
Axiomatic semantics
Semantics and Application to Program Verification

Antoine Miné

École normale supérieure, Paris
year 2015–2016

Course 6
18 March 2016

Course 6 Axiomatic semantics Antoine Miné p. 1 / 60

Introduction

Operational semantics

Models precisely program execution as low-level transitions between
internal states
(transition systems, execution traces, big-step semantics)

Denotational semantics

Maps programs into objects in a mathematical domain
(higher level, compositional, domain oriented)

Aximoatic semantics (today)

Prove properties about programs

programs are annotated with logical assertions

a rule-system defines the validity of assertions (logical proofs)

clearly separates programs from specifications
(specification ' user-provided abstraction of the behavior, it is not unique)

enables the use of logic tools (partial automation, increased confidence)

Course 6 Axiomatic semantics Antoine Miné p. 2 / 60

Overview

Specifications (informal examples)

Floyd–Hoare logic

Dijkstra’s predicate calculus
(weakest precondition, strongest postcondition)

Verification conditions
(partially automated program verification)

Total correctness (termination)

Non-determinism

Arrays

Concurrency

Course 6 Axiomatic semantics Antoine Miné p. 3 / 60

Specifications

Specifications

Course 6 Axiomatic semantics Antoine Miné p. 4 / 60

Specifications

Example: function specification

example in C + ACSL

int mod(int A, int B) {

int Q = 0;

int R = A;

while (R >= B) {

R = R - B;

Q = Q + 1;

}

return R;

}

express the intended behavior of the function (returned value)

add requirements for the function to actually behave as intended
(a requires/ensures pair is a function contract)

strengthen the requirements to ensure termination

Course 6 Axiomatic semantics Antoine Miné p. 5 / 60

Specifications

Example: function specification

example in C + ACSL

//@ ensures \result == A mod B;

int mod(int A, int B) {

int Q = 0;

int R = A;

while (R >= B) {

R = R - B;

Q = Q + 1;

}

return R;

}

express the intended behavior of the function (returned value)

add requirements for the function to actually behave as intended
(a requires/ensures pair is a function contract)

strengthen the requirements to ensure termination

Course 6 Axiomatic semantics Antoine Miné p. 5 / 60

Specifications

Example: function specification

example in C + ACSL

//@ requires A>=0 && B>=0;

//@ ensures \result == A mod B;

int mod(int A, int B) {

int Q = 0;

int R = A;

while (R >= B) {

R = R - B;

Q = Q + 1;

}

return R;

}

express the intended behavior of the function (returned value)

add requirements for the function to actually behave as intended
(a requires/ensures pair is a function contract)

strengthen the requirements to ensure termination

Course 6 Axiomatic semantics Antoine Miné p. 5 / 60

Specifications

Example: function specification

example in C + ACSL

//@ requires A>=0 && B>0;

//@ ensures \result == A mod B;

int mod(int A, int B) {

int Q = 0;

int R = A;

while (R >= B) {

R = R - B;

Q = Q + 1;

}

return R;

}

express the intended behavior of the function (returned value)

add requirements for the function to actually behave as intended
(a requires/ensures pair is a function contract)

strengthen the requirements to ensure termination

Course 6 Axiomatic semantics Antoine Miné p. 5 / 60

Specifications

Example: program annotations

example with full assertions

//@ requires A>=0 && B>0;

//@ ensures \result == A mod B;

int mod(int A, int B) {

int Q = 0;

int R = A;

//@ assert A>=0 && B>0 && Q=0 && R==A;

while (R >= B) {

//@ assert A>=0 && B>0 && R>=B && A==Q*B+R;

R = R - B;

Q = Q + 1;

}

//@ assert A>=0 && B>0 && R>=0 && R<B && A==Q*B+R;

return R;

}

Assertions give detail about the internal computations
why and how contracts are fulfilled

(Note: r = a mod b means 9q: a = qb + r ^ 0  r < b)

Course 6 Axiomatic semantics Antoine Miné p. 6 / 60

Specifications

Example: ghost variables

example with ghost variables

//@ requires A>=0 && B>0;

//@ ensures \result == A mod B;

int mod(int A, int B) {

int R = A;

while (R >= B) {

R = R - B;

}

// 9Q:A = QB + R and 0  R < B
return R;

}

The annotations can be more complex than the program itself

Course 6 Axiomatic semantics Antoine Miné p. 7 / 60

Specifications

Example: ghost variables

example with ghost variables

//@ requires A>=0 && B>0;

//@ ensures \result == A mod B;

int mod(int A, int B) {

//@ ghost int q = 0;

int R = A;

//@ assert A>=0 && B>0 && q=0 && R==A;

while (R >= B) {

//@ assert A>=0 && B>0 && R>=B && A==q*B+R;

R = R - B;

//@ ghost q = q + 1;

}

//@ assert A>=0 && B>0 && R>=0 && R<B && A==q*B+R;

return R;

}

The annotations can be more complex than the program itself
and require reasoning on enriched states (ghost variables)

Course 6 Axiomatic semantics Antoine Miné p. 7 / 60

Specifications

Example: class invariants

example in ESC/Java

public class OrderedArray {

int a[];

int nb;

//@invariant nb >= 0 && nb <= 20

//@invariant (\forall int i; (i >= 0 && i < nb-1) ==> a[i] <= a[i+1])

public OrderedArray() { a = new int[20]; nb = 0; }

public void add(int v) {

if (nb >= 20) return;

int i; for (i=nb; i > 0 && a[i-1] > v; i--) a[i] = a[i-1];

a[i] = v; nb++;

}

}

class invariant: property of the fields true outside all methods
it can be temporarily broken within a method
but it must be restored before exiting the method

Course 6 Axiomatic semantics Antoine Miné p. 8 / 60

Specifications

Language support

Contracts (and class invariants):

built in few languages (Ei↵el)

available as a library / external tool (C, Java, C#, etc.)

Contracts can be:

checked dynamically

checked statically (Frama-C, Why, ESC/Java)

inferred statically (CodeContracts)

In this course:
deductive methods (logic) to check (prove) statically (at compile-time)

partially automatically (with user help) that contracts hold

Course 6 Axiomatic semantics Antoine Miné p. 9 / 60

Floyd–Hoare logic

Floyd–Hoare logic

Course 6 Axiomatic semantics Antoine Miné p. 10 / 60

Floyd–Hoare logic

Hoare triples

Hoare triple: {P} prog {Q}
prog is a program fragment

P and Q are logical assertions over program variables
(e.g. P

def
= (X � 0 ^ Y � 0) _ (X < 0 ^ Y < 0))

A triple means:

if P holds before prog is executed

then Q holds after the execution of prog

unless prog does not terminate or encounters an error

P is the precondition, Q is the postcondition

{P} prog {Q} expresses partial correctness
(does not rule out errors and non-termination)

Hoare triples serve as judgements in a proof system
(introduced in [Hoare69])

Course 6 Axiomatic semantics Antoine Miné p. 11 / 60

Floyd–Hoare logic

Language

stat ::= X expr (assignment)

| skip (do nothing)

| fail (error)

| stat; stat (sequence)

| if expr then stat else stat (conditional)

| while expr do stat (loop)

X 2 V: integer-valued variables

expr : integer arithmetic expressions

we assume that:

expressions are deterministic (for now)

expression evaluation does not cause error (only fail does)

for instance, to avoid divisions by zero, we assume that
all divisions are explicitly guarded
as in : if X = 0 then fail else · · · /X · · ·

Course 6 Axiomatic semantics Antoine Miné p. 12 / 60

Floyd–Hoare logic

Hoare rules: axioms

Axioms:

{P} skip {P} {P} fail {Q}

any property true before skip is true afterwards

any property is true after fail

Course 6 Axiomatic semantics Antoine Miné p. 13 / 60

Floyd–Hoare logic

Hoare rules: axioms

Assignment axiom:

{P[e/X]} X e {P}

for P over X to be true after X e

P must be true over e before the assignment
P[e/X] is P where all free occurrences of X are replaced with e

e must be deterministic

the rule is “backwards”: P appears as a postcondition

examples: {true} X 5 {X = 5}
{Y = 5} X Y {X = 5}
{X + 1 � 0} X X + 1 {X � 0}
{false} X Y + 3 {Y = 0 ^ X = 12}
{Y 2 [0, 10]} X Y + 3 {X = Y + 3 ^ Y 2 [0, 10]}

Course 6 Axiomatic semantics Antoine Miné p. 14 / 60

Floyd–Hoare logic

Hoare rules: consequence

Rule of consequence:

P) P

0
Q

0) Q {P 0} c {Q 0}
{P} c {Q}

we can weaken a Hoare triple by:
weakening its postcondition Q (Q

0

strengthening its precondition P) P

0

we assume a logic system to be available to prove formulas on assertions,
such as P) P

0 (e.g., arithmetic, set theory, etc.)

examples:

the axiom for fail can be replaced with
{true} fail {false}

(as P) true and false) Q always hold)

{X = 99 ^ Y 2 [1, 10]} X Y + 10 {X = Y + 10 ^ Y 2 [1, 10]}
(as {Y 2 [1, 10]} X Y + 10 {X = Y + 10 ^ Y 2 [1, 10]} and

X = 99 ^ Y 2 [1, 10]) Y 2 [1, 10])

Course 6 Axiomatic semantics Antoine Miné p. 15 / 60

Floyd–Hoare logic

Hoare rules: tests

Tests:

{P ^ e} s {Q} {P ^ ¬e} t {Q}
{P} if e then s else t {Q}

to prove that Q holds after the test
we prove that it holds after each branch (s, t)

under the assumption that the branch is executed (e, ¬e)

example:

{X < 0} X �X {X > 0}
{(X 6= 0) ^ (X < 0)} X �X {X > 0}

{X > 0} skip {X > 0}
{(X 6= 0) ^ (X � 0)} skip {X > 0}

{X 6= 0} if X < 0 then X �X else skip {X > 0}

Course 6 Axiomatic semantics Antoine Miné p. 16 / 60

Floyd–Hoare logic

Hoare rules: sequences

Sequences:

{P} s {R} {R} t {Q}
{P} s; t {Q}

to prove a sequence s; t
we must invent an intermediate assertion R

implied by P after s, and implying Q after t

(often denoted {P} s {R} t {Q})

example:

{X = 1 ^ Y = 1} X X + 1 {X = 2 ^ Y = 1} Y Y � 1 {X = 2 ^ Y = 0}

Course 6 Axiomatic semantics Antoine Miné p. 17 / 60

Floyd–Hoare logic

Hoare rules: loops

Loops:

{P ^ e} s {P}
{P} while e do s {P ^ ¬e}

P is a loop invariant :

P holds before each loop iteration, before even testing e

Practical use:

actually, we would rather prove the triple: {P} while e do s {Q}
it is su�cient to invent an assertion I that:
– holds when the loop start: P) I

– is invariant by the body s: {I ^ e} s {I}
– implies the assertion when the loop stops: (I ^ ¬e)) Q

we can derive the rule:

P) I I ^ ¬e) Q

{I ^ e} s {I}
{I} while e do s {I ^ ¬e}

{P} while e do s {Q}

Course 6 Axiomatic semantics Antoine Miné p. 18 / 60

Floyd–Hoare logic

Hoare rules: logical part

Hoare logic is parameterized by the choice of logical theory of assertions

the logical theory is used to:

prove properties of the form P) Q (rule of consequence)

simplify formulas
(replace a formula with a simpler one, equivalent in a logical sens: ,)

Examples: (generally first order theories)

booleans (B,¬,^,_)
bit-vectors (Bn,¬,^,_)
Presburger arithmetic (N,+)

Peano arithmetic (N,+,⇥)
linear arithmetic on R

Zermelo-Fraenkel set theory (2, {})
theory of arrays (lookup, update)

theories have di↵erent expressiveness, decidability and complexity results
this is an important factor when trying to automate program verification

Course 6 Axiomatic semantics Antoine Miné p. 19 / 60

Floyd–Hoare logic

Hoare rules: summary

{P} skip {P} {true} fail {false} {P[e/X]} X e {P}

{P} s {R} {R} t {Q}
{P} s; t {Q}

{P ^ e} s {Q} {P ^ ¬e} t {Q}
{P} if e then s else t {Q}

{P ^ e} s {P}
{P} while e do s {P ^ ¬e}

P) P

0
Q

0) Q {P 0} c {Q 0}
{P} c {Q}

Course 6 Axiomatic semantics Antoine Miné p. 20 / 60

Floyd–Hoare logic

Proof tree example

s

def
= while I < N do (X 2X ; I I + 1)

A B

C {P3} X 2X {P2} {P2} I I + 1 {P1}
{P1 ^ I < N} X 2X ; I I + 1 {P1}

{P1} s {P1 ^ I � N}
{X = 1 ^ I = 0 ^ N � 0} s {X = 2N ^ N = I ^ N � 0}

P1
def
= X = 2I ^ I  N ^ N � 0

P2
def
= X = 2I+1 ^ I+1  N ^ N � 0

P3
def
= 2X = 2I+1 ^ I+1  N ^ N � 0 ⌘ X = 2I ^ I < N ^ N � 0

A : (X = 1 ^ I = 0 ^ N � 0)) P1

B : (P1 ^ I � N)) (X = 2N ^ N = I ^ N � 0)
C : P3 () (P1 ^ I < N)

Course 6 Axiomatic semantics Antoine Miné p. 21 / 60

Floyd–Hoare logic

Proof tree example

s

def
= while I 6= 0 do I I � 1

{true} I I � 1 {true}
{I 6= 0} I I � 1 {true}

{true} while I 6= 0 do I I � 1 {true ^ ¬(I 6= 0)}
{true} while I 6= 0 do I I � 1 {I = 0}

in some cases, the program does not terminate
(if the program starts with I < 0)

the same proof holds for: {true} while I 6= 0 do J J � 1 {I = 0}

anything can be proven of a program that never terminates:

{I = 1 ^ I 6= 0} J J � 1 {I = 1}
{I = 1} while I 6= 0 do J J � 1 {I = 1 ^ I = 0}

{I = 1} while I 6= 0 do J J � 1 {false}

Course 6 Axiomatic semantics Antoine Miné p. 22 / 60

Floyd–Hoare logic

Invariants and inductive invariants

Example: we wish to prove:

{X = Y = 0} while X < 10 do (X X + 1; Y Y + 1) {X = Y = 10}

we need to find an invariant assertion P for the while rule

Incorrect invariant: P

def
= X ,Y 2 [0, 10]

P indeed holds at each loop iteration (P is an invariant)

but {P ^ (X < 10)} X X + 1; Y Y + 1 {P}
does not hold
P ^ X < 10 does not prevent Y = 10
after Y Y + 1, P does not hold anymore

Course 6 Axiomatic semantics Antoine Miné p. 23 / 60

Floyd–Hoare logic

Invariants and inductive invariants

Example: we wish to prove:

{X = Y = 0} while X < 10 do (X X + 1; Y Y + 1) {X = Y = 10}

we need to find an invariant assertion P for the while rule

Correct invariant: P

0 def
= X 2 [0, 10] ^ X = Y

P

0 also holds at each loop iteration (P0 is an invariant)

{P 0 ^ (X < 10)} X X + 1; Y Y + 1 {P 0} can be proven

P

0 is an inductive invariant

(passes to the induction, stable by a loop iteration)

=)
to prove a loop invariant
it is often necessary to find a stronger inductive loop invariant

Course 6 Axiomatic semantics Antoine Miné p. 23 / 60

Floyd–Hoare logic

Auxiliary variables

Auxiliary variables:

mathematical variables that do not appear in the program
they are constant during program execution

Applications:

simplify proofs
express more properties (contracts, input-output relations)

achieve (relative) completeness on extended languages
(concurrency, recursive procedures)

Example: {X = x ^ Y = y} if X < Y then Y X else skip {Y = min(x , y)}

x and y retain the values of X and Y from the program entry

Y = min(X ,Y) is much less useful as a specification of a min function

“{true} if X < Y then Y X else skip {Y = min(X ,Y)}”holds, but
“{true} X Y + 1 {Y = min(X ,Y)}”also holds

Course 6 Axiomatic semantics Antoine Miné p. 24 / 60

Floyd–Hoare logic

Link with denotational semantics

Reminder: SJ stat K : P(E)! P(E) where E def
= V 7! I

SJ skip KR def
= R

SJ fail KR def
= ;

SJ s1; s2 K def
= SJ s2 K � SJ s1 K

SJX e KR def
= { ⇢[X 7! v] | ⇢ 2 R, v 2 EJ e K ⇢ }

SJ if e then s1 else s2 KR def
= SJ s1 K { ⇢ 2 R | true 2 EJ e K ⇢ } [

SJ s2 K { ⇢ 2 R | false 2 EJ e K ⇢ }

SJwhile e do s KR def
= { ⇢ 2 lfpF | false 2 EJ e K ⇢ }

where F (X)
def
= R [SJ s K { ⇢ 2 X | true 2 EJ e K ⇢ }

Theorem

{P} c {Q} def() 8R ✓ E :R |= P =) SJ c KR |= Q

(A |= P means 8⇢ 2 A, the formula P is true on the variable assignment ⇢)

Course 6 Axiomatic semantics Antoine Miné p. 25 / 60

Floyd–Hoare logic

Link with denotational semantics

Hoare logic reasons on formulas

denotational semantics reasons on state sets

we can assimilate assertion formulas and state sets
(logical abuse: we assimilate formulas and models)

let [R] be any formula representing the set R, then:

{[R]} c {[SJ c KR]} is always valid

{[R]} c {[R 0]}) SJ c KR ✓ R

0

=) [SJ c KR] provides the best valid postcondition

Course 6 Axiomatic semantics Antoine Miné p. 26 / 60

Floyd–Hoare logic

Link with denotational semantics

Loop invariants

Hoare:

to prove {P} while e do s {P ^ ¬e} we must prove {P ^ e} s {P}
i.e., P is an inductive invariant

Denotational semantics:

we must find lfp F where F (X)
def
= R [SJ s K { ⇢ 2 X | ⇢ |= e }

lfp F = \ {X |F (X) ✓ X } (Tarski’s theorem)

F (X) ✓ X () ([R]) [X]) ^ {[X ^ e]} s {[X]}
R ✓ X means [R]) [X],
SJ s K { ⇢ 2 X | ⇢ |= e } ✓ X means {[X ^ e]} s {[X]}

As a consequence:

any X such that F (X) ✓ X gives an inductive invariant

lfp F gives the best inductive invariant

any X such that lfp F ✓ X gives an invariant
(not necessarily inductive)

(see [Cousot02])

Course 6 Axiomatic semantics Antoine Miné p. 27 / 60

Predicate calculus

Predicate calculus

Course 6 Axiomatic semantics Antoine Miné p. 28 / 60

Predicate calculus

Dijkstra’s weakest liberal preconditions

Principle: predicate calculus

calculus to derive preconditions from postconditions
order and mechanize the search for intermediate assertions
(easier to go backwards, mainly due to assignments)

Weakest liberal precondition wlp : (prog ⇥ Prop)! Prop

wlp(c,P) is the weakest, i.e. most general, precondition

ensuring that {wlp(c,P)} c {P} is a Hoare triple

(greatest state set that ensures that the computation ends up in P)

formally: {P} c {Q} () (P) wlp(c,Q))

“liberal”means that we do not care about termination and errors

Examples:

wlp(X X + 1, X = 1) =
wlp(while X < 0 X X + 1, X � 0) =
wlp(while X 6= 0 X X + 1, X � 0) =

(introduced in [Dijkstra75])
Course 6 Axiomatic semantics Antoine Miné p. 29 / 60

Predicate calculus

Dijkstra’s weakest liberal preconditions

Principle: predicate calculus

calculus to derive preconditions from postconditions
order and mechanize the search for intermediate assertions
(easier to go backwards, mainly due to assignments)

Weakest liberal precondition wlp : (prog ⇥ Prop)! Prop

wlp(c,P) is the weakest, i.e. most general, precondition

ensuring that {wlp(c,P)} c {P} is a Hoare triple

(greatest state set that ensures that the computation ends up in P)

formally: {P} c {Q} () (P) wlp(c,Q))

“liberal”means that we do not care about termination and errors

Examples:

wlp(X X + 1, X = 1) = (X = 0)
wlp(while X < 0 X X + 1, X � 0) = true
wlp(while X 6= 0 X X + 1, X � 0) = true

(introduced in [Dijkstra75])
Course 6 Axiomatic semantics Antoine Miné p. 29 / 60

Predicate calculus

A calculus for wlp

wlp is defined by induction on the syntax of programs:

wlp(skip, P)
def
= P

wlp(fail, P)
def
= true

wlp(X e, P)
def
= P[e/X]

wlp(s; t, P)
def
= wlp(s,wlp(t,P))

wlp(if e then s else t, P)
def
= (e) wlp(s,P)) ^ (¬e) wlp(t,P))

wlp(while e do s, P)
def
= I ^ ((e ^ I)) wlp(s, I)) ^ ((¬e ^ I)) P)

e) Q is equivalent to Q _ ¬e
weakest property that matches Q when e holds
but says nothing when e does not hold

while loops require providing an invariant predicate I

intuitively, wlp checks that I is an inductive invariant implying P
if so, it returns I ; otherwise, it returns false

wlp is the weakest precondition only if I is well-chosen. . .

Course 6 Axiomatic semantics Antoine Miné p. 30 / 60

Predicate calculus

Wlp computation example

wlp(if X < 0 thenY �X else Y X , Y � 10) =

(X < 0) wlp(Y �X ,Y � 10)) ^ (X � 0) wlp(Y X ,Y � 10))

(X < 0) �X � 10) ^ (X � 0) X � 10) =

(X � 0 _ �X � 10) ^ (X < 0 _ X � 10) =

X � 10 _ X  �10

wlp generates complex formulas

it is important to simplify them from time to time

Course 6 Axiomatic semantics Antoine Miné p. 31 / 60

Predicate calculus

Properties of wlp

wlp(c, false) ⌘ false (excluded miracle)

wlp(c,P) ^ wlp(d ,Q) ⌘ wlp(c,P ^ Q) (distributivity)

wlp(c,P) _ wlp(d ,Q) ⌘ wlp(c,P _ Q) (distributivity)

() always true, (only true for deterministic, error-free programs)

if P) Q, then wlp(c,P)) wlp(c,Q) (monotonicity)

A ⌘ B means that the formulas A and B are equivalent
i.e., 8⇢: ⇢ |= A () ⇢ |= B

(stronger that syntactic equality)

Course 6 Axiomatic semantics Antoine Miné p. 32 / 60

Predicate calculus

Strongest liberal postconditions

we can define slp : (Prop ⇥ prog)! Prop

{P} c {slp(P, c)} (postcondition)

{P} c {Q} () (slp(P, c)) Q) (strongest postcondition)

(corresponds to the smallest state set)

slp(P, c) does not care about non-termination (liberal)

allows forward reasoning

we have a duality:

(P) wlp(c,Q)) () (slp(P, c)) Q)

proof: (P) wlp(c,Q)) () {P} c {Q} () (slp(P, c)) Q)

Course 6 Axiomatic semantics Antoine Miné p. 33 / 60

Predicate calculus

Calculus for slp

slp(P, skip)
def
= P

slp(P, fail)
def
= false

slp(P,X e)
def
= 9v :P[v/X] ^ X = e[v/X]

slp(P, s; t)
def
= slp(slp(P, s), t)

slp(P, if e then s else t)
def
= slp(P ^ e, s) _ slp(P ^ ¬e, t)

slp(P, while e do s)
def
= (P) I) ^ (slp(I ^ e, s)) I) ^ (¬e ^ I)

(the rule for X e makes slp much less attractive than wlp)

Course 6 Axiomatic semantics Antoine Miné p. 34 / 60

Verification conditions

Verification conditions

Course 6 Axiomatic semantics Antoine Miné p. 35 / 60

Verification conditions

Verification condition approch to program verification

How can we automate program verification using logic?

Hoare logic: deductive system
can only automate the checking of proofs

predicate transformers: wlp, slp calculus
construct (big) formulas mechanically
invention is still needed for loops

verification condition generation
take as input a program with annotations
(at least contracts and loop invariants)

generate mechanically logic formulas ensuring the correctness
(reduction to a mathematical problem, no longer any reference to a program)

use an automatic SAT/SMT solver to prove (discharge) the formulas
or an interactive theorem prover

(the idea of logic-based automated verification appears as early as [King69])

Course 6 Axiomatic semantics Antoine Miné p. 36 / 60

Verification conditions

Language

stat ::= X expr

| skip

| stat; stat
| if expr then stat else stat

| while {Prop} expr do stat

| assert expr

prog ::= {Prop} stat {Prop}

loops are annotated with loop invariants

optional assertions at any point

programs are annotated with a contract
(precondition and postcondition)

Course 6 Axiomatic semantics Antoine Miné p. 37 / 60

Verification conditions

Verification condition generation algorithm

vcgp : prog ! P(Prop)

vcgp({P} c {Q}) def
= let (R,C) = vcgs(c, Q) in C [{P) R}

vcgs : (stat ⇥ Prop)! (Prop ⇥ P(Prop))

vcgs(skip, Q)
def
= (Q, ;)

vcgs(X e, Q)
def
= (Q[e/X], ;)

vcgs(s; t, Q)
def
= let (R,C) = vcgs(t, Q) in let (P,D) = vcgs(s, R) in (P,C [D)

vcgs(if e then s else t, Q)
def
=

let (S ,C) = vcgs(s, Q) in let (T ,D) = vcgs(t, Q) in
((e) S) ^ (¬e) T),C [D)

vcgs(while {I} e do s, Q)
def
=

let (R,C) = vcgs(s, I) in (I ,C [{(I ^ e)) R, (I ^ ¬e)) Q})
vcgs(assert e, Q)

def
= (e) Q, ;)

We use wlp to infer assertions automatically when possible.

vcgs(c,P) = (P 0,C) propagates postconditions backwards
and accumulates into C verification conditions (from loops).

Course 6 Axiomatic semantics Antoine Miné p. 38 / 60

Verification conditions

Verification condition generation example

Consider the program:

{N � 0} X 1; I 0;
while {X = 2I ^ 0  I  N} I < N do

(X 2X ; I I + 1)
{X = 2N}

we get three verification conditions:

C1
def
= (X = 2I ^ 0  I  N) ^ I � N) X = 2N

C2
def
= (X = 2I ^ 0  I  N) ^ I < N) 2X = 2I+1 ^ 0  I + 1  N

(from (X = 2I ^ 0  I  N)[I + 1/I , 2X/X])

C3
def
= N � 0) 1 = 20 ^ 0  0  N

(from (X = 2I ^ 0  I  N)[0/I , 1/X])

which can be checked independently

Course 6 Axiomatic semantics Antoine Miné p. 39 / 60

Verification conditions

What about real languages?

In a real language such as C, the rules are not so simple

Example: the assignment rule
{P[e/X]} X e {P}

requires that

e has no e↵ect (memory write, function calls)

there is no pointer aliasing
e has no run-time error

moreover, the operations in the program and in the logic may not match:

integers: logic models Z, computers use Z/2nZ (wrap-around)

continuous:
logic models Q or R, programs use floating-point numbers
(rounding error)

a logic for pointers and dynamic allocation is also required
(separation logic)

(see for instance the tool Why, to see how some problems can be circumvented)

Course 6 Axiomatic semantics Antoine Miné p. 40 / 60

Termination

Termination

Course 6 Axiomatic semantics Antoine Miné p. 41 / 60

Termination

Total correctness

Hoare triple: [P] prog [Q]

if P holds before prog is executed

then prog always terminates

and Q holds after the execution of prog

Rules: we only need to change the rule for while

8t 2W : [P ^ e ^ u = t] s [P ^ u � t]

[P] while e do s [P ^ ¬e]
((W ,�) is well-founded)

(W ,�) well-founded def() every V ✓W , V 6= ; has a minimal element for �
ensures that we cannot decrease infinitely by � in W
generally, we simply use (N, <)
(also useful: lexicographic orders, ordinals)

in addition to the loop invariant P
we invent an expression u that strictly decreases by s

u is called a “ranking function”
often ¬e =) u = 0: u counts the number of steps until termination

Course 6 Axiomatic semantics Antoine Miné p. 42 / 60

Termination

Total correctness

To simplify, we can decompose a proof of total correctness into:

a proof of partial correctness {P} c {Q}
ignoring termination

a proof of termination [P] c [true]
ignoring the specification

we must still include the precondition P
as the program may not terminate for all inputs

indeed, we have:
{P} c {Q} [P] c [true]

[P] c [Q]

Course 6 Axiomatic semantics Antoine Miné p. 43 / 60

Termination

Total correctness example

We use a simpler rule for integer ranking functions ((W ,�) def
= (N,))

using an integer expression r over program variables:

8n: [P ^ e ^ (r = n)] s [P ^ (r < n)] (P ^ e)) (r � 0)

[P] while e do s [P ^ ¬e]

Example: p

def
= while I < N do I I + 1; X 2X done

we use r

def
= N � I and P

def
= true

8n: [I < N ^ N � I = n] I I + 1; X 2X [N � I = n � 1]
I < N) N � I � 0

[true] p [I � N]

Course 6 Axiomatic semantics Antoine Miné p. 44 / 60

Termination

Weakest precondition

Weakest precondition wp(prog ,Prop) : Prop

similar to wlp, but also additionally imposes termination

[P] c [Q] () (P) wp(c,Q))

As before, only the definition for while needs to be modified:

wp(while e do s, P)
def
= I ^

(I) v � 0) ^
8n: ((e ^ I ^ v = n)) wp(s, I ^ v < n)) ^
((¬e ^ I)) P)

the invariant predicate I is combined with a variant expression v

v is positive (this is an invariant: I) v � 0)

v decreases at each loop iteration

and similarly for strongest postconditions

Course 6 Axiomatic semantics Antoine Miné p. 45 / 60

Non-determinism

Non-determinism

Course 6 Axiomatic semantics Antoine Miné p. 46 / 60

Non-determinism

Non-determinism in Hoare logic

We model non-determinism with the statement X ?
meaning: X is assigned a random value

(X [a, b] can be modeled as: X ?; if X < a _ X > b then fail;)

Hoare axiom:
{8X :P} X ? {P}

if P is true after assigning X to random
then P must hold whatever the value of X before

often, X does not appear in P and we get simply:
{P} X ? {P}

Example:

{X = x} Y X {Y = x}
{Y = x} X ? {Y = x} {Y = x} X Y {X = x}

{X = x} Y X ;X ?;X Y {X = x}

Course 6 Axiomatic semantics Antoine Miné p. 47 / 60

Non-determinism

Non-determinism in predicate calculus

Predicate transformers:

wlp(X ?, P)
def
= 8X :P

(P must hold whatever the value of X before the assignment)

slp(P, X ?)
def
= 9X :P

(if P held for one value of X , P holds for all values of X after the assignment)

Link with operational semantics (as transition systems)

predicates P as sets of states P ✓ ⌃
commands c as transition relations c ✓ ⌃⇥ ⌃

we define: post[⌧](P)
def
= {�0 | 9� 2 P: (�,�0) 2 ⌧ }

fpre[⌧](P) def
= {� | 8�0 2 ⌃: (�,�0) 2 ⌧ =) �0 2 P }

then: slp(P, c) = post[c](P)
wlp(c,P) = fpre[c](P)

Course 6 Axiomatic semantics Antoine Miné p. 48 / 60

Arrays

Arrays

Course 6 Axiomatic semantics Antoine Miné p. 49 / 60

Arrays

Array syntax

We enrich our language with:

a set A of array variables

array access in expressions: A(expr), A 2 A

array assignment: A(expr) expr , A 2 A
(arrays have unbounded size here, we do not care about overflow)

Issue:

a natural idea is to generalize the assignment axiom:

{P[f /A(e)]} A(e) f {P}

but this is not sound, due to aliasing

example:

we would derive the invalid triple: {A(J) = 1 ^ I = J} A(I) 0 {A(J) = 1 ^ I = J}
as (A(J) = 1)[0/A(I)] = (A(J) = 1)

Course 6 Axiomatic semantics Antoine Miné p. 50 / 60

Arrays

Hoare logic rule for arrays

Solution: use a specific theory of arrays (McCarthy 1962)

enrich the assertion language with expressions A{e 7! f }
meaning: the array equal to A except that index e maps to value f

add the axiom
{P[A{e 7! f }/A]} A(e) f {P}

intuitively, we use “functional arrays” in the logic world

add logical axioms to reason about our arrays in assertions

A{e 7! f }(e) = f (e 6= e

0)) (A{e 7! f }(e0) = A(e0))

Course 6 Axiomatic semantics Antoine Miné p. 51 / 60

Arrays

Arrays: example

Example: swap

given the program p

def
= T A(I); A(I) A(J); A(J) T

we wish to prove: {A(I) = x ^ A(J) = y} p {A(I) = y ^ A(J) = x}

by propagating A(I) = y backwards by the assignment rule, we get
A{ J 7! T }(I) = y
A{ I 7! A(J) }{ J 7! T }(I) = y
A{ I 7! A(J) }{ J 7! A(I) }(I) = y

we consider two cases:

if I = J, then A{ I 7! A(J) }{ J 7! A(I) } = A

so, A{ I 7! A(J) }{ J 7! A(I) }(I) = A(I) = A(J)

if I 6= J, then A{ I 7! A(J) }{ J 7! A(I) }(I) = A{ I 7! A(J) }(I) = A(J)

in both cases, we get A(J) = y in the precondition

likewise, A(I) = x in the precondition

Course 6 Axiomatic semantics Antoine Miné p. 52 / 60

Concurrent programs

Concurrent programs

Course 6 Axiomatic semantics Antoine Miné p. 53 / 60

Concurrent programs

Concurrent program syntax

Language

add a parallel composition statement: stat || stat

semantics: s1 || s2
execute s1 and s2 in parallel

allowing an arbitrary interleaving of atomic statements
(expression evaluation or assignments)

terminates when both s1 and s2 terminate

Hoare logic: extended by Owicki and Gries [Owicki76]

first idea:
{P1} s1 {Q1} {P2} s2 {Q2}
{P1 ^ P2} s1 || s2 {Q1 ^ Q2}

but this is unsound

Course 6 Axiomatic semantics Antoine Miné p. 54 / 60

Concurrent programs

Concurrent programs: rule soundness

Issue:

{P1} s1 {Q1} {P2} s2 {Q2}
{P1 ^ P2} s1 || s2 {Q1 ^ Q2}

is not always sound

example:

given s1
def
= X 1 and s2

def
= if X = 0 then Y 1, we derive:

{X = Y = 0} s1 {X = 1 ^ Y = 0} {X = Y = 0} s2 {X = 0 ^ Y = 1}
{X = Y = 0} s1 || s2 {false}

Solution:

the proofs of {P1} s1 {Q1} and {P2} s2 {Q2} must not interfere

Course 6 Axiomatic semantics Antoine Miné p. 55 / 60

Concurrent programs

Concurrent programs: rule soundness

interference freedom

given proofs �1 and �2 of {P1} s1 {Q1} and {P2} s2 {Q2}
�1 does not interfere with �2 if:

for any � appearing before a statement in �1

for any {P 0
2} s

0
2 {Q 0

2} appearing in �2

{� ^ P

0
2} s

0
2 {�} holds

and moreover {Q1 ^ P

0
2} s

0
2 {Q1}

i.e.: the assertions used to prove {P1} s1 {Q1} are stable by s2

example:

given s1
def
= X 1 and s2

def
= if X = 0 then Y 1, we derive:

{X = 0 ^ Y 2 [0, 1]} s1 {X = 1 ^ Y 2 [0, 1]} {X 2 [0, 1] ^ Y = 0} s2 {X 2 [0, 1] ^ Y 2 [0, 1]}
{X = Y = 0} s1 || s2 {X = 1 ^ Y 2 [0, 1]}

Course 6 Axiomatic semantics Antoine Miné p. 56 / 60

Concurrent programs

Concurrent programs: rule completeness

Issue: incompleteness

{X = 0} X X + 1 || X X + 1 {X = 2} is valid

but no proof of it can be derived

Solution: auxiliary variables

introduce explicitly program points and program counters

example:
`1
X X + 1 `2 || `3 X X + 1 `4

with auxiliary variables pc1 2 {1, 2}, pc2 2 {3, 4}
we can now express that a process is at a given control point
and distinguish assertions based on the location of other processes

s1
def
= `1 X X + 1 `2, s2

def
= `3 X X + 1 `4

{(pc2 = 3 ^ X = 0) _ (pc2 = 4 ^ X = 1)} s1 {(pc2 = 3 ^ X = 1) _ (pc2 = 4 ^ X = 2)}
{(pc1 = 1 ^ X = 0) _ (pc1 = 2 ^ X = 1)} s2 {(pc1 = 1 ^ X = 1) _ (pc1 = 2 ^ X = 2)}
=) {pc1 = 1 ^ pc2 = 3 ^ X = 0} s1 || s2 {pc1 = 2 ^ pc2 = 4 ^ X = 1}

in fact, auxiliary variables make the proof method complete
Course 6 Axiomatic semantics Antoine Miné p. 57 / 60

Conclusion

Conclusion

Course 6 Axiomatic semantics Antoine Miné p. 58 / 60

Conclusion

Conclusion

logic allows us to reason about program correctness

verification can be reduced to proofs of simple logic statements

Issue: automation

annotations are required (loop invariants, contracts)

verification conditions must be proven

to scale up to realistic programs, we need to automate as much as possible

Some solutions:

automatic logic solvers to discharge proof obligations
SAT / SMT solvers

abstract interpretation to approximate the semantics
fully automatic
able to infer invariants

Course 6 Axiomatic semantics Antoine Miné p. 59 / 60

Conclusion

Bibliography

[Apt81] K. Apt. Ten Years of Hoare’s logic: A survey In ACM TOPLAS,
3(4):431–483, 1981.

[Cousot02] P. Cousot. Constructive design of a hierarchy of semantics of a transition
system by abstract interpretation. In TCS, 277(1–2):47–103, 2002.

[Dijkstra76] E.W. Dijkstra. Guarded commands, nondeterminacy and formal
derivation of program In Comm. ACM, 18(8):453–457, 1975.

[Floyd67] R. Floyd. Assigning meanings to programs In In Proc. Sympos. Appl.
Math., Vol. XIX, pages 19–32, 1967.

[Hoare69] C.A.R. Hoare. An axiomatic basis for computer programming In Commun.
ACM 12(10), 1969.

[King69] J.C. King. A program verifier In PhD thesis, Dept. of Computer Science,
Carnegie-Mellon University, 1969.

[Owicki76] S. Owicki & D. Gries. An axiomatic proof technique for parallel programs
I In Acta Informatica, 6(4):319–340, 1976.

Course 6 Axiomatic semantics Antoine Miné p. 60 / 60

	Specifications
	Floyd–Hoare logic
	Predicate calculus
	Verification conditions
	Termination
	Non-determinism
	Arrays
	Concurrent programs
	Conclusion

