ifp} c_{c_{0}} f\right)$ is the least-fixpoint of f^{\sharp}, we assume that X is another fixpoint of f^{\sharp} greater than a_{0} and we show that $\alpha\left(\mathbf{I f p}_{c_{0}} f\right) \sqsubseteq X$, i.e., that $\mathbf{I f p}_{c_{0}} f \subseteq \gamma(X)$.
As $\operatorname{Ifp}_{c_{0}} f=\bigcup_{n \in \mathbb{N}} f^{n}\left(c_{0}\right)$ (by Kleene's fixpoint theorem), it amounts to proving that $\forall n \in \mathbb{N}, f^{n}\left(c_{0}\right) \subseteq \gamma(X)$.
By induction over n :
- $f^{0}\left(c_{0}\right)=c_{0}$, thus $\alpha\left(f^{0}\left(c_{0}\right)\right)=a_{0} \sqsubseteq X$; thus, $f^{0}\left(c_{0}\right) \subseteq \gamma(X)$.
- let us assume that $f^{n}\left(c_{0}\right) \subseteq \gamma(X)$, and let us show that

$$
\begin{aligned}
& f^{n+1}\left(c_{0}\right) \subseteq \gamma(X), \text { i.e. that } \alpha\left(f^{n+1}\left(c_{0}\right)\right) \sqsubseteq X \text { : } \\
& \qquad \alpha\left(f^{n+1}\left(c_{0}\right)\right)=\alpha \circ f\left(f^{n}\left(c_{0}\right)\right)=f^{\sharp} \circ \alpha\left(f^{n}\left(c_{0}\right)\right) \sqsubseteq f^{\sharp}(X)=X
\end{aligned}
$$

as $\alpha\left(f^{n}\left(c_{0}\right)\right) \sqsubseteq X$ and f^{\sharp} is monotone.

Constructive analysis of loops

How to get a constructive fixpoint transfer theorem ?

Theorem: fixpoint abstraction

Under the assumptions of the previous theorem, and with the following additional hypothesis:

- lattice A is of finite height

We compute the sequence $\left(a_{n}\right)_{n \in \mathbb{N}}$ defined by $a_{n+1}=a_{n} \sqcup f^{\sharp}\left(a_{n}\right)$.
Then, $\left(a_{n}\right)_{n \in \mathbb{N}}$ converges and its limit a_{∞} is such that $\alpha\left(\operatorname{Ifp_{c_{0}}} f\right)=a_{\infty}$.

Proof: exercise.

Note:

- the assumptions we have made are too restrictive in practice
- more general fixpoint abstraction methods in the next lectures

Outline

(1) Abstraction
(2) Abstract interpretation
(3) Application of abstract interpretation

4 Conclusion

Comparing existing semantics

(1) A concrete semantics $\llbracket P \rrbracket$ is given: e.g., big steps operational semantics
(2) An abstract semantics $\llbracket P \rrbracket^{\sharp}$ is given: e.g., denotational semantics
(3) Search for an abstraction relation between them e.g., $\llbracket P \rrbracket^{\sharp}=\alpha(\llbracket P \rrbracket)$, or $\llbracket P \rrbracket \subseteq \gamma\left(\llbracket P \rrbracket^{\sharp}\right)$

Examples:

- finite traces semantics as an abstraction of bi-finitary trace semantics
- denotational semantics as an abstraction of trace semantics
- types as an abstraction of denotational semantics

Payoff:

- better understanding of ties across semantics
- chance to generalize existing definitions

Example: we have seen the tie between reachable states and denotational

Derivation of a static analysis

(1) Start from a concrete semantics $\llbracket P \rrbracket$
(2) Choose an abstraction defined by a Galois connection or a concretization function (usually)
(3) Derive an abstract semantics $\llbracket P \rrbracket^{\sharp}$ such that $\llbracket P \rrbracket \subseteq \gamma\left(\llbracket P \rrbracket^{\sharp}\right)$

Examples:

- derivation of an analysis with a numerical lattice (constants, intervals...)
- construction of an analysis for a complex programming language Payoff:
- the derivation of the abstract semantics is quite systematic
- this process offers good opportunities for a modular analysis design

There are many ways to apply abstract interpretation.

A very simple language and its semantics

We now apply this to a very simple language, and derive a static analysis step by step, from a concrete semantics and an abstraction.

- we assume a fixed set of n integer variables x_{0}, \ldots, x_{n-1}
- we consider the language defined by the grammar below:

$$
\begin{array}{l:l}
P \quad:= & \mathrm{x}_{i}=n \\
& \mathrm{x}_{i}=\mathrm{x}_{j}+\mathrm{x}_{k} \\
& \mathrm{x}_{i}=\mathrm{x}_{j}-\mathrm{x}_{k} \\
& \mathrm{x}_{i}=\mathrm{x}_{j} \cdot \mathrm{x}_{k} \\
& P ; P \\
& \text { input }\left(\mathrm{x}_{i}\right) \\
& \text { if }\left(\mathrm{x}_{i}>0\right) P \text { else } P \\
& \text { while }\left(\mathrm{x}_{i}>0\right) P
\end{array}
$$

where $n \in \mathbb{Z}$
basic, three-addresses arithmetics basic, three-addresses arithmetics basic, three-addresses arithmetics concatenation reading of a positive input

- a state is a vector $\sigma=\left(\sigma_{0}, \ldots, \sigma_{n-1}\right) \in \mathbb{Z}^{n}$
- a single initial state $\sigma_{\text {init }}=(0, \ldots, 0)$

Concrete semantics

Concrete semantics

We let $\llbracket P \rrbracket: \mathcal{P}\left(\mathbb{Z}^{n}\right) \rightarrow \mathcal{P}\left(\mathbb{Z}^{n}\right)$ be defined by:

$$
\begin{aligned}
& \llbracket \mathrm{x}_{i}=n \rrbracket(\mathcal{M})=\{\sigma[i \leftarrow n] \mid \sigma \in \mathcal{M}\} \\
& \llbracket \mathrm{x}_{i}=\mathrm{x}_{j}+\mathrm{x}_{k} \rrbracket(\mathcal{M})=\left\{\sigma\left[i \leftarrow \sigma_{j}+\sigma_{k}\right] \mid \sigma \in \mathcal{M}\right\} \\
& \llbracket \mathrm{x}_{i}=\mathrm{x}_{j}-\mathrm{x}_{k} \rrbracket(\mathcal{M})=\left\{\sigma\left[i \leftarrow \sigma_{j}-\sigma_{k}\right] \mid \sigma \in \mathcal{M}\right\} \\
& \llbracket \mathrm{x}_{i}=\mathrm{x}_{j} * \mathrm{x}_{k} \rrbracket(\mathcal{M})=\left\{\sigma\left[i \leftarrow \sigma_{j} * \sigma_{k}\right] \mid \sigma \in \mathcal{M}\right\} \\
& \llbracket i \operatorname{input}\left(\mathrm{x}_{i}\right) \rrbracket(\mathcal{M})=\{\sigma[i \leftarrow n] \mid \sigma \in \mathcal{M} \wedge n>0\} \\
& \llbracket P_{0} ; P_{1} \rrbracket(\mathcal{M})=\llbracket P_{1} \rrbracket \circ \llbracket P_{0} \rrbracket(\mathcal{M}) \\
& \llbracket i \mathbf{f}\left(\mathrm{x}_{i}>0\right) P_{0} \text { else } P_{1} \rrbracket(\mathcal{M})=\llbracket P_{0} \rrbracket\left(\left\{\sigma \in \mathcal{M} \mid \sigma_{i}>0\right\}\right) \\
& \cup \llbracket P_{1} \rrbracket\left(\left\{\sigma \in \mathcal{M} \mid \sigma_{i} \leq 0\right\}\right) \\
& \llbracket \text { while }\left(\mathrm{x}_{i}>0\right) P \rrbracket(\mathcal{M})=\left\{\sigma \in \operatorname{lfp} f \mid \sigma_{i} \leq 0\right\} \text { where } \\
& f: \mathcal{M}^{\prime} \mapsto \mathcal{M} \cup \mathcal{M}^{\prime} \cup \llbracket P \rrbracket\left(\left\{\sigma \in \mathcal{M}^{\prime} \mid \sigma_{i}>0\right\}\right)
\end{aligned}
$$

- given a complete program P, the reachable states are defined by $\|P\|\left(\left\{\sigma_{\text {init }}\right\}\right)$

Examples

A couple of contrived examples enough to show the behavior of the analysis...

Absolute value function:

Factorial function:

$$
\begin{aligned}
& \operatorname{input}\left(x_{0}\right) \\
& \mathrm{x}_{1}=1 \\
& \mathrm{x}_{2}=1 \\
& \text { while }\left(\mathrm{x}_{0}>0\right)\{ \\
& \quad \mathrm{x}_{1}=\mathrm{x}_{0} * \mathrm{x}_{1} \\
& \quad \mathrm{x}_{0}=\mathrm{x}_{0}-\mathrm{x}_{2} \\
& \}
\end{aligned}
$$

- input unknowns
- output x_{1} should be positive
- input unknowns
- output x_{0} should be null
- outputs $\mathrm{x}_{1}, \mathrm{x}_{2}$ should be positive

Abstraction

We compose two abstractions:

- non relational abstraction: the values a variable may take is abstracted separately from the other variables
- sign abstraction: the set of values observed for each variable is abstracted into the lattice of signs

Abstraction

- concrete domain: $\left(\mathcal{P}\left(\mathbb{Z}^{n}\right), \subseteq\right)$
- abstract domain: $\left(D^{\sharp}, \sqsubseteq\right)$, where $D^{\sharp}=\left(D_{\mathcal{S}}^{\sharp}\right)^{n}$ and \sqsubseteq is the pointwise ordering
- Galois connection $(\mathcal{P}(\mathbb{Z}), \subseteq) \underset{\alpha}{\stackrel{\gamma}{\leftrightarrows}}\left(D^{\sharp}, \sqsubseteq\right)$, defined by

$$
\begin{aligned}
\alpha: & S \\
\gamma: & M^{\sharp}
\end{aligned}>\left(\alpha_{\mathcal{S}}\left(\left\{\sigma_{0} \mid \sigma \in S\right\}\right), \ldots, \alpha_{\mathcal{S}}\left(\left\{\sigma_{n-1} \mid \sigma \in S\right\}\right)\right),\left\{\sigma \in \mathbb{Z}^{n} \mid \forall i, \sigma_{i} \in \gamma_{\mathcal{S}}\left(M_{i}^{\sharp}\right)\right\}
$$

Towards an abstraction for our small language

Basic intuitions for our abstraction:
(1) a memory state is a vector of scalars
(2) the concrete semantics is a function, that maps a concrete pre-condition to an abstract post-condition
(3) sign lattice abstract elements abstract sets of values
(9) an abstract state should thus consist of a vector of abstract values
(3) moreover, the abstract semantics should consist of a function that maps an abstract pre-condition into an abstract post-condition

Examples

Absolute value function:

$$
\begin{aligned}
& \text { if }\left(x_{0}>0\right)\{ \\
& \quad x_{1}=x_{0} \\
& \text { \}else }\{ \\
& \qquad \begin{array}{l}
x_{2}=0 \\
x_{1}=x_{2}-x_{0}
\end{array}
\end{aligned}
$$

Factorial function:

$$
\begin{aligned}
& \operatorname{input}\left(x_{0}\right) \\
& \mathrm{x}_{1}=1 \\
& \mathrm{x}_{2}=1 \\
& \text { while }\left(\mathrm{x}_{0}>0\right)\{ \\
& \qquad \begin{array}{l}
\mathrm{x}_{1}=\mathrm{x}_{0} * \mathrm{x}_{1} \\
\mathrm{x}_{0}=\mathrm{x}_{0}-\mathrm{x}_{2}
\end{array} \\
& \}
\end{aligned}
$$

- abstract pre-condition: (\top, \top, \top)
- abstract state before the loop: (\pm, \pm, \pm)
- abstract post-condition (after the loop): $(\underline{0}, \pm, \pm)$

Computation of the abstract semantics

We search for an abstract semantics $\llbracket P \rrbracket^{\sharp}: D^{\sharp} \rightarrow D^{\sharp}$ such that:

$$
\alpha \circ \llbracket P \rrbracket \sqsubseteq \llbracket P \rrbracket^{\sharp} \circ \alpha
$$

We aim for a proof by induction over the syntax of programs So, let us start with sequences / composition, under the assumption that the property holds for P_{0}, P_{1} :

- $\alpha \circ \llbracket P_{0} \rrbracket \sqsubseteq \llbracket P_{0} \rrbracket \sharp \circ \alpha$
- $\alpha \circ \llbracket P_{1} \rrbracket \sqsubseteq \llbracket P_{1} \rrbracket \sharp \circ \alpha$

Since $\llbracket P_{0} ; P_{1} \rrbracket=\llbracket P_{1} \rrbracket \circ \llbracket P_{0} \rrbracket$, we expect $\llbracket P_{0} ; P_{1} \rrbracket^{\sharp}=\llbracket P_{1} \rrbracket^{\sharp} \circ \llbracket P_{0} \rrbracket^{\sharp}$:

$$
\begin{array}{rlll}
\alpha \circ \llbracket P_{1} \rrbracket \circ \llbracket P_{0} \rrbracket & \sqsubseteq P_{1} \rrbracket^{\sharp \circ} \circ \alpha \circ \llbracket P_{0} \rrbracket & & \text { (by induction) } \\
& \sqsubseteq \llbracket P_{1} \rrbracket^{\sharp} \circ \llbracket P_{0} \rrbracket^{\sharp} \circ \alpha & & \text { by induction... } \\
& & \text { and if } \llbracket P_{1} \rrbracket^{\sharp} \text { monotone)! }
\end{array}
$$

Big additional constraint (only today): $\llbracket P \rrbracket^{\sharp}$ monotone

Analysis of assignment

We now consider the analysis of assignment statements
We observe that:

$$
\begin{aligned}
\alpha(\mathcal{M}) & =\left(\alpha_{\mathcal{S}}\left(\left\{\sigma_{0} \mid \sigma \in \mathcal{M}\right\}\right), \ldots, \alpha_{\mathcal{S}}\left(\left\{\sigma_{n-1} \mid \sigma \in \mathcal{M}\right\}\right)\right) \\
\alpha \circ \llbracket P \rrbracket(\mathcal{M}) & =\left(\alpha_{\mathcal{S}}\left(\left\{\sigma_{0} \mid \sigma \in \llbracket P \rrbracket(\mathcal{M})\right\}\right), \ldots, \alpha_{\mathcal{S}}\left(\left\{\sigma_{n-1} \mid \sigma \in \llbracket P \rrbracket(\mathcal{M})\right\}\right)\right)
\end{aligned}
$$

We start with $\mathrm{x}_{i}=n$:

$$
\begin{aligned}
\alpha \circ & \llbracket \mathrm{x}_{i}=n \rrbracket(\mathcal{M}) \\
= & \left(\alpha_{\mathcal{S}}\left(\left\{\sigma_{0} \mid \sigma \in \llbracket P \rrbracket(\{\sigma[i \leftarrow n] \mid \sigma \in \mathcal{M}\})\right\}\right), \ldots,\right. \\
& \left.\quad \alpha_{\mathcal{S}}\left(\left\{\sigma_{n-1} \mid \sigma \in \llbracket P \rrbracket(\{\sigma[i \leftarrow n] \mid \sigma \in S\})\right\}\right)\right) \\
= & \left(\alpha_{\mathcal{S}}\left(\left\{\sigma_{0} \mid \sigma \in \mathcal{M}\right\}\right), \ldots, \alpha_{\mathcal{S}}\left(\left\{\sigma_{n-1} \mid \sigma \in \mathcal{M}\right\}\right)\right)\left[i \leftarrow \alpha_{\mathcal{S}}(\{n\})\right] \\
= & \alpha(\mathcal{M})\left[i \leftarrow \alpha_{\mathcal{S}}(\{n\})\right] \\
= & \llbracket \mathrm{x}_{i}=n \rrbracket \sharp(\alpha(\mathcal{M}))
\end{aligned}
$$

where:

$$
\llbracket \mathrm{x}_{i}=n \rrbracket^{\sharp}\left(M^{\sharp}\right)=M^{\sharp}\left[i \leftarrow \alpha_{\mathcal{S}}(\{n\})\right]
$$

Computation of the abstract semantics

Other assignments are treated in a similar manner:

$$
\begin{aligned}
\llbracket \mathrm{x}_{i}=n \rrbracket^{\sharp}\left(M^{\sharp}\right) & =M^{\sharp}\left[i \leftarrow \alpha_{\mathcal{S}}(\{n\})\right] \\
\llbracket \mathrm{x}_{i}=\mathrm{x}_{j}+\mathrm{x}_{k} \rrbracket^{\sharp}\left(M^{\sharp}\right) & =M^{\sharp}\left[i \leftarrow M_{j}^{\sharp} \oplus^{\sharp} M_{k}^{\sharp}\right] \\
\llbracket \mathrm{x}_{i}=\mathrm{x}_{j}-\mathrm{x}_{k} \rrbracket\left(M^{\sharp}\right) & =M^{\sharp}\left[i \leftarrow M_{j}^{\sharp} \ominus^{\sharp} M_{k}^{\sharp}\right] \\
\llbracket \mathrm{x}_{i}=\mathrm{x}_{j} * \mathrm{x}_{k} \rrbracket^{\sharp}\left(M^{\sharp}\right) & =M^{\sharp}\left[i \leftarrow M_{j}^{\sharp} \otimes^{\sharp} M_{k}^{\sharp}\right] \\
\llbracket \text { input }\left(\mathrm{x}_{i}\right) \rrbracket^{\sharp}\left(M^{\sharp}\right) & =M^{\sharp}[i \leftarrow \pm]
\end{aligned}
$$

- Proofs are left as exercises
- As remarked before, we only get $\alpha \circ \llbracket P \rrbracket \sqsubseteq \llbracket P \rrbracket^{\sharp} \circ \alpha$ i.e., equality is too hard to derive
- On the other hand, monotonicity is good so far (exercise)

Computation of the abstract semantics

We now consider the case of tests:

$$
\begin{aligned}
\alpha \circ & \llbracket \mathrm{if}\left(\mathrm{x}_{i}>0\right) P_{0} \text { else } P_{1} \rrbracket(\mathcal{M}) \\
= & \alpha\left(\llbracket P_{0} \rrbracket\left(\left\{\sigma \in \mathcal{M} \mid \sigma_{i}>0\right\}\right) \cup \llbracket P_{1} \rrbracket\left(\left\{\sigma \in \mathcal{M} \mid \sigma_{i} \leq 0\right\}\right)\right) \\
= & \alpha\left(\llbracket P_{0} \rrbracket\left(\left\{\sigma \in \mathcal{M} \mid \sigma_{i}>0\right\}\right)\right) \sqcup \alpha\left(\llbracket P_{1} \rrbracket\left(\left\{\sigma \in \mathcal{M} \mid \sigma_{i} \leq 0\right\}\right)\right) \\
& \quad \text { as } \alpha \text { preserves least upper bounds } \\
\sqsubseteq & \llbracket P_{0} \rrbracket^{\sharp}\left(\alpha\left(\left\{\sigma \in \mathcal{M} \mid \sigma_{i}>0\right\}\right)\right) \sqcup \llbracket P_{1} \rrbracket^{\sharp}\left(\alpha\left(\left\{\sigma \in \mathcal{M} \mid \sigma_{i} \leq 0\right\}\right)\right) \\
& \text { by induction and as } \sqcup \text { is monotone } \\
\sqsubseteq & \llbracket P_{0} \rrbracket^{\sharp}(\alpha(\mathcal{M}) \sqcap \top[i \leftarrow+]) \sqcup \llbracket P_{1} \rrbracket^{\sharp}(\alpha(\mathcal{M}) \sqcap \top[i \leftarrow \leq 0]) \\
\sqsubseteq & \llbracket i f\left(\mathrm{x}_{i}>0\right) P_{0} \text { else } P_{1} \rrbracket^{\sharp}(\alpha(\mathcal{M}))
\end{aligned}
$$

where:

$$
\begin{aligned}
& \llbracket i \mathrm{if}\left(\mathrm{x}_{i}>0\right) P_{0} \text { else } P_{1} \rrbracket^{\sharp}\left(M^{\sharp}\right)= \\
& \quad \llbracket P_{0} \rrbracket^{\sharp}\left(M^{\sharp} \sqcap \top[i \leftarrow \pm) \sqcup \llbracket P_{1} \rrbracket^{\sharp}\left(M^{\sharp} \sqcap \top[i \leftarrow \leqq 0]\right)\right.
\end{aligned}
$$

- Monotonicity: by induction...

An example with basic condition test

Absolute value function:

$$
\begin{aligned}
& \text { if }\left(x_{0}>0\right)\{ \\
& \quad x_{1}=x_{0} \\
& \text { \}else }\{ \\
& \qquad \begin{array}{l}
x_{2}=0 \\
x_{1}=x_{2}-x_{0}
\end{array} \\
& \}
\end{aligned}
$$

Analysis steps:
(1) entry point: (T, \top)
(2) after entry in true branch: (\pm, \top)
(3) exit of true branch: $(\pm,=)$
(4) after entry in false branch: $(\leq 0, \top)$
(5) exit of false branch: $(\leq 0, \geq 0)$
(0) exit: $(\top, \geq 0)$

Analysis of a loop

We have seen that:

$$
\llbracket \text { while }\left(\mathrm{x}_{i}>0\right) P \rrbracket(\mathcal{M})=\left\{\sigma \in \operatorname{Ifp} f \mid \sigma_{i} \leq 0\right\}
$$

where $f\left(\mathcal{M}^{\prime}\right)=\mathcal{M} \cup \mathcal{M}^{\prime} \cup \llbracket P \rrbracket\left(\left\{\sigma \in \mathcal{M}^{\prime} \mid \sigma_{i}>0\right\}\right)$.
Thus, we look for a fixpoint transfer, but our fixpoint transfer theorem requires equality, so it does not apply...

We will use a variant of the previous theorem:
If:

- f is continuous
- f^{\sharp} is monotone
- $\alpha \circ f \sqsubseteq f^{\sharp} \circ \alpha$
- $\alpha(\emptyset)=\perp$

Then, $\alpha(\operatorname{lfp} f) \sqsubseteq \operatorname{lfp} f^{\sharp}$

Analysis of a loop

Application:

- we consider the analysis of the loop with pre-condition M^{\sharp}
- we take

$$
f^{\sharp}\left(M_{0}^{\sharp}\right)=M^{\sharp} \cup M_{0}^{\sharp} \cup \llbracket P \rrbracket^{\sharp}\left(M_{0}^{\sharp} \sqcap \top[i \leftarrow \pm]\right)
$$

- then, $\alpha \circ f \sqsubseteq f^{\sharp} \circ \alpha$
- we can apply the new fixpoint transfer theorem...

$$
\begin{gathered}
\llbracket \text { while }\left(\mathrm{x}_{i}>0\right) P \rrbracket^{\sharp}\left(M^{\sharp}\right)=\top[i \leftarrow \leqq 0] \sqcap \mathrm{Ifp}_{M^{\sharp}} f^{\sharp} \\
\text { where } f^{\sharp}\left(M_{0}^{\sharp}\right)=M^{\sharp} \cup M_{0}^{\sharp} \cup \llbracket P \rrbracket^{\sharp}\left(M_{0}^{\sharp} \sqcap \top[i \leftarrow \pm]\right)
\end{gathered}
$$

One more thing:

- we need to prove monotonicity of the fixpoint image since the whole abstract semantics soundness relies on it!

Abstract semantics

Abstract semantics and soundness

We have derived the following definition of $\llbracket P \rrbracket^{\sharp}$:

$$
\begin{aligned}
\llbracket \mathrm{x}_{i}=n \rrbracket^{\sharp}\left(M^{\sharp}\right)= & M^{\sharp}\left[i \leftarrow \alpha_{\mathcal{S}}(\{n\})\right] \\
\llbracket \mathrm{x}_{i}=\mathrm{x}_{j}+\mathrm{x}_{k} \rrbracket^{\sharp}\left(M^{\sharp}\right)= & M^{\sharp}\left[i \leftarrow M_{j}^{\sharp} \oplus^{\sharp} M_{k}^{\sharp}\right] \\
\llbracket \mathrm{x}_{i}=\mathrm{x}_{j}-\mathrm{x}_{k} \rrbracket^{\sharp}\left(M^{\sharp}\right)= & M^{\sharp}\left[i \leftarrow M_{j}^{\sharp} \ominus^{\sharp} M_{k}^{\sharp}\right] \\
\llbracket \mathrm{x}_{i}=\mathrm{x}_{j} \cdot \mathrm{x}_{k} \rrbracket^{\sharp}\left(M^{\sharp}\right)= & M^{\sharp}\left[i \leftarrow M_{j}^{\sharp} \otimes^{\sharp} M_{k}^{\sharp}\right] \\
\llbracket \text { input }\left(\mathrm{x}_{i}\right) \rrbracket^{\sharp}\left(M^{\sharp}\right)= & M^{\sharp}[i \leftarrow+] \\
\llbracket i f\left(\mathrm{x}_{i}>0\right) P_{0} \text { else } P_{1} \rrbracket^{\sharp}\left(M^{\sharp}\right)= & \llbracket P_{0} \rrbracket^{\sharp}\left(M^{\sharp} \sqcap \top[i \leftarrow \pm]\right) \sqcup \llbracket P_{1} \rrbracket^{\sharp}\left(M^{\sharp}\right) \\
\llbracket \text { while }\left(\mathrm{x}_{i}>0\right) P \rrbracket^{\sharp}\left(M^{\sharp}\right)= & \operatorname{Ifp}_{M^{\sharp}} \mathrm{f}^{\sharp} \text { where } \\
& f^{\sharp}: M^{\sharp} \mapsto M^{\sharp} \sqcup \llbracket P \rrbracket^{\sharp}\left(M^{\sharp} \sqcap \top[i \leftarrow \pm]\right)
\end{aligned}
$$

Furthermore, for all program $P: \alpha \circ \llbracket P \rrbracket=\llbracket P \rrbracket^{\sharp} \circ \alpha$
An over-approximation of the final states is computed by $\llbracket P \rrbracket^{\sharp}(T)$.

Example

Factorial function:

$$
\begin{aligned}
& \operatorname{input}\left(\mathrm{x}_{0}\right) ; \\
& \mathrm{x}_{1}=1 ; \\
& \mathrm{x}_{2}=1 ; \\
& \text { while }\left(\mathrm{x}_{0}>0\right)\{ \\
& \quad \mathrm{x}_{1}=\mathrm{x}_{0} \cdot \mathrm{x}_{1} ; \\
& \quad \mathrm{x}_{0}=\mathrm{x}_{0}-\mathrm{x}_{2} ; \\
& \}
\end{aligned}
$$

Abstract state before the loop:
(\pm, \pm, \pm)
Iterates on the loop:

iterate	0	1	2
x_{0}	\pm	\top	\top
x_{1}	\pm	\pm	\pm
x_{2}	\pm	\pm	\pm

Abstract state after the loop: (\top, \pm, \pm)

Conclusion

Outline

(1) Abstraction
(2) Abstract interpretation
(3) Application of abstract interpretation
(4) Conclusion

Summary

This lecture:

- abstraction and its formalization
- computation of an abstract semantics in a very simplified case

Next lectures:

- construction of a few non trivial abstractions
- more general ways to compute sound abstract properties

Update on projects...

