Denotational semantics

Semantics and Application to Program Verification

Antoine Miné

École normale supérieure, Paris
year 2015-2016
Course 4
4 March 2016

Introduction

Operational semantics (state and trace) (last two weeks)
Defined as small execution steps,
(transition relation) over low-level internal configurations.
Transitions are chained to define maximal traces.

Denotational semantics (today)

Direct functions from programs to mathematical objects, (denotations) defined by induction on the program syntax, (compositional) ignoring intermediate steps and execution details. (no state)
\Longrightarrow Higher-level, more abstract, more modular.
Tries to decouple a program meaning from its execution. Focus on the mathematical structures that represent programs. (founded by Strachey and Scott in the 70s: [Scott-Strachey71])
"Assembly" semantics vs. "Functional programming" semantics. often: semantics for practical verification vs. semantics for computer theorists

Two very different programs

```
Bubble sort in C
```

int swapped;

```
int swapped;
do {
do {
    swapped = 0;
    swapped = 0;
    for (int i=1; i<n; i++) {
    for (int i=1; i<n; i++) {
        if (a[i-1] > a[i]) {
        if (a[i-1] > a[i]) {
                swap(&a[i-1], &a[i]);
                swap(&a[i-1], &a[i]);
            swapped = 1;
            swapped = 1;
        }
        }
    }
    }
} while (swapped);
```

```
} while (swapped);
```

```

\section*{Quick sort in OCaml}
let rec sort \(=\) function
| [] -> []
1C.:rest ->
    let lo, hi =
        List.partition
            (fun y -> \(y\) < x) rest
    in
    (sort lo) @ [x] @ (sort hi)
- different languages (C / OCaml)
- different algorithms (bubble sort / quick sort)
- different programming principles (loop / recursion)
- different data-types (array / list)

Can we give them the same semantics?

\section*{Denotation worlds}
- imperative programs
effect of a program: mutate a memory state natural denotation: input/output function domain \(\mathcal{D} \simeq\) memory \(\rightarrow\) memory
challenge: build a whole program denotation from denotations of atomic language constructs (modularity)
- functional programs
effect of a program: return a value (without any side-effect) model a program of type a \(->\mathrm{b}\) as a function in \(\mathcal{D}_{a} \rightarrow \mathcal{D}_{b}\) challenge: choose \(\mathcal{D}\) to allow polymorphic or untyped languages
- other paradigms: parallel, probabilistic, etc.
\(\Longrightarrow\) very rich theory of mathematical structures
Scott domains, cartesian closed categories, coherent spaces, event structures, game semantics, etc. We will not present them in this overview!

\section*{Course overview}
- Imperative programs
- IMP: deterministic programs
- NIMP: handling non-determinism
- linking denotational and operational semantics
- Higher-order programs
- PCF : monomorphic typed programs
- linking denotational and operational semantics: full abstraction
- untyped \(\lambda\)-calculus: recursive domain equations
- Practical session (room INFO 4)
- program the denotational semantics of a simple imperative (non-)deterministic language (IMP, NIMP)

\section*{Deterministic imperative programs}

\section*{A simple imperative language: IMP}

IMP expressions
\[
\begin{array}{rlr}
\text { expr }::=X & \text { (variable) } \\
& \left\lvert\, \begin{array}{lr}
\text { (constant) }
\end{array}\right. \\
& \diamond \text { expr } & \text { (unary operation) } \\
& \text { expr } \diamond \text { expr } & \text { (binary operation) }
\end{array}
\]
- variables in a fixed set \(X \in \mathbb{V}\)
- constants \(\mathbb{\square} \stackrel{\text { def }}{=} \mathbb{B} \cup \mathbb{Z}\) :
- booleans \(\mathbb{B} \stackrel{\text { def }}{=}\{\) true, false \(\}\)
- integers \(\mathbb{Z}\)
- operations \(\diamond\) :
- integer operations:,,\(+- \times, /,<, \leq\)
- boolean operations: \(\neg, \wedge, \vee\)
- polymorphic operations: \(=, \neq\)

\section*{A simple imperative language: IMP}

\section*{Statements}
\begin{tabular}{rlr} 
stat \(::=\) skip & (do nothing) \\
& \(X \leftarrow\) expr & (assignment) \\
& stat \(;\) stat & (sequence) \\
& if expr then stat else stat & (conditional) \\
& while expr do stat & (loop)
\end{tabular}
(inspired from the presentation in [Benton96])

\section*{Expression semantics}
\(\underline{E \llbracket e x p r \rrbracket: \mathcal{E}} \boldsymbol{\square}\)
- environments \(\mathcal{E} \stackrel{\text { def }}{=} \mathbb{V} \rightarrow \mathbb{m}\) mp variables in \(\mathbb{V}\) to values in \(\rrbracket\)
- \(\mathrm{E} \llbracket\) expr 】 returns a value in 】
- \(\rightharpoonup\) denotes partial functions (as opposed to \(\rightarrow\) ) necessary because some operations are undefined
- \(1+\) true, \(1 \wedge 2\)
(type mismatch)
- \(3 / 0\)
- defined by structural induction on abstract syntax trees (next slide)
when we use the notation \(X \llbracket y \rrbracket, y\) is a syntactic object; \(X\) serves to distinguish between different semantic functions with different signatures, often varying with the kind of syntactic object \(y\) (expression, statement, etc.); \(X \llbracket y \rrbracket z\) is the application of the function \(X \llbracket y \rrbracket\) to the object \(z\)

\section*{Expression semantics}
\begin{tabular}{|c|c|c|c|c|}
\hline \(\underline{E \llbracket e x p r \rrbracket: \mathcal{E}}\) & & & & \\
\hline \(\mathrm{E} \llbracket c \rrbracket \rho\) & \(\stackrel{\text { def }}{=}\) & \(c\) & \(\in \mathbb{\square}\) & \\
\hline \(\mathrm{E} \llbracket V \rrbracket \rho\) & \(\stackrel{\text { def }}{=}\) & \(\rho(V)\) & \(\in \mathbb{\square}\) & \\
\hline \(\mathrm{E} \llbracket-\mathrm{e} \rrbracket \rho\) & \(\stackrel{\text { def }}{=}\) & \(-v\) & \(\in \mathbb{Z}\) & if \(v=\mathrm{E} \llbracket e \rrbracket \rho \in \mathbb{Z}\) \\
\hline \(\mathrm{E} \llbracket \neg \mathrm{\rrbracket} \downarrow \rho\) & \(\stackrel{\text { def }}{=}\) & \(\neg v\) & \(\in \mathbb{B}\) & if \(v=\mathbb{E} \llbracket e \rrbracket \rho \in \mathbb{B}\) \\
\hline \(\mathrm{E} \llbracket e_{1}+e_{2} \rrbracket \rho\) & \(\stackrel{\text { def }}{=}\) & \(v_{1}+v_{2}\) & \(\in \mathbb{Z}\) & if \(v_{1}=\mathrm{E} \llbracket e_{1} \rrbracket \rho \in \mathbb{Z}, v_{2}=\mathrm{E} \llbracket e_{2} \rrbracket \rho \in \mathbb{Z}\) \\
\hline \(\mathrm{E} \llbracket e_{1}-e_{2} \rrbracket \rho\) & \(\stackrel{\text { def }}{=}\) & \(v_{1}-v_{2}\) & \(\in \mathbb{Z}\) & if \(v_{1}=\mathrm{E} \llbracket e_{1} \rrbracket \rho \in \mathbb{Z}, v_{2}=\mathrm{E} \llbracket e_{2} \rrbracket \rho \in \mathbb{Z}\) \\
\hline \(\mathrm{E} \llbracket e_{1} \times e_{2} \rrbracket \rho\) & \(\stackrel{\text { def }}{=}\) & \(v_{1} \times v_{2}\) & \(\in \mathbb{Z}\) & if \(v_{1}=\mathrm{E} \llbracket e_{1} \rrbracket \rho \in \mathbb{Z}, v_{2}=\mathrm{E} \llbracket e_{2} \rrbracket \rho \in \mathbb{Z}\) \\
\hline \(\mathrm{E} \llbracket e_{1} / e_{2} \rrbracket \rho\) & \(\stackrel{\text { def }}{=}\) & \(v_{1} / v_{2}\) & \(\in \mathbb{Z}\) & if \(v_{1}=\mathrm{E} \llbracket e_{1} \rrbracket \rho \in \mathbb{Z}, v_{2}=\mathrm{E} \llbracket e_{2} \rrbracket \rho \in \mathbb{Z} \backslash\{0\}\) \\
\hline \(\mathrm{E} \llbracket e_{1} \wedge e_{2} \rrbracket \rho\) & \(\stackrel{\text { def }}{=}\) & \(v_{1} \wedge v_{2}\) & \(\in \mathbb{B}\) & if \(v_{1}=\mathrm{E} \llbracket e_{1} \rrbracket \rho \in \mathbb{B}, v_{2}=\mathbb{E} \llbracket e_{2} \rrbracket \rho \in \mathbb{B}\) \\
\hline \(\mathrm{E} \llbracket e_{1} \vee e_{2} \rrbracket \rho\) & \(\stackrel{\text { def }}{=}\) & \(v_{1} \vee v_{2}\) & \(\in \mathbb{B}\) & if \(v_{1}=\mathrm{E} \llbracket e_{1} \rrbracket \rho \in \mathbb{B}, v_{2}=\mathrm{E} \llbracket e_{2} \rrbracket \rho \in \mathbb{B}\) \\
\hline \(\mathrm{E} \llbracket e_{1}<e_{2} \rrbracket \rho\) & \(\stackrel{\text { def }}{=}\) & \(v_{1}<v_{2}\) & \(\in \mathbb{B}\) & if \(v_{1}=\mathrm{E} \llbracket e_{1} \rrbracket \rho \in \mathbb{Z}, v_{2}=\mathrm{E} \llbracket e_{2} \rrbracket \rho \in \mathbb{Z}\) \\
\hline \(\mathrm{E} \llbracket e_{1} \leq e_{2} \rrbracket \rho\) & \(\stackrel{\text { def }}{=}\) & \(v_{1} \leq v_{2}\) & \(\in \mathbb{B}\) & if \(v_{1}=\mathrm{E} \llbracket e_{1} \rrbracket \rho \in \mathbb{Z}, v_{2}=\mathrm{E} \llbracket e_{2} \rrbracket \rho \in \mathbb{Z}\) \\
\hline \(\mathrm{E} \llbracket e_{1}=e_{2} \rrbracket \rho\) & \(\stackrel{\text { def }}{=}\) & \(v_{1}=v_{2}\) & \(\in \mathbb{B}\) & if \(v_{1}=\mathrm{E} \llbracket e_{1} \rrbracket \rho \in \mathbb{\square}, v_{2}=\mathrm{E} \llbracket e_{2} \rrbracket \rho \in \mathbb{}\) \\
\hline \(\mathrm{E} \llbracket e_{1} \neq \mathrm{e}_{2} \rrbracket \rho\) & \(\stackrel{\text { def }}{ }\) & \(v_{1} \neq v_{2}\) & \(\in \mathbb{B}\) & if \(v_{1}=\mathrm{E} \llbracket e_{1} \rrbracket \rho \in \mathbb{\square}, v_{2}=\mathrm{E} \llbracket \mathrm{e}_{2} \rrbracket \rho \in \mathbb{\square}\) \\
\hline
\end{tabular}

\section*{Statement semantics}

\section*{\(\underline{S \llbracket s t a t \rrbracket: \mathcal{E} \rightharpoonup \mathcal{E}}\)}
- maps an environment before the statement to an environment after the statement
- partial function due to
- errors in expressions
- non-termination
- also defined by structural induction

\section*{Statement semantics}
\(\mathrm{S} \llbracket \mathrm{stat} \rrbracket: \mathcal{E} \rightharpoonup \mathcal{E}\)
- skip: do nothing
\[
\mathrm{S} \llbracket \mathbf{s k i p} \rrbracket \rho \stackrel{\text { def }}{=} \rho
\]
- assignment: evaluate expression and mutate environment
\[
\mathrm{S} \llbracket X \leftarrow e \rrbracket \rho \stackrel{\text { def }}{=} \rho[X \mapsto v] \quad \text { if } \mathrm{E} \llbracket e \rrbracket \rho=v
\]
- sequence: function composition
\[
\mathrm{S} \llbracket s_{1} ; s_{2} \rrbracket \stackrel{\text { def }}{=} \mathrm{S} \llbracket s_{2} \rrbracket \circ \mathrm{~S} \llbracket s_{1} \rrbracket
\]
- conditional
conditional
\(\mathrm{S} \llbracket\) if \(e\) then \(s_{1}\) else \(s_{2} \rrbracket \rho \stackrel{\text { def }}{=} \begin{cases}\mathrm{S} \llbracket s_{1} \rrbracket \rho & \text { if } \mathrm{E} \llbracket e \rrbracket \rho=\text { true } \\ \mathrm{S} \llbracket s_{2} \rrbracket \rho & \text { if } \mathrm{E} \llbracket e \rrbracket \rho=\text { false } \\ \text { undefined } & \text { otherwise }\end{cases}\)
\(f[x \mapsto y]\) denotes the function that maps \(x\) to \(y\), and any \(z \neq x\) to \(f(z)\)

\section*{Statement semantics: loops}

How do we handle loops?
The semantics of loops must satisfy:
\(\mathrm{S} \llbracket\) while \(e\) do \(s \rrbracket \rho=\)
\(\begin{cases}\rho & \text { if } \mathrm{E} \llbracket e \rrbracket \rho=\text { false } \\ \mathrm{S} \llbracket \text { while } e \text { do } s \rrbracket(\mathrm{~S} \llbracket s \rrbracket \rho) & \text { if } \mathrm{E} \llbracket e \rrbracket \rho=\text { true } \\ \text { undefined } & \text { otherwise }\end{cases}\)

This is a recursive definition; we must prove that:
- the equation has solution(s);
- in case there are several solutions, there is a single "right" one;
\(\Longrightarrow\) we use fixpoints of operators over partially ordered sets.

\section*{Flat orders and partial functions}

Flat ordering \(\left(\mathbb{\square}_{\perp}, \sqsubseteq\right)\) on \(\mathbb{\square}\) :
- \(\mathbb{\square}_{\perp} \stackrel{\text { def }}{=} \mathbb{\cup} \cup\{\perp\}\)
- \(a \sqsubseteq b \xrightarrow{\text { def }} a=\perp \vee a=b\)
- every chain is finite, and so has a lub \(\sqcup\) \(\Longrightarrow\) it is a pointed complete partial order
\(\perp\) denotes the value "undefined"
Similarly for \(\mathcal{E}_{\perp} \stackrel{\text { def }}{=} \mathcal{E} \cup\{\perp\}\).
Note that \((\mathcal{E} \rightharpoonup \mathcal{E}) \simeq\left(\mathcal{E} \rightarrow \mathcal{E}_{\perp}\right)\)
\(\Longrightarrow\) we will now use total functions only.

\section*{Poset of continuous partial functions}

Partial order structure on partial functions \(\left(\mathcal{E}_{\perp} \xrightarrow{c} \mathcal{E}_{\perp}, \dot{\sqsubseteq}\right)\)
- \(\mathcal{E}_{\perp} \rightarrow \mathcal{E}_{\perp}\) extends \(\mathcal{E} \rightarrow \mathcal{E}_{\perp}\)
- domain \(=\) co-domain \(\Longrightarrow\) allows composition \(\circ\)
- \(f \in \mathcal{E} \rightarrow \mathcal{E}_{\perp}\) extended with \(f(\perp) \stackrel{\text { def }}{=} \perp\)
\(\Longrightarrow\) if \(\mathrm{S} \llbracket s \rrbracket x\) is undefined, so is \(\left(\mathrm{S} \llbracket s^{\prime} \rrbracket \circ \mathrm{S} \llbracket s \rrbracket\right) x\)
such functions are monotonic and continuous
\[
(a \sqsubseteq b \Longrightarrow f(a) \sqsubseteq f(b) \text { and } f(\sqcup X)=\sqcup\{f(x) \mid x \in X\})
\]
\(\Longrightarrow\) we restrict \(\mathcal{E}_{\perp} \rightarrow \mathcal{E}_{\perp}\) to continuous functions: \(\mathcal{E}_{\perp} \xrightarrow{c} \mathcal{E}_{\perp}\)
- point-wise order \(\dot{\sqsubseteq}\) on functions
\(f \sqsubseteq g \stackrel{\text { def }}{\Longleftrightarrow} \forall x: \bar{f}(x) \sqsubseteq g(x)\)
- \(\mathcal{E}_{\perp} \xrightarrow{c} \mathcal{E}_{\perp}\) has a least element: \(\dot{\perp} \stackrel{\text { def }}{=} \lambda x . \perp\)
- by point-wise lub ப் of chains, it is also complete \(\Longrightarrow\) a cpo \(\dot{ப} F=\lambda x . \sqcup\{f(x) \mid f \in F\}\)

\section*{Fixpoint semantics of loops}

To solve the semantic equation, we use a fixpoint of a functional.
We use actually the least fixpoint. (most precise for the information order)
\(\mathrm{S} \llbracket\) while \(e\) do \(s \rrbracket \stackrel{\text { def }}{=} \operatorname{Ifp} F\)
where: \(F:\left(\mathcal{E}_{\perp} \rightarrow \mathcal{E}_{\perp}\right) \rightarrow\left(\mathcal{E}_{\perp} \rightarrow \mathcal{E}_{\perp}\right)\)
\[
F(f)(\rho)= \begin{cases}\rho & \text { if } \mathrm{E} \llbracket e \rrbracket \rho=\text { false } \\ f(\mathrm{~S} \llbracket s \rrbracket \rho) & \text { if } \mathrm{E} \llbracket e \rrbracket \rho=\text { true } \\ \perp & \text { otherwise }\end{cases}
\]

\section*{Theorem}

Ifp \(F\) is well-defined
```

remember our equation on S\llbracket while e do s\rrbracket?
it can be rewritten exactly as: $\mathrm{S} \llbracket$ while e do $s \rrbracket=F(S \llbracket$ while e do $s \rrbracket)$

```

\section*{Fixpoint semantics of loops (proof sketch)}

\section*{Recall Kleene's theorem:}

\section*{Kleene's theorem}

A continuous function on a cpo has a least fixpoint

To use the theorem we prove that \(\mathrm{S} \llbracket\) stat \(\rrbracket\) is continuous (and is well-defined) by induction on the syntax of stat:
- base cases: \(\mathrm{S} \llbracket\) skip \(\rrbracket\) and \(\mathrm{S} \llbracket X \leftarrow e \rrbracket\) are continuous
- \(\mathrm{S} \llbracket\) if \(e\) then \(s_{1}\) else \(s_{2} \rrbracket\) : by induction hypothesis, as \(\mathrm{S} \llbracket s_{1} \rrbracket\) and \(\mathrm{S} \llbracket s_{2} \rrbracket\) are continuous
- \(\mathrm{S} \llbracket s_{1} ; s_{2} \rrbracket\) : by induction hypotheses and because o respects continuity
- \(F\) is continuous in \(\left(\mathcal{E}_{\perp} \xrightarrow{c} \mathcal{E}_{\perp}\right) \xrightarrow{c}\left(\mathcal{E}_{\perp} \xrightarrow{c} \mathcal{E}_{\perp}\right)\) by induction hypotheses \(\Longrightarrow\) Ifp \(F\) exists by Kleene's theorem
moreover, Ifp \(F\) is continuous (simple consequence of Kleene's proof) \(\Longrightarrow \mathrm{S} \llbracket\) while \(e\) do \(s \rrbracket\) is continuous

\section*{Join semantics of loops}

Recall another fact about Kleene's fixpoints: Ifp \(F=\dot{ப}_{n \in \mathbb{N}} F^{n}(\dot{\perp})\)
- \(F^{0}(\dot{\perp})=\dot{\perp}\) is completely undefined
- \(F^{1}(\dot{\perp})(\rho)= \begin{cases}\rho & \text { if } \mathrm{E} \llbracket e \rrbracket \rho=\text { false } \\ \perp & \text { otherwise }\end{cases}\) environment if the loop is never entered
- \(F^{2}(\dot{\perp})(\rho)= \begin{cases}\rho & \text { if } \mathrm{E} \llbracket e \rrbracket \rho=\mathrm{false} \\ \mathrm{S} \llbracket s \rrbracket \rho & \text { else if } \mathrm{E} \llbracket e \rrbracket(\mathrm{~S} \llbracket s \rrbracket \rho)=\text { false } \\ \perp & \text { otherwise }\end{cases}\)
environment if the loop is iterated at most once
- \(F^{n}(\dot{\perp})(\rho)\)
environment if the loop is iterated at most \(n-1\) times
- \(\dot{ப}_{n \in \mathbb{N}} F^{n}(\dot{\perp})\)
environment when exiting the loop whatever the number of iterations

\section*{Error vs. non-termination}

In our semantics \(\mathrm{S} \llbracket\) stat \(\rrbracket \rho=\perp\) can mean:
- either stat starting on input \(\rho\) loops for ever
- or it stops prematurely with an error

Note : we could distinguish between the two cases by :
- adding an error value \(\Omega\), distinct from \(\perp\)
- propagating it in the semantics, bypassing computations (no further computation after an error)

\section*{Summary}

Rewriting the semantics using total functions on cpos with \(\perp\) :
- \(\mathrm{E} \llbracket\) expr \(\rrbracket: \mathcal{E}_{\perp} \xrightarrow{c} \mathbb{\square}_{\perp}\)
returns \(\perp\) for an error or if its argument is \(\perp\)
- \(\mathrm{S} \llbracket\) stat \(\rrbracket: \mathcal{E}_{\perp} \xrightarrow{c} \mathcal{E}_{\perp}\)
- \(\mathrm{S} \llbracket \mathbf{s k i p} \rrbracket \rho \stackrel{\text { def }}{=} \rho\)
- \(S \llbracket e_{1} ; e_{2} \rrbracket \stackrel{\text { def }}{=} S \llbracket e_{2} \rrbracket \circ S \llbracket e_{1} \rrbracket\)
- \(\mathrm{S} \llbracket X \leftarrow e \rrbracket \rho \stackrel{\text { def }}{=} \begin{cases}\perp & \text { if } \mathrm{E} \llbracket e \rrbracket \rho=\perp \\ \rho[X \mapsto \mathrm{E} \llbracket e \rrbracket \rho] & \text { otherwise }\end{cases}\)
- \(\mathrm{S} \llbracket\) if \(e\) then \(s_{1}\) else \(s_{2} \rrbracket \rho \stackrel{\text { def }}{=} \begin{cases}\mathrm{S} \llbracket s_{1} \rrbracket \rho & \text { if } \mathrm{E} \llbracket e \rrbracket \rho=\text { true } \\ \mathrm{S} \llbracket s_{2} \rrbracket \rho & \text { if } \mathrm{E} \llbracket \rrbracket \rho=\text { false } \\ \perp & \text { otherwise }\end{cases}\)
- \(\mathrm{S} \llbracket\) while \(e\) do \(s \rrbracket \stackrel{\text { def }}{=} \operatorname{Ifp} F\)
where \(F(f)(\rho)= \begin{cases}\rho & \text { if } \mathrm{E} \llbracket e \rrbracket \rho=\text { false } \\ f(\mathrm{~S} \llbracket s \rrbracket \rho) & \text { if } \mathrm{E} \llbracket \rrbracket \rho=\text { true } \\ \perp & \text { otherwise }\end{cases}\)

\section*{Non-determinism}

\section*{Why non-determinism?}

It is useful to consider non-deterministic programs, to:
- model partially unknown environments
- abstract away unknown program parts
- abstract away too complex parts (rounding errors in floats)
- handle a set of programs as a single one

\section*{Kinds of non-determinism}
- data non-determinism: expr \(::=\) random()
- control non-determinism: stat \(::=\) either \(s_{1}\) or \(s_{2}\) but we can write "either \(s_{1}\) or \(s_{2}\) " as "if random ()\(=0\) then \(s_{1}\) else \(s_{2}\) "

Consequence on semantics and verification
we want to verify all the possible executions
\(\Longrightarrow\) the semantics should express all the possible executions

\section*{Modified language}

\section*{We extend IMP to NIMP,} an imperative language with non-determinism.

NIMP language


NIMP has the same statements as IMP
\(c_{1} \in \mathbb{Z} \cup\{-\infty\}, c_{2} \in \mathbb{Z} \cup\{+\infty\}\)
[ \(c_{1}, c_{2}\) ] means: return a fresh random value between \(c_{1}\) and \(c_{2}\) each time the expression is evaluated

Question: \(\quad\) is \([0,1]=[0,1]\) true or false?

\section*{Expression semantics}
```

$\underline{\mathrm{E} \llbracket \mathrm{expr} \rrbracket: \mathcal{E} \rightarrow \mathcal{P}(\mathbb{)}}$
$\mathrm{E} \llbracket V \rrbracket \rho \quad \stackrel{\text { def }}{=} \quad\{\rho(V)\}$
$\mathrm{E} \llbracket c \rrbracket \rho \quad \stackrel{\text { def }}{=} \quad\{c\}$
$\mathrm{E} \llbracket\left[c_{1}, c_{2}\right] \rrbracket \rho \quad \stackrel{\text { def }}{=} \quad\left\{c \in \mathbb{Z} \mid c_{1} \leq c \leq c_{2}\right\}$
$\mathrm{E} \llbracket-e \rrbracket \rho \quad \stackrel{\text { def }}{=} \quad\{-v \mid v \in \mathrm{E} \llbracket e \rrbracket \rho \cap \mathbb{Z}\}$
$\mathrm{E} \llbracket \neg e \rrbracket \rho \quad \stackrel{\text { def }}{=} \quad\{\neg v \mid v \in \mathbb{E} \llbracket e \rrbracket \rho \cap \mathbb{B}\}$
$\mathrm{E} \llbracket e_{1}+e_{2} \rrbracket \rho \quad \stackrel{\text { def }}{=} \quad\left\{v_{1}+v_{2} \mid v_{1} \in \mathbb{E} \llbracket e_{1} \rrbracket \rho \cap \mathbb{Z}, v_{2} \in \mathbb{E} \llbracket e_{2} \rrbracket \rho \cap \mathbb{Z}\right\}$
$\mathrm{E} \llbracket e_{1} / e_{2} \rrbracket \rho \quad \stackrel{\text { def }}{=} \quad\left\{v_{1} / v_{2} \mid v_{1} \in \mathbb{E} \llbracket e_{1} \rrbracket \rho \cap \mathbb{Z}, v_{2} \in \mathbb{E} \llbracket e_{2} \rrbracket \rho \cap \mathbb{Z} \backslash\{0\}\right\}$
$\mathrm{E} \llbracket e_{1}<e_{2} \rrbracket \rho \quad \stackrel{\text { def }}{=} \quad\left\{\right.$ true $\left.\mid \exists v_{1} \in \mathrm{E} \llbracket e_{1} \rrbracket \rho, v_{2} \in \mathrm{E} \llbracket e_{2} \rrbracket \rho: v_{1} \in \mathbb{Z}, v_{2} \in \mathbb{Z}, v_{1}<v_{2}\right\} \cup$
$\left\{\right.$ false $\left.\mid \exists v_{1} \in \mathbb{E} \llbracket e_{1} \rrbracket \rho, v_{2} \in \mathbb{E} \llbracket e_{2} \rrbracket \rho: v_{1} \in \mathbb{Z}, v_{2} \in \mathbb{Z}, v_{1} \geq v_{2}\right\}$

```
- we output a set of values, to account for non-determinism
- we can have \(\mathrm{E} \llbracket e \rrbracket \rho=\emptyset\) due to errors (no need for a special \(\Omega\) nor \(\perp\) element)

\section*{Statement semantic domain}

Semantic domain:
- a statement can output a set of environments
\(\Longrightarrow\) use \(\mathcal{E} \rightarrow \mathcal{P}(\mathcal{E})\)
- to allow composition, extend it to \(\mathcal{P}(\mathcal{E}) \rightarrow \mathcal{P}(\mathcal{E})\)
- non-termination and errors can be modeled by \(\emptyset\) (no need for a special \(\Omega\) nor \(\perp\) element)

\section*{Statement semantics}
\(\underline{\mathrm{S} \llbracket} \mathrm{stat} \rrbracket: \mathcal{P}(\mathcal{E}) \rightarrow \mathcal{P}(\mathcal{E})\)
- \(\mathrm{S} \llbracket \mathbf{s k i p} \rrbracket R \stackrel{\text { def }}{=} R\)
- \(\mathrm{S} \llbracket s_{1} ; s_{2} \rrbracket \stackrel{\text { def }}{=} \mathrm{S} \llbracket s_{2} \rrbracket \circ \mathrm{~S} \llbracket s_{1} \rrbracket\)
- \(\mathrm{S} \llbracket X \leftarrow e \rrbracket R \stackrel{\text { def }}{=}\{\rho[X \mapsto v \rrbracket \mid \rho \in R, v \in \mathrm{E} \llbracket e \rrbracket \rho\}\)
- pick an environment \(\rho\)
- pick an expression value \(v\) in \(\mathrm{E} \llbracket e \rrbracket \rho\)
- generate an updated environment \(\rho[X \mapsto v]\)
- \(\mathrm{S} \llbracket\) if \(e\) then \(s_{1}\) else \(s_{2} \rrbracket R \stackrel{\text { def }}{=}\)
\[
\begin{aligned}
& \mathrm{S} \llbracket s_{1} \rrbracket\{\rho \in R \mid \text { true } \in \mathrm{E} \llbracket e \rrbracket \rho\} \cup \\
& \mathrm{S} \llbracket s_{2} \rrbracket\{\rho \in R \mid \text { false } \in \mathrm{E} \llbracket e \rrbracket \rho\}
\end{aligned}
\]
- filter environments according to the value of \(e\)
- execute both branch independently
- join them with \(\cup\)

\section*{Statement semantics}
- \(\mathrm{S} \llbracket\) while \(e\) do \(s \rrbracket R \stackrel{\text { def }}{=}\{\rho \in \operatorname{lfp} F \mid\) false \(\in \mathrm{E} \llbracket e \rrbracket \rho\}\) where \(F(X) \stackrel{\text { def }}{=} R \cup S \llbracket s \rrbracket\{\rho \in X \mid\) true \(\in \mathrm{E} \llbracket e \rrbracket \rho\}\)

Justification: Ifp \(F\) exists
- \((\mathcal{P}(\mathcal{E}), \subseteq, \cup \cap, \emptyset, \mathcal{E})\) forms a complete lattice
- all semantic functions and \(F\) are monotonic and continuous in fact, they are strict complete join morphisms
\(S \llbracket s \rrbracket\left(\cup_{i \in \Delta} X_{i}\right)=\cup_{i \in \Delta} \mathrm{~S} \llbracket s \rrbracket X_{i}\) and \(\mathrm{S} \llbracket s \rrbracket \emptyset=\emptyset\)
which we write as \(\mathrm{S} \llbracket s \rrbracket \in \mathcal{P}(\mathcal{E}) \xrightarrow{\longrightarrow} \mathcal{P}(\mathcal{E})\)
it is really the image function of a function in \(\mathcal{E} \rightarrow \mathcal{P}(\mathcal{E})\)
\[
\mathrm{S} \llbracket s \rrbracket X=\cup\{\mathrm{S} \llbracket s \rrbracket\{x\} \mid x \in X\}
\]
- we can apply both Kleene's and Tarksi's fixpoint theorems

\section*{Join semantics of loops}
- \(\mathrm{S} \llbracket\) while \(e\) do \(s \rrbracket R \stackrel{\text { def }}{=}\{\rho \in \operatorname{lfp} F \mid\) false \(\in \mathrm{E} \llbracket e \rrbracket \rho\}\) where \(F(X) \stackrel{\text { def }}{=} R \cup \mathrm{~S} \llbracket s \rrbracket\{\rho \in X \mid\) true \(\in \mathbb{E} \llbracket e \rrbracket \rho\}\)
( \(F\) applies a loop iteration to \(X\) and adds back the environments \(R\) before the loop)
Recall that \(\operatorname{lfp} F=\cup_{n \in \mathbb{N}} F^{n}(\emptyset)\)
- \(F^{0}(\emptyset)=\emptyset\)
- \(F^{1}(\emptyset)=R\)
environments before entering the loop
- \(F^{2}(\emptyset)=R \cup S \llbracket s \rrbracket\{\rho \in R \mid\) true \(\in \mathbb{E} \llbracket e \rrbracket \rho\}\) environments after zero or one loop iteration
- \(F^{n}(\emptyset)\) : environments after at most \(n-1\) loop iterations (just before testing the condition to determine if we should iterate a \(n\)-th time)
- \(\cup_{n \in \mathbb{N}} F^{n}(\emptyset)\) : loop invariant

\section*{"Angelic" non-determinism and termination}

If stat is deterministic (no \(\left[c_{1}, c_{2}\right]\) in expressions)
the semantics is equivalent to our semantics on \(\mathcal{E}_{\perp} \xrightarrow{c} \mathcal{E}_{\perp}\)
Justification: \(\quad\left(\{E \subseteq \mathcal{E}||E| \leq 1\}, \subseteq, \cup, \emptyset)\right.\) is isomorphic to \(\left(\mathcal{E}_{\perp}, \sqsubseteq, \sqcup, \perp\right)\)

In general, we can have several outputs for \(\mathrm{S} \llbracket\) stat \(\rrbracket\{\rho\} \subseteq \mathcal{E} \cup\{\Omega\}\) :
- \(\emptyset\) : the program never terminates at all
- \(\{\Omega\}\) : the program never terminates correctly
- \(R \subseteq \mathcal{E} \backslash\{\Omega\}\) : when the program terminates, it terminates correctly, in an environment in \(R\)
\(\Longrightarrow\) we cannot express that a program always terminates!
This is called the "Angelic" semantics, useful for partial correctness.

\section*{Note on non-determinism and termination}

Other (more complex) ways to mix non-termination and non-determinism exist
Based on distinguishing \(\emptyset\) and \(\perp\), and on different order relations \(\sqsubseteq\)

(this is a complex subject, we will say no more)

\section*{Link between operational and denotational semantics}

\section*{Motivation}

Are the operational and denotational semantics consistent with each other?

Note that:
- systems are actually described operationally (previous courses)
- the denotational semantics is a more abstract representation (more suitable for some reasoning on the system)
\(\Longrightarrow\) the denotational semantics must be proven faithful (in some sense) to the operational model to be of any use

\section*{Transition systems for our non-deterministic language}

\section*{Labelled syntax}
\[
\begin{aligned}
& { }^{\ell} \text { stat }^{\ell} \quad::={ }^{\ell} \text { skip }{ }^{\ell} \\
& { }^{\ell} X \leftarrow \text { expr }{ }^{\ell} \\
& { }^{\ell} \text { if expr then }{ }^{\ell} \text { stat else }{ }^{\ell} \text { stat }^{\ell} \\
& { }^{\ell} \text { while }{ }^{\ell} \text { expr do }{ }^{\ell} \text { stat }^{\ell} \\
& { }^{\ell} \text { stat; }{ }^{\ell} \text { stat }{ }^{\ell} \\
& \ell \in \mathcal{L} \text { : control labels }
\end{aligned}
\]
- statements are decorated with unique control labels \(\ell \in \mathcal{L}\)
- program configurations in \(\Sigma \stackrel{\text { def }}{=} \mathcal{L} \times \mathcal{E}\)
(lower-level than \(\mathcal{E}\) : we must track program locations)
- transition relation \(\tau \subseteq \Sigma \times \Sigma\)
models atomic execution steps

Link between operational and denotational semantics

\section*{Transition systems for our language}
\(\tau\) is defined by induction on the syntax of statements
\(\left(\sigma, \sigma^{\prime}\right) \in \tau\) is denoted as \(\sigma \rightarrow \sigma^{\prime}\)
\[
\begin{aligned}
& \tau\left[{ }^{\ell 1} \mathbf{s k i p}^{\ell 2}\right] \stackrel{\text { def }}{=} \quad\{(\ell 1, \rho) \rightarrow(\ell 2, \rho) \mid \rho \in \mathcal{E}\} \\
& \tau\left[{ }^{\ell 1} X \leftarrow e^{\ell 2}\right] \stackrel{\text { def }}{=} \quad\{(\ell 1, \rho) \rightarrow(\ell 2, \rho[X \mapsto v]) \mid \rho \in \mathcal{E}, v \in \mathrm{E} \llbracket e \rrbracket \rho\} \\
& \tau\left[{ }^{\ell 1} \mathbf{i f} e \text { then }{ }^{\ell 2} s_{1} \text { else }{ }^{\ell 3} \boldsymbol{s}_{2}{ }^{\ell 4}\right] \stackrel{\text { def }}{=} \\
& \{(\ell 1, \rho) \rightarrow(\ell 2, \rho) \mid \rho \in \mathcal{E} \text {, true } \in \mathbb{E} \llbracket e \rrbracket \rho\} \cup \\
& \{(\ell 1, \rho) \rightarrow(\ell 3, \rho) \mid \rho \in \mathcal{E} \text {, false } \in \mathbb{E} \llbracket e \rrbracket \rho\} \cup \\
& \tau\left[{ }^{\ell 2} s_{1}{ }^{\ell 4}\right] \cup \tau\left[{ }^{\ell 3} s_{2}{ }^{\ell 4}\right] \\
& \tau\left[{ }^{\ell 1} \text { while }{ }^{\ell 2} \boldsymbol{e} \text { do }{ }^{\ell 3} \boldsymbol{s}^{\ell 4}\right] \stackrel{\text { def }}{=} \\
& \{(\ell 1, \rho) \rightarrow(\ell 2, \rho) \mid \rho \in \mathcal{E}\} \cup \\
& \{(\ell 2, \rho) \rightarrow(\ell 3, \rho) \mid \rho \in \mathcal{E}, \text { true } \in \mathbb{E} \llbracket e \rrbracket \rho\} \cup \\
& \{(\ell 2, \rho) \rightarrow(\ell 4, \rho) \mid \rho \in \mathcal{E}, \text { false } \in \mathrm{E} \llbracket e \rrbracket \rho\} \cup \tau\left[{ }^{\ell 3} s^{\ell 2}\right] \\
& \tau\left[{ }^{\ell 1} s_{1} ;{ }^{\ell 2} s_{2}{ }^{\ell 3}\right] \stackrel{\text { def }}{=} \tau\left[{ }^{\ell 1} s_{1}{ }^{\ell 2}\right] \cup \tau\left[{ }^{\ell 2} s_{2}{ }^{\ell 3}\right]
\end{aligned}
\]

Defines the small-step semantics of a statement
(the semantics of expressions is still in denotational form)

\section*{Special states}

Given a labelled statement \({ }^{\ell_{e}} \boldsymbol{S}^{\ell_{x}}\) and its transition system, we define:
- initial states: \(I \stackrel{\text { def }}{=}\left\{\left(\ell_{e}, \rho\right) \mid \rho \in \mathcal{E}\right\}\)
\[
\text { note that } \sigma \rightarrow \sigma^{\prime} \Longrightarrow \sigma^{\prime} \notin I
\]
- blocking states: \(B \stackrel{\text { def }}{=}\left\{\sigma \in \Sigma \mid \forall \sigma^{\prime}: \in \Sigma, \sigma \nrightarrow \sigma^{\prime}\right\}\)
- correct termination: OK \(\stackrel{\text { def }}{=}\left\{\left(\ell_{x}, \rho\right) \mid \rho \in \mathcal{E}\right\}\) note that \(O K \subseteq B\)
- error: \(E R R \stackrel{\text { def }}{=} B \cap\left\{(\ell, \rho) \mid \ell \neq \ell_{x}, \rho \in \mathcal{E}\right\}\)
\(B=E R R \cup O K\)
\(E R R \cap O K=\emptyset\)

\section*{Reminder: maximal trace semantics}

Trace: in \(\Sigma^{\infty}\)
(finite or infinite sequence of states)
- starting in an initial state /
- following transitions \(\rightarrow\)
- can only end in a blocking state \(B\)
i.e.: \(t \llbracket s \rrbracket=t \llbracket s \rrbracket^{*} \cup t \llbracket s \rrbracket^{\omega}\) where
- finite traces:
\[
t \llbracket s \rrbracket^{*} \stackrel{\text { def }}{=}\left\{\left(\sigma_{0}, \ldots, \sigma_{n}\right) \mid n \geq 0, \sigma_{0} \in I, \sigma_{n} \in B, \forall i<n: \sigma_{i} \rightarrow \sigma_{i+1}\right\}
\]
- infinite traces:
\[
t \llbracket s \rrbracket^{\omega} \stackrel{\text { def }}{=}\left\{\left(\sigma_{0}, \ldots\right) \mid \sigma_{0} \in I, \forall i \in \mathbb{N}: \sigma_{i} \rightarrow \sigma_{i+1}\right\}
\]

\section*{From traces to big-step semantics}

Big-step semantics: abstraction of traces only remembers the input-output relations
many variants exist:
- "angelic" semantics, in \(\mathcal{P}(\Sigma \times \Sigma)\) :
\(\mathrm{A} \llbracket s \rrbracket \stackrel{\text { def }}{=}\left\{\left(\sigma, \sigma^{\prime}\right) \mid \exists\left(\sigma_{0}, \ldots, \sigma_{n}\right) \in t \llbracket s \rrbracket^{*}: \sigma=\sigma_{0}, \sigma^{\prime}=\sigma_{n}\right\}\)
(only give information on the terminating behaviors;
can only prove partial correctness)
- natural semantics, in \(\mathcal{P}\left(\Sigma \times \Sigma_{\perp}\right)\) : \(\mathrm{N} \llbracket s \rrbracket \stackrel{\text { def }}{=} \mathrm{A} \llbracket s \rrbracket \cup\left\{(\sigma, \perp) \mid \exists\left(\sigma_{0}, \ldots\right) \in t \llbracket s \rrbracket^{\omega}: \sigma=\sigma_{0}\right\}\)
(models the terminating and non-terminating behaviors; can prove total correctness)

Exercise: compute the semantics of "while \(X>0\) do \(X \leftarrow X-[0,1]\) "

\section*{From big-step to denotational semantics}

The angelic denotational and big-step semantics are isomorphic (isomorphism between relations and strict complete join morphisms)
\(\mathrm{S} \llbracket s \rrbracket=\alpha(\mathrm{A} \llbracket s \rrbracket)\) where
- \(\alpha(X) \stackrel{\text { def }}{=} \lambda R \cdot\left\{\rho^{\prime} \mid \rho \in R,\left(\left(\ell_{e}, \rho\right),\left(\ell_{x}, \rho^{\prime}\right)\right) \in X\right\} \quad\) (image of a relation)
- \(\alpha^{-1}(Y)=\left\{\left(\left(\ell_{e}, \rho\right),\left(\ell_{x}, \rho^{\prime}\right)\right) \mid \rho \in \mathcal{E}, \rho^{\prime} \in Y(\{\rho\})\right\}\)

Proof idea: by induction on the syntax of \(s\)
\(\Longrightarrow\) our operational and denotational semantics match

Also, the denotational semantics is an abstraction of the natural semantics (it forgets about infinite computations)

\section*{Thesis}

All semantics can be compared for equivalence or abstraction
this can be made formal in the abstract interpretation theory (see [Cousot02])

Link between operational and denotational semantics

\section*{Semantic diagram}
\[
\begin{array}{cc}
\text { denotational } & \text { operational } \\
\text { world } & \text { world }
\end{array}
\]
\(\alpha\)


\section*{Fixpoint formulation}

Recall that traces can be expressed as fixpoints:
- \(t \llbracket s \rrbracket^{*}=(\operatorname{Ifp} F) \cap\left(I \Sigma^{\infty}\right) \quad\left(\cap\left(I \Sigma^{\infty}\right)\right.\) restricts to traces starting in I) where \(F(X) \stackrel{\text { def }}{=} B \cup\left\{\left(\sigma, \sigma_{0}, \ldots, \sigma_{n}\right) \mid \sigma \rightarrow \sigma_{0} \wedge\left(\sigma_{0}, \ldots, \sigma_{n}\right) \in X\right\}\)
- \(t \llbracket s \rrbracket^{\omega}=(\operatorname{gfp} F) \cap\left(I \Sigma^{\infty}\right)\) where \(F(X) \stackrel{\text { def }}{=}\left\{\left(\sigma, \sigma_{0}, \ldots\right) \mid \sigma \rightarrow \sigma_{0} \wedge\left(\sigma_{0}, \ldots\right) \in X\right\}\)

This also holds for the angelic denotational semantics:
- \(\mathrm{S} \llbracket \mathrm{s} \rrbracket=\alpha(\mathrm{Ifp} F) \quad\) ( \(\alpha\) converts relations to functions) where \(F(X) \stackrel{\text { def }}{=}(B \times B) \cup\left\{\left(\sigma, \sigma^{\prime \prime}\right) \mid \exists \sigma^{\prime}: \sigma \rightarrow \sigma^{\prime} \wedge\left(\sigma^{\prime}, \sigma^{\prime \prime}\right) \in X\right\}\) and many others: natural, denotational, big-step, denotational,...

\section*{Thesis}

All semantics can be expressed through fixpoints
(again [Cousot02])

\section*{Higher-order programs}

\section*{Monomorphic typed higher order language}

PCF language (introduced by Scott in 1969)


PCF (programming computable functions) is a \(\lambda\)-calculus with:
- a monomorphic type system
- explicit type annotations \(X^{\text {type }}, \mathbf{Y}^{\text {type }}, \Omega^{\text {type }}\)
- an explicit recursion combiner \(Y\)
(unlike untyped \(\lambda\)-calculus)
- constants, including \(\mathbb{Z}, \mathbb{B}\) and a few built-in functions (arithmetic and comparisons in \(\mathbb{Z}\), if-then-else, etc.)

\section*{Semantic domains}

\section*{What should be the domain of \(\mathrm{T} \llbracket\) term \(\rrbracket\) ?}

Difficulty: term contains heterogeneous objects: constants, functions, second order functions, etc.

Solution: use the type information each term \(m\) can be given a type typ \((m)\) use one semantic domain \(\mathcal{D}_{t}\) per type \(t\) then \(T \llbracket m \rrbracket: \mathcal{E} \rightarrow \mathcal{D}_{\text {typ }(m)}\) where \(\mathcal{E} \stackrel{\text { def }}{=} \mathbb{V} \rightarrow\left(\cup_{t \in \text { type }} \mathcal{D}_{t}\right)\)

Domain definition by induction on the syntax of types
- \(\mathcal{D}_{\text {int }} \stackrel{\text { def }}{=} \mathbb{Z}_{\perp}\)
- \(\mathcal{D}_{\text {bool }} \stackrel{\text { def }}{=} \mathbb{B}_{\perp}\)
- \(\mathcal{D}_{t_{1} \rightarrow t_{2}} \stackrel{\text { def }}{=}\left(\mathcal{D}_{t_{1}} \xrightarrow{c} \mathcal{D}_{t_{2}}\right)_{\perp}\)

\section*{Order on semantic domains}

Order: all domains are cpos
- \(\mathcal{D}_{\text {int }} \stackrel{\text { def }}{=} \mathbb{Z}_{\perp}, \mathcal{D}_{\text {bool }} \stackrel{\text { def }}{=} \mathbb{B}_{\perp}\) use a flat ordering
- \(\mathcal{D}_{t_{1} \rightarrow t_{2}} \stackrel{\text { def }}{=}\left(\mathcal{D}_{t_{1}} \xrightarrow{c} \mathcal{D}_{t_{2}}\right)_{\perp}\)
with order \(f \sqsubseteq g \Longleftrightarrow f=\perp \vee(f, g \neq \perp \wedge \forall x: f(x) \sqsubseteq g(x))\)
- \(\mathcal{D}_{t_{1}} \xrightarrow{c} \mathcal{D}_{t_{2}}\) is ordered point-wise
- each domain has its fresh minimal \(\perp\) element (to distinguish \(\Omega^{\text {int } \rightarrow \text { int }}\) from \(\lambda X^{\text {int }} . \Omega^{\text {int }}\) )
- we restrict \(\rightarrow\) to continuous functions (to be able to take fixpoints)
(see [Scott93])

\section*{Denotational semantics}

Environments: \(\mathcal{E} \stackrel{\text { def }}{=} \mathbb{V} \rightarrow\left(\cup_{t \in \text { type }} \mathcal{D}_{t}\right)\)
Semantics: \(\quad \mathrm{T} \llbracket m \rrbracket: \mathcal{E} \rightarrow \mathcal{D}_{\text {typ }(m)}\)
\[
\begin{array}{lll}
\mathrm{T} \llbracket X \rrbracket \rho & \stackrel{\text { def }}{=} & \rho(X) \\
\mathrm{T} \llbracket c \rrbracket \rho & \stackrel{\text { def }}{=} & c \\
\mathrm{~T} \llbracket \boldsymbol{\lambda} X^{t} \cdot m \rrbracket \rho & \stackrel{\text { def }}{=} & \lambda x \cdot \mathrm{~T} \llbracket m \rrbracket(\rho[X \mapsto x \rrbracket) \\
\mathrm{T} \llbracket m_{1} m_{2} \rrbracket \rho & \stackrel{\text { def }}{=} & \left(\mathrm{T} \llbracket m_{1} \rrbracket \rho\right)\left(\mathrm{T} \llbracket m_{2} \rrbracket \rho\right) \\
\mathrm{T} \llbracket \mathbf{Y}^{t} m \rrbracket \rho & \stackrel{\text { def }}{=} & \mid \mathrm{fp}(\mathrm{~T} \llbracket m \rrbracket \rho) \\
\mathrm{T} \llbracket \Omega^{t} \rrbracket \rho & \stackrel{\text { def }}{=} & \perp^{t}
\end{array}
\]
- program functions \(\boldsymbol{\lambda}\) are mapped to mathematical functions \(\lambda\)
- program recursion \(\mathbf{Y}\) is mapped to fixpoints Ifp
- errors and non-termination are mapped to (typed) \(\perp\)
- we should prove that \(T \llbracket m \rrbracket\) is indeed continuous (by induction) so that Ifp exists, and also that \(T \llbracket m_{1} \rrbracket\) is indeed a function (by soundness of typing)

\section*{Operational semantics}

Operational semantics: based on the \(\lambda\)-calculus
- states are terms: \(\Sigma \stackrel{\text { def }}{=}\) term
- transitions correspond to reductions:
\[
\begin{array}{ll}
\left(\lambda X^{t} \cdot m_{1}\right) m_{2} \rightarrow m_{1}\left[X \mapsto m_{2}\right] & \text { ( } \lambda \text {-reduction) } \\
\Omega^{t} \rightarrow \Omega^{t} & \text { (failure) } \\
\mathbf{Y}^{t} m \rightarrow m\left(\mathbf{Y}^{t} m\right) & \text { (iteration) } \\
\text { plus } c_{1} c_{2} \rightarrow\left(c_{1}+c_{2}\right) & \text { (arithmetic) } \\
\text { if true } m_{1} m_{2} \rightarrow m_{1} & \text { (if-then-else) } \\
\text { if false } m_{1} m_{2} \rightarrow m_{2} & \text { (if-then-else) } \\
\frac{m_{1} \rightarrow m_{1}^{\prime}}{m_{1} m_{2} \rightarrow m_{1}^{\prime} m_{2}} & \text { (context rule) }
\end{array}
\]
- big-step semantics \(m \Downarrow\) : maximal reductions \(m \Downarrow=m^{\prime} \stackrel{\text { def }}{\Longleftrightarrow} m \rightarrow^{*} m^{\prime} \wedge \nexists m^{\prime \prime}: m^{\prime} \rightarrow m^{\prime \prime}\) (PCF is deterministic)

\section*{Links between operational and denotational semantics}

How do we check that operational and denotational semantics match? check that they have the same view of "semantically equal programs"
- denotational way: we can use \(\mathrm{T} \llbracket m_{1} \rrbracket=\mathrm{T} \llbracket m_{2} \rrbracket\)
- we need an operational way to compare functions comparing the syntax is too fine grained, Example: \(\quad\left(\lambda X^{\text {int }} .0\right) \neq\left(\lambda X^{\text {int }}\right.\).minus 11\()\), but they have the same denotation

Observational equivalence: observe terms in all contexts
- contexts \(c\) : terms with holes \(\square\)
- \(c[m]\) term obtained by substituting \(m\) in hole
- ground is the set of terms of type int or bool
- term equivalence \(\approx\) :
\[
m_{1} \approx m_{2} \stackrel{\text { def }}{\Longleftrightarrow}\left(\forall c: c\left[m_{1}\right] \Downarrow=c\left[m_{2}\right] \Downarrow \text { when } c\left[m_{1}\right] \in \text { ground }\right)
\]
(don't look at a function's syntax, force its full evaluation and look at the value result)

\section*{Full abstraction}

Full abstraction: \(\quad \forall m_{1}, m_{2}: m_{1} \approx m_{2} \Longleftrightarrow \mathrm{~T} \llbracket m_{1} \rrbracket=\mathrm{T} \llbracket m_{2} \rrbracket\)
Unexpected result: for PCF, \(\Leftarrow\) holds (adequacy), but not \(\Rightarrow\) !
(full abstraction concept introduced by Milner in 1975, proof by Plotkin 1977)
Compare with: IMP, NIMP are fully abstract
\(\forall s_{1}, s_{2} \in \operatorname{stat}: \mathrm{S} \llbracket s_{1} \rrbracket=\mathrm{S} \llbracket s_{2} \rrbracket \Longleftrightarrow \forall c: \mathrm{A} \llbracket c\left[s_{1}\right] \rrbracket=\mathrm{A} \llbracket c\left[s_{2}\right] \rrbracket\)
Intuitive explanation:
Domains such as \(\mathcal{D}_{t_{1} \rightarrow t_{2}}\) contain many functions, most of them do not correspond to any program (this is expected: many functions are not computable).
The problem is that, if \(m_{1}, m_{2}\) have the form \(\boldsymbol{\lambda} X^{t_{1} \rightarrow t_{2}} . m, \mathrm{~T} \llbracket m_{1} \rrbracket=\mathrm{T} \llbracket m_{2} \rrbracket\) imposes \(\mathrm{T} \llbracket m_{1} \rrbracket f=\mathrm{T} \llbracket m_{2} \rrbracket f\) for all \(f \in \mathcal{D}_{t_{1} \rightarrow t_{2}}\), including many \(f\) that are not computable.
It is actually possible to construct \(m_{1}, m_{2}\) where \(\mathbf{T} \llbracket m_{1} \rrbracket f \neq \mathbf{T} \llbracket m_{2} \rrbracket f\) only for some non-program functions \(f\), so that \(m_{1} \approx m_{2}\) actually holds

Two solutions come to mind:
- enrich the language to express more functions in \(\mathcal{D}_{t_{1} \rightarrow t_{2}} \quad\) (next slide)
- restrict \(\mathcal{D}_{t_{1} \rightarrow t_{2}}\) to contain less non-program objects

Fruitful but complex research topic. . .

\section*{Full abstraction}

Example: the parallel or function por
\(\operatorname{por}(a)(b) \stackrel{\text { def }}{=} \begin{cases}\text { true } & \text { if } a=\text { true } \vee b=\text { true } \\ \text { false } & \text { if } a=\text { false } \wedge b=\text { false } \\ \perp & \text { otherwise }\end{cases}\)
por can observe \(a\) and \(b\) concurrently, and return as soon as one returns true compare with sequential or, where \(\forall b\) : or \((\perp)(b)=\perp\)

We have the following non-obvious result:
- por cannot be defined in PCF (por is a parallel construct, PCF is a sequential language)
- PCF + por is fully abstract (see [Ong95], [Winskel97] for references on the subject)

\section*{Recursive domain equations}

\section*{Untyped higher order language}

\section*{\(\lambda\)-calculus (with arithmetic)}
term \begin{tabular}{llr}
\(::=\) & \(X\) & (variable \(X \in \mathbb{V}\) ) \\
& \(C\) & (constants) \\
\(\boldsymbol{\lambda X . t e r m}\) & (abstraction) \\
term term & (application) \\
\(\Omega\) & (failure)
\end{tabular}
- we can write truly polymorphic functions: e.g., \(\lambda X . X\) (in PCF we would have to choose a type: int \(\rightarrow\) int or bool \(\rightarrow\) bool or (int \(\rightarrow\) int) \(\rightarrow\) (int \(\rightarrow\) int) or ...)
- no need for a recursion combinator \(\mathbf{Y}\) (we can define \(\mathbf{Y} \stackrel{\text { def }}{=} \lambda F \cdot(\lambda X . F(X X))(\lambda X . F(X X)\) ), not typable in PCF)
- operational semantics based on reduction, similarly to PCF
- denotational semantics also similar to PCF, but. . .

\section*{Domain equations}

How to choose the domain of denotations \(T \llbracket m \rrbracket\) ?
- we need a unique domain \(\mathcal{D}\) for all terms (no type information to help us)
- \(\lambda X . X\) is a function
\(\Longrightarrow\) it should have denotation in \((\mathcal{X} \rightarrow \mathcal{Y})_{\perp}\) for some \(\mathcal{X}, \mathcal{Y} \subseteq \mathcal{D}\)
- \(\lambda X . X\) is polymorphic; it accepts any term as argument \(\Longrightarrow \mathcal{D} \subseteq \mathcal{X}, \mathcal{Y}\)

We have a domain equation to solve:
\[
\mathcal{D} \simeq(\mathbb{Z} \cup \mathbb{B} \cup(\mathcal{D} \rightarrow \mathcal{D}))_{\perp}
\]

Problem: no solution in set theory
( \(\mathcal{D} \rightarrow \mathcal{D}\) has a strictly larger cardinal than \(\mathcal{D}\) )

\section*{Inverse limits}

Given a fixpoint domain equation \(\mathcal{D}=F(\mathcal{D})\) we construct an infinite sequence of domains:
- \(\mathcal{D}_{0} \stackrel{\text { def }}{=}\{\perp\}\)
- \(\mathcal{D}_{i+1} \stackrel{\text { def }}{=} F\left(\mathcal{D}_{i}\right)\)

We require the existence of continuous retractions:
- \(\gamma_{i}: \mathcal{D}_{i} \xrightarrow{c} \mathcal{D}_{i+1}\)
- \(\alpha_{i}: \mathcal{D}_{i+1} \xrightarrow{c} \mathcal{D}_{i}\) (projection)
- \(\alpha_{i} \circ \gamma_{i}=\lambda x \cdot x\) \(\left(\mathcal{D}_{i} \simeq\right.\) a subset of \(\left.\mathcal{D}_{i+1}\right)\)
- \(\gamma_{i} \circ \alpha_{i} \sqsubseteq \lambda x . x\)
( \(\mathcal{D}_{i+1}\) can be approximated by \(\mathcal{D}_{i}\) )
This is denoted: \(\mathcal{D}_{0} \underset{\gamma_{0}}{\stackrel{\alpha_{0}}{\leftrightarrows}} \mathcal{D}_{1} \stackrel{\alpha_{1}}{\stackrel{\gamma_{1}}{\leftrightarrows}} \cdots\)
Inverse limit: \(\mathcal{D}_{\infty} \stackrel{\text { def }}{=}\left\{\left(a_{0}, a_{1}, \ldots\right) \mid \forall i: a_{i} \in \mathcal{D}_{i} \wedge a_{i}=\alpha\left(a_{i+1}\right)\right\}\)
(infinite sequences of elements; able to represent an element of any \(\mathcal{D}_{i}\) )

\section*{Inverse limits}

Inverse limits: \(\mathcal{D}_{\infty} \stackrel{\text { def }}{=}\left\{\left(a_{0}, a_{1}, \ldots\right) \mid \forall i: a_{i} \in \mathcal{D}_{i} \wedge a_{i}=\alpha\left(a_{i+1}\right)\right\}\)

\section*{Theorem}
\(\mathcal{D}_{\infty}\) is a cpo and \(F\left(\mathcal{D}_{\infty}\right)\) is isomorphic to \(\mathcal{D}_{\infty}\)

\section*{Application to \(\lambda\)-calculus}

If we restrict ourself to continuous functions
retractions can be computed for \(F(\mathcal{D}) \stackrel{\text { def }}{=}(\mathbb{Z} \cup \mathbb{B} \cup(\mathcal{D} \xrightarrow{c} \mathcal{D}))_{\perp}\)
\(\left(\gamma_{i}(f) \stackrel{\text { def }}{=} \lambda x . f\right.\)
\(\alpha_{i}(x) \stackrel{\text { def }}{=} *\) if \(x \in \mathbb{Z} \cup \mathbb{B} \cup\{\perp\}\) and \(\alpha_{i}(f) \stackrel{\text { def }}{=} f(\perp)\) if \(\left.f \in \mathcal{D}_{i} \xrightarrow{c} \mathcal{D}_{i}\right)\)
\(\Longrightarrow\) we found our semantic domain!
(pioneered by [Scott-Strachey71], see [Abramsky-Jung94] for a reference)

\section*{Restrictions of function spaces}

The restriction to continuous functions seems merely technical but there are some valid justifications:
- all the denotations in IMP, NIMP, PCF were continuous (this appeared naturally, not as an a priori restriction)
- intuitively, computable functions should at least be monotonic
recall that \(\sqsubseteq\) is an information order
a function cannot give a more precise result with less information
e.g.: if \(f(a)=\perp\) for some \(a \neq \perp\), then \(f(\perp)=\perp\)
- continuity is also reasonable
given a problem on an infinite data set \(S\)
computers can only process finite parts \(S_{i}\) of \(S\)
continuity ensures that the solution of \(S\) is contained in that of all \(S_{i}\)
e.g.: if \(0 \sqsubseteq 1 \sqsubseteq \cdots \sqsubseteq \omega\) and \(\forall i<\omega\) : \(f(i)=0\), then \(f(\omega)\) should also be 0

\section*{Domain equations for data-types}

Solution domains of recursive equations can also give the semantics of a variety of inductive or polymorphic data-types

\section*{Examples:}
- integer lists:
\[
\mathcal{D}=(\{\text { empty }\} \cup(\mathbb{Z} \times \mathcal{D}))_{\perp}
\]
- pairs:
\[
\mathcal{D}=(\mathbb{Z} \cup(\mathcal{D} \times \mathcal{D}))_{\perp}
\]
(allows arbitrary nested pairs, and also contains trees and lists)
- records:
\[
\mathcal{D}=(\mathbb{Z} \cup(\mathbb{N} \rightarrow \mathcal{D}))_{\perp}
\]
(fields are named by integer position)
- sum types:
\[
\begin{aligned}
& \mathcal{D}=(\mathbb{Z} \cup(\{1\} \times \mathcal{D}) \cup(\{2\} \times \mathcal{D}))_{\perp} \\
& \text { (we "tag" each case of the sum with an integer) }
\end{aligned}
\]

\section*{Bibliography}

\section*{Courses and references on denotational semantics:}
[Benton96] P. N. Benton. Semantics of programming languages In University of Cambridge, 1996.
[Winskel97] G. Winskel. Lecture notes on denotational semantics. In University of Cambridge, 1997.
[Schmidt86] D. Schmidt. Denotational semantics. A methodology for language development. In Allyn and Bacon, 1986.
[Abramsky-Jung94] S. Abramsky and A. Jung. Domain theory. In Handbook of Logic in Computer Science, Clarendon Press, Oxford, 1994.

\section*{Bibliography}

\section*{Research articles and surveys:}
[Scott-Strachey71] D. Scott and C. Strachey. Toward a mathematical semantics for computer languages. In Oxford Programming Research Group Technical Monograph. PRG-6. 1971.
[Scott93] D. Scott. A type-theoretical alternative to ISWIM, CUCH, OWHY. In TCS, 121(1-2):411-440, 1993.
[Cousot02] P. Cousot. Constructive design of a hierarchy of semantics of a transition system by abstract interpretation. In TCS, 277(1-2):47-103, 2002.
[Ong95] C.-H. L. Ong. Correspondence between operational and denotational semantics: the full abstraction problem for PCF In Oxford University, 1995.```

