
Denotational semantics
Semantics and Application to Program Verification

Antoine Miné

École normale supérieure, Paris
year 2015–2016

Course 4
4 March 2016

Course 4 Denotational semantics Antoine Miné p. 1 / 58

Introduction

Operational semantics (state and trace) (last two weeks)

Defined as small execution steps, (transition relation)

over low-level internal configurations. (states)

Transitions are chained to define maximal traces.

Denotational semantics (today)

Direct functions from programs to mathematical objects, (denotations)

defined by induction on the program syntax, (compositional)

ignoring intermediate steps and execution details. (no state)

=⇒ Higher-level, more abstract, more modular.
Tries to decouple a program meaning from its execution.
Focus on the mathematical structures that represent programs.
(founded by Strachey and Scott in the 70s: [Scott-Strachey71])

“Assembly” semantics vs. “Functional programming” semantics.
often: semantics for practical verification vs. semantics for computer theorists

Course 4 Denotational semantics Antoine Miné p. 2 / 58

Two very different programs

Bubble sort in C
int swapped;

do {

swapped = 0;

for (int i=1; i<n; i++) {

if (a[i-1] > a[i]) {

swap(&a[i-1], &a[i]);

swapped = 1;

}

}

} while (swapped);

Quick sort in OCaml
let rec sort = function

| [] -> []

| a::rest ->

let lo, hi =

List.partition

(fun y -> y < x) rest

in

(sort lo) @ [x] @ (sort hi)

different languages (C / OCaml)

different algorithms (bubble sort / quick sort)

different programming principles (loop / recursion)

different data-types (array / list)

Can we give them the same semantics?
Course 4 Denotational semantics Antoine Miné p. 3 / 58

feret

Denotation worlds

imperative programs

effect of a program: mutate a memory state
natural denotation: input/output function
domain D ' memory → memory

challenge: build a whole program denotation

from denotations of atomic language constructs (modularity)

functional programs

effect of a program: return a value (without any side-effect)

model a program of type a -> b as a function in Da → Db

challenge: choose D to allow polymorphic or untyped languages

other paradigms: parallel, probabilistic, etc.

=⇒ very rich theory of mathematical structures
Scott domains, cartesian closed categories, coherent spaces, event structures,
game semantics, etc. We will not present them in this overview!

Course 4 Denotational semantics Antoine Miné p. 4 / 58

Course overview

Imperative programs
IMP: deterministic programs
NIMP: handling non-determinism
linking denotational and operational semantics

Higher-order programs
PCF : monomorphic typed programs
linking denotational and operational semantics: full abstraction
untyped λ−calculus: recursive domain equations

Practical session (room INFO 4)

program the denotational semantics
of a simple imperative (non-)deterministic language
(IMP, NIMP)

Course 4 Denotational semantics Antoine Miné p. 5 / 58

Deterministic imperative programs

Deterministic imperative programs

Course 4 Denotational semantics Antoine Miné p. 6 / 58

Deterministic imperative programs

A simple imperative language: IMP

IMP expressions

expr ::= X (variable)

| c (constant)

| � expr (unary operation)

| expr � expr (binary operation)

variables in a fixed set X ∈ V
constants I

def
= B ∪ Z:

booleans B
def
= { true, false }

integers Z

operations �:
integer operations: +, −, ×, /, <, ≤
boolean operations: ¬, ∧, ∨
polymorphic operations: =, 6=

Course 4 Denotational semantics Antoine Miné p. 7 / 58

Deterministic imperative programs

A simple imperative language: IMP

Statements

stat ::= skip (do nothing)

| X ← expr (assignment)

| stat; stat (sequence)

| if expr then stat else stat (conditional)

| while expr do stat (loop)

(inspired from the presentation in [Benton96])

Course 4 Denotational semantics Antoine Miné p. 8 / 58

Deterministic imperative programs

Expression semantics

EJ expr K : E ⇀ I

environments E def
= V→ I map variables in V to values in I

EJ expr K returns a value in I

⇀ denotes partial functions (as opposed to →)

necessary because some operations are undefined

1 + true, 1 ∧ 2 (type mismatch)

3/0 (invalid value)

defined by structural induction on abstract syntax trees
(next slide)

when we use the notation XJ y K , y is a syntactic object; X serves to distinguish
between different semantic functions with different signatures, often varying with the
kind of syntactic object y (expression, statement, etc.);
XJ y K z is the application of the function XJ y K to the object z

Course 4 Denotational semantics Antoine Miné p. 9 / 58

Deterministic imperative programs

Expression semantics

EJ expr K : E ⇀ I

EJ c K ρ def
= c ∈ I

EJ V K ρ def
= ρ(V) ∈ I

EJ−e K ρ def
= −v ∈ Z if v = EJ e K ρ ∈ Z

EJ¬e K ρ def
= ¬v ∈ B if v = EJ e K ρ ∈ B

EJ e1 + e2 K ρ def
= v1 + v2 ∈ Z if v1 = EJ e1 K ρ ∈ Z, v2 = EJ e2 K ρ ∈ Z

EJ e1 − e2 K ρ def
= v1 − v2 ∈ Z if v1 = EJ e1 K ρ ∈ Z, v2 = EJ e2 K ρ ∈ Z

EJ e1 × e2 K ρ def
= v1 × v2 ∈ Z if v1 = EJ e1 K ρ ∈ Z, v2 = EJ e2 K ρ ∈ Z

EJ e1/e2 K ρ def
= v1/v2 ∈ Z if v1 = EJ e1 K ρ ∈ Z, v2 = EJ e2 K ρ ∈ Z \ {0}

EJ e1 ∧ e2 K ρ def
= v1 ∧ v2 ∈ B if v1 = EJ e1 K ρ ∈ B, v2 = EJ e2 K ρ ∈ B

EJ e1 ∨ e2 K ρ def
= v1 ∨ v2 ∈ B if v1 = EJ e1 K ρ ∈ B, v2 = EJ e2 K ρ ∈ B

EJ e1 < e2 K ρ def
= v1 < v2 ∈ B if v1 = EJ e1 K ρ ∈ Z, v2 = EJ e2 K ρ ∈ Z

EJ e1 ≤ e2 K ρ def
= v1 ≤ v2 ∈ B if v1 = EJ e1 K ρ ∈ Z, v2 = EJ e2 K ρ ∈ Z

EJ e1 = e2 K ρ def
= v1 = v2 ∈ B if v1 = EJ e1 K ρ ∈ I, v2 = EJ e2 K ρ ∈ I

EJ e1 6= e2 K ρ def
= v1 6= v2 ∈ B if v1 = EJ e1 K ρ ∈ I, v2 = EJ e2 K ρ ∈ I

undefined otherwise

Course 4 Denotational semantics Antoine Miné p. 10 / 58

Deterministic imperative programs

Statement semantics

SJ stat K : E ⇀ E

maps an environment before the statement
to an environment after the statement

partial function due to

errors in expressions
non-termination

also defined by structural induction

Course 4 Denotational semantics Antoine Miné p. 11 / 58

Deterministic imperative programs

Statement semantics

SJ stat K : E ⇀ E

skip: do nothing

SJ skip K ρ def
= ρ

assignment: evaluate expression and mutate environment

SJX ← e K ρ def
= ρ[X 7→ v] if EJ e K ρ = v

sequence: function composition

SJ s1; s2 K
def
= SJ s2 K ◦ SJ s1 K

conditional

SJ if e then s1 else s2 K ρ
def
=

SJ s1 K ρ if EJ e K ρ = true

SJ s2 K ρ if EJ e K ρ = false

undefined otherwise

f [x 7→ y] denotes the function that maps x to y , and any z 6= x to f (z)

Course 4 Denotational semantics Antoine Miné p. 12 / 58

Deterministic imperative programs

Statement semantics: loops

How do we handle loops?

The semantics of loops must satisfy:

SJwhile e do s K ρ =
ρ if EJ e K ρ = false

SJwhile e do s K (SJ s K ρ) if EJ e K ρ = true

undefined otherwise

This is a recursive definition; we must prove that:

the equation has solution(s);

in case there are several solutions, there is a single “right” one;

=⇒ we use fixpoints of operators over partially ordered sets.

Course 4 Denotational semantics Antoine Miné p. 13 / 58

Deterministic imperative programs

Flat orders and partial functions

...−99 −1 0 1 99

Flat ordering (I⊥,v) on I:

I⊥
def
= I ∪ {⊥} (pointed set)

a v b
def⇐⇒ a = ⊥ ∨ a = b (partial order)

every chain is finite, and so has a lub t
=⇒ it is a pointed complete partial order (cpo)

⊥ denotes the value “undefined” (v is an information order)

Similarly for E⊥
def
= E ∪ {⊥}.

Note that (E ⇀ E) ' (E → E⊥)
=⇒ we will now use total functions only.

Course 4 Denotational semantics Antoine Miné p. 14 / 58

Deterministic imperative programs

Poset of continuous partial functions

Partial order structure on partial functions (E⊥
c→ E⊥, v̇)

E⊥ → E⊥ extends E → E⊥
domain = co-domain =⇒ allows composition ◦
f ∈ E → E⊥ extended with f (⊥)

def
= ⊥ (strictness)

=⇒ if SJ s K x is undefined, so is (SJ s ′ K ◦ SJ s K)x

such functions are monotonic and continuous
(a v b =⇒ f (a) v f (b) and f (tX) = t { f (x) | x ∈ X })

=⇒ we restrict E⊥ → E⊥ to continuous functions: E⊥
c→ E⊥

point-wise order v̇ on functions
f v̇ g

def⇐⇒ ∀x : f (x) v g(x)

E⊥
c→ E⊥ has a least element: ⊥̇ def

= λx .⊥

by point-wise lub ṫ of chains, it is also complete =⇒ a cpo
ṫ F = λx . t { f (x) | f ∈ F }

Course 4 Denotational semantics Antoine Miné p. 15 / 58

Deterministic imperative programs

Fixpoint semantics of loops

To solve the semantic equation, we use a fixpoint of a functional.

We use actually the least fixpoint. (most precise for the information order)

SJwhile e do s K def
= lfp F

where : F : (E⊥ → E⊥)→ (E⊥ → E⊥)

F (f)(ρ) =

ρ if EJ e K ρ = false

f (SJ s K ρ) if EJ e K ρ = true

⊥ otherwise

Theorem

lfp F is well-defined

remember our equation on SJwhile e do s K ?
it can be rewritten exactly as: SJwhile e do s K = F (SJwhile e do s K)

Course 4 Denotational semantics Antoine Miné p. 16 / 58

Deterministic imperative programs

Fixpoint semantics of loops (proof sketch)

Recall Kleene’s theorem:

Kleene’s theorem

A continuous function on a cpo has a least fixpoint

To use the theorem we prove that SJ stat K is continuous (and is well-defined)
by induction on the syntax of stat:

base cases: SJ skip K and SJ X ← e K are continuous

SJ if e then s1 else s2 K : by induction hypothesis, as SJ s1 K and SJ s2 K are
continuous

SJ s1; s2 K : by induction hypotheses and because ◦ respects continuity

F is continuous in (E⊥
c→ E⊥)

c→ (E⊥
c→ E⊥) by induction hypotheses

=⇒ lfp F exists by Kleene’s theorem

moreover, lfp F is continuous (simple consequence of Kleene’s proof)
=⇒ SJwhile e do s K is continuous

Course 4 Denotational semantics Antoine Miné p. 17 / 58

Deterministic imperative programs

Join semantics of loops

Recall another fact about Kleene’s fixpoints: lfp F =
⊔̇

n∈NF n(⊥̇)

F 0(⊥̇) = ⊥̇ is completely undefined (no information)

F 1(⊥̇)(ρ) =

{
ρ if EJ e K ρ = false
⊥ otherwise

environment if the loop is never entered (partial information)

F 2(⊥̇)(ρ) =

 ρ if EJ e K ρ = false
SJ s K ρ else if EJ e K (SJ s K ρ) = false
⊥ otherwise

environment if the loop is iterated at most once

F n(⊥̇)(ρ)
environment if the loop is iterated at most n − 1 times⊔̇

n∈NF n(⊥̇)

environment when exiting the loop
whatever the number of iterations (total information)

Course 4 Denotational semantics Antoine Miné p. 18 / 58

Deterministic imperative programs

Error vs. non-termination

In our semantics SJ stat K ρ = ⊥ can mean:

either stat starting on input ρ loops for ever

or it stops prematurely with an error

Note : we could distinguish between the two cases by :

adding an error value Ω, distinct from ⊥
propagating it in the semantics, bypassing computations

(no further computation after an error)

Course 4 Denotational semantics Antoine Miné p. 19 / 58

Deterministic imperative programs

Summary

Rewriting the semantics using total functions on cpos with ⊥:

EJ expr K : E⊥
c→ I⊥

returns ⊥ for an error or if its argument is ⊥
SJ stat K : E⊥

c→ E⊥
SJ skip K ρ def

= ρ

SJ e1; e2 K
def
= SJ e2 K ◦ SJ e1 K

SJX ← e K ρ def
=

{
⊥ if EJ e K ρ = ⊥
ρ[X 7→ EJ e K ρ] otherwise

SJ if e then s1 else s2 K ρ
def
=

 SJ s1 K ρ if EJ e K ρ = true
SJ s2 K ρ if EJ e K ρ = false
⊥ otherwise

SJwhile e do s K def
= lfp F

where F (f)(ρ) =

 ρ if EJ e K ρ = false
f (SJ s K ρ) if EJ e K ρ = true
⊥ otherwise

Course 4 Denotational semantics Antoine Miné p. 20 / 58

Non-determinism

Non-determinism

Course 4 Denotational semantics Antoine Miné p. 21 / 58

Non-determinism

Why non-determinism?

It is useful to consider non-deterministic programs, to:

model partially unknown environments (user input)

abstract away unknown program parts (libraries)

abstract away too complex parts (rounding errors in floats)

handle a set of programs as a single one (parametric programs)

Kinds of non-determinism

data non-determinism: expr ::= random()

control non-determinism: stat ::= either s1 or s2

but we can write “either s1 or s2” as “if random() = 0 then s1 else s2”

Consequence on semantics and verification

we want to verify all the possible executions
=⇒ the semantics should express all the possible executions

Course 4 Denotational semantics Antoine Miné p. 22 / 58

Non-determinism

Modified language

We extend IMP to NIMP,
an imperative language with non-determinism.

NIMP language

expr ::= X (variable)

| c (constant)

| [c1, c2] (constant interval)

| � expr (unary operation)

| expr � expr (binary operation)

NIMP has the same statements as IMP

c1 ∈ Z ∪ {−∞}, c2 ∈ Z ∪ {+∞}
[c1, c2] means: return a fresh random value between c1 and c2 each time

the expression is evaluated

Question: is [0, 1] = [0, 1] true or false?

Course 4 Denotational semantics Antoine Miné p. 23 / 58

Non-determinism

Expression semantics

EJ expr K : E → P(I)

EJ V K ρ def
= {ρ(V)}

EJ c K ρ def
= {c}

EJ [c1, c2] K ρ def
= { c ∈ Z | c1 ≤ c ≤ c2 }

EJ−e K ρ def
= {−v | v ∈ EJ e K ρ ∩ Z }

EJ¬e K ρ def
= {¬v | v ∈ EJ e K ρ ∩ B }

EJ e1 + e2 K ρ def
= { v1 + v2 | v1 ∈ EJ e1 K ρ ∩ Z, v2 ∈ EJ e2 K ρ ∩ Z }

EJ e1/e2 K ρ def
= { v1/v2 | v1 ∈ EJ e1 K ρ ∩ Z, v2 ∈ EJ e2 K ρ ∩ Z \ {0} }

EJ e1 < e2 K ρ def
= { true | ∃v1 ∈ EJ e1 K ρ, v2 ∈ EJ e2 K ρ: v1 ∈ Z, v2 ∈ Z, v1 < v2 } ∪

{ false | ∃v1 ∈ EJ e1 K ρ, v2 ∈ EJ e2 K ρ: v1 ∈ Z, v2 ∈ Z, v1 ≥ v2 }
. . .

we output a set of values, to account for non-determinism

we can have EJ e K ρ = ∅ due to errors
(no need for a special Ω nor ⊥ element)

Course 4 Denotational semantics Antoine Miné p. 24 / 58

Non-determinism

Statement semantic domain

Semantic domain:

a statement can output a set of environments
=⇒ use E → P(E)

to allow composition, extend it to P(E)→ P(E)

non-termination and errors can be modeled by ∅
(no need for a special Ω nor ⊥ element)

Course 4 Denotational semantics Antoine Miné p. 25 / 58

Non-determinism

Statement semantics

SJ stat K : P(E)→ P(E)

SJ skip KR
def
= R

SJ s1; s2 K
def
= SJ s2 K ◦ SJ s1 K

SJX ← e KR
def
= { ρ[X 7→ v] | ρ ∈ R, v ∈ EJ e K ρ }

pick an environment ρ
pick an expression value v in EJ e K ρ
generate an updated environment ρ[X 7→ v]

SJ if e then s1 else s2 KR
def
=

SJ s1 K { ρ ∈ R | true ∈ EJ e K ρ } ∪
SJ s2 K { ρ ∈ R | false ∈ EJ e K ρ }
filter environments according to the value of e
execute both branch independently
join them with ∪

Course 4 Denotational semantics Antoine Miné p. 26 / 58

Non-determinism

Statement semantics

SJwhile e do s KR
def
= { ρ ∈ lfp F | false ∈ EJ e K ρ }

where F (X)
def
= R ∪ SJ s K { ρ ∈ X | true ∈ EJ e K ρ }

Justification: lfp F exists

(P(E),⊆,∪,∩, ∅, E) forms a complete lattice

all semantic functions and F are monotonic and continuous
in fact, they are strict complete join morphisms

SJ s K (∪i∈∆Xi) = ∪i∈∆ SJ s K Xi and SJ s K ∅ = ∅
which we write as SJ s K ∈ P(E)

∪→P(E)

it is really the image function of a function in E → P(E)

SJ s K X = ∪ { SJ s K {x} | x ∈ X }

we can apply both Kleene’s and Tarksi’s fixpoint theorems

Course 4 Denotational semantics Antoine Miné p. 27 / 58

Non-determinism

Join semantics of loops

SJwhile e do s KR
def
= { ρ ∈ lfp F | false ∈ EJ e K ρ }

where F (X)
def
= R ∪ SJ s K { ρ ∈ X | true ∈ EJ e K ρ }

(F applies a loop iteration to X and adds back the environments R before the loop)

Recall that lfp F = ∪n∈N F n(∅)
F 0(∅) = ∅

F 1(∅) = R
environments before entering the loop

F 2(∅) = R ∪ SJ s K { ρ ∈ R | true ∈ EJ e K ρ }
environments after zero or one loop iteration

F n(∅) : environments after at most n − 1 loop iterations
(just before testing the condition to determine if we should iterate a n−th time)

∪n∈N F n(∅): loop invariant

Course 4 Denotational semantics Antoine Miné p. 28 / 58

Non-determinism

“Angelic” non-determinism and termination

If stat is deterministic (no [c1, c2] in expressions)

the semantics is equivalent to our semantics on E⊥
c→ E⊥

Justification: ({E ⊆ E | |E | ≤ 1 },⊆,∪, ∅) is isomorphic to (E⊥,v,t,⊥)

In general, we can have several outputs for SJ stat K {ρ} ⊆ E ∪ {Ω}:

∅: the program never terminates at all

{Ω}: the program never terminates correctly

R ⊆ E \ {Ω}: when the program terminates, it terminates correctly,
in an environment in R

=⇒ we cannot express that a program always terminates!

This is called the “Angelic” semantics, useful for partial correctness.

Course 4 Denotational semantics Antoine Miné p. 29 / 58

Non-determinism

Note on non-determinism and termination

Other (more complex) ways to mix non-termination and
non-determinism exist

Based on distinguishing ∅ and ⊥, and on different order relations v

{0}

∅

{1}

{0, 1}

{1,⊥}

{1}

{0, 1}

∅

{0,⊥}

{0}

{0, 1,⊥}

{⊥}

{1,⊥}

{1}

{0, 1}

{0,⊥}

{0}

{0, 1,⊥}

{⊥}

powerset order mixed order Egli-Milner order
angelic semantics natural semantics natural semantics

(this is a complex subject, we will say no more)

Course 4 Denotational semantics Antoine Miné p. 30 / 58

Link between operational and denotational semantics

Link between operational and denotational
semantics

Course 4 Denotational semantics Antoine Miné p. 31 / 58

Link between operational and denotational semantics

Motivation

Are the operational and denotational semantics
consistent with each other?

Note that:

systems are actually described operationally
(previous courses)

the denotational semantics is a more abstract representation
(more suitable for some reasoning on the system)

=⇒ the denotational semantics must be proven faithful
(in some sense) to the operational model to be of any use

Course 4 Denotational semantics Antoine Miné p. 32 / 58

Link between operational and denotational semantics

Transition systems for our non-deterministic language

Labelled syntax

`stat` ::= `skip`

| `X ← expr `

| `if expr then `stat else `stat`

| `while `expr do `stat`

| `stat; `stat`

` ∈ L: control labels

statements are decorated with unique control labels ` ∈ L
program configurations in Σ

def
= L × E

(lower-level than E: we must track program locations)

transition relation τ ⊆ Σ× Σ
models atomic execution steps

Course 4 Denotational semantics Antoine Miné p. 33 / 58

Link between operational and denotational semantics

Transition systems for our language

τ is defined by induction on the syntax of statements
(σ, σ′) ∈ τ is denoted as σ → σ′

τ [`1skip`2]
def
= { (`1, ρ)→ (`2, ρ) | ρ ∈ E }

τ [`1X ← e`2]
def
= { (`1, ρ)→ (`2, ρ[X 7→ v]) | ρ ∈ E, v ∈ EJ e K ρ }

τ [`1if e then `2s1 else `3s2
`4]

def
=

{ (`1, ρ)→ (`2, ρ) | ρ ∈ E, true ∈ EJ e K ρ } ∪
{ (`1, ρ)→ (`3, ρ) | ρ ∈ E, false ∈ EJ e K ρ } ∪
τ [`2s1

`4] ∪ τ [`3s2
`4]

τ [`1while `2e do `3s`4]
def
=

{ (`1, ρ)→ (`2, ρ) | ρ ∈ E } ∪
{ (`2, ρ)→ (`3, ρ) | ρ ∈ E, true ∈ EJ e K ρ } ∪
{ (`2, ρ)→ (`4, ρ) | ρ ∈ E, false ∈ EJ e K ρ } ∪ τ [`3s`2]

τ [`1s1; `2s2
`3]

def
= τ [`1s1

`2] ∪ τ [`2s2
`3]

Defines the small-step semantics of a statement

(the semantics of expressions is still in denotational form)

Course 4 Denotational semantics Antoine Miné p. 34 / 58

Link between operational and denotational semantics

Special states

Given a labelled statement `e s`x and its transition system,
we define:

initial states: I
def
= { (`e , ρ) | ρ ∈ E }

note that σ → σ′ =⇒ σ′ /∈ I

blocking states: B
def
= {σ ∈ Σ | ∀σ′: ∈ Σ, σ 6→ σ′ }

correct termination: OK
def
= { (`x , ρ) | ρ ∈ E }

note that OK ⊆ B

error: ERR
def
= B ∩ { (`, ρ) | ` 6= `x , ρ ∈ E }

B = ERR ∪ OK

ERR ∩ OK = ∅

Course 4 Denotational semantics Antoine Miné p. 35 / 58

Link between operational and denotational semantics

Reminder: maximal trace semantics

Trace: in Σ∞ (finite or infinite sequence of states)

starting in an initial state I

following transitions →
can only end in a blocking state B (traces are maximal)

i.e.: tJ s K = tJ s K ∗ ∪ tJ s K ω where

finite traces:

tJ s K ∗ def
= { (σ0, . . . , σn) | n ≥ 0, σ0 ∈ I , σn ∈ B,∀i < n:σi → σi+1 }

infinite traces:

tJ s K ω def
= { (σ0, . . .) |σ0 ∈ I ,∀i ∈ N:σi → σi+1 }

Course 4 Denotational semantics Antoine Miné p. 36 / 58

Link between operational and denotational semantics

From traces to big-step semantics

Big-step semantics: abstraction of traces
only remembers the input-output relations

many variants exist:

“angelic” semantics, in P(Σ× Σ):
AJ s K def

= { (σ, σ′) | ∃(σ0, . . . , σn) ∈ tJ s K ∗:σ = σ0, σ
′ = σn }

(only give information on the terminating behaviors;
can only prove partial correctness)

natural semantics, in P(Σ× Σ⊥):
NJ s K def

= AJ s K ∪ { (σ,⊥) | ∃(σ0, . . .) ∈ tJ s K ω:σ = σ0 }
(models the terminating and non-terminating behaviors;
can prove total correctness)

Exercise: compute the semantics of “whileX > 0 doX ← X − [0, 1]”

Course 4 Denotational semantics Antoine Miné p. 37 / 58

Link between operational and denotational semantics

From big-step to denotational semantics

The angelic denotational and big-step semantics are isomorphic
(isomorphism between relations and strict complete join morphisms)

SJ s K = α(AJ s K) where

α(X)
def
= λR.{ ρ′ | ρ ∈ R, ((`e , ρ), (`x , ρ′)) ∈ X } (image of a relation)

α−1(Y) = { ((`e , ρ), (`x , ρ′)) | ρ ∈ E, ρ′ ∈ Y ({ρ}) }

Proof idea: by induction on the syntax of s

=⇒ our operational and denotational semantics match

Also, the denotational semantics is an abstraction of the natural semantics

(it forgets about infinite computations)

Thesis

All semantics can be compared for equivalence or abstraction

this can be made formal in the abstract interpretation theory

(see [Cousot02])

Course 4 Denotational semantics Antoine Miné p. 38 / 58

Link between operational and denotational semantics

Semantic diagram

traces

transition system

(small step)

statement

natural

big stepdenotational

denotational

world world

operational

τ [s]

AJ s KSJ s K

tJ s K

NJ s K

α

Course 4 Denotational semantics Antoine Miné p. 39 / 58

Link between operational and denotational semantics

Fixpoint formulation

Recall that traces can be expressed as fixpoints:

tJ s K ∗ = (lfp F) ∩ (I Σ∞) (∩(I Σ∞) restricts to traces starting in I)

where F (X)
def
= B ∪ { (σ, σ0, . . . , σn) |σ → σ0 ∧ (σ0, . . . , σn) ∈ X }

tJ s K ω = (gfp F) ∩ (I Σ∞)

where F (X)
def
= { (σ, σ0, . . .) |σ → σ0 ∧ (σ0, . . .) ∈ X }

This also holds for the angelic denotational semantics:

SJ s K = α(lfp F) (α converts relations to functions)

where F (X)
def
= (B × B) ∪ { (σ, σ′′) | ∃σ′:σ → σ′ ∧ (σ′, σ′′) ∈ X }

and many others: natural, denotational, big-step, denotational,. . .

Thesis

All semantics can be expressed through fixpoints

(again [Cousot02])

Course 4 Denotational semantics Antoine Miné p. 40 / 58

Higher-order programs

Higher-order programs

Course 4 Denotational semantics Antoine Miné p. 41 / 58

Higher-order programs

Monomorphic typed higher order language

PCF language (introduced by Scott in 1969)

type ::= int (integers)

| bool (booleans)

| type → type (functions)

term ::= X (variable X ∈ V)

| c (constant)

| λX type .term (abstraction)

| term term (application)

| Ytype term (recursion)

| Ωtype (failure)

PCF (programming computable functions) is a λ−calculus with:

a monomorphic type system (unlike ML)

explicit type annotations X type , Ytype , Ωtype (unlike ML)

an explicit recursion combiner Y (unlike untyped λ−calculus)

constants, including Z, B and a few built-in functions
(arithmetic and comparisons in Z, if-then-else, etc.)

Course 4 Denotational semantics Antoine Miné p. 42 / 58

Higher-order programs

Semantic domains

What should be the domain of TJ term K ?

Difficulty: term contains heterogeneous objects: constants,

functions, second order functions, etc.

Solution: use the type information

each term m can be given a type typ(m)
use one semantic domain Dt per type t

then TJm K : E → Dtyp(m) where E def
= V→ (∪t∈type Dt)

Domain definition by induction on the syntax of types

Dint
def
= Z⊥

Dbool
def
= B⊥

Dt1→t2

def
= (Dt1

c→ Dt2)⊥

Course 4 Denotational semantics Antoine Miné p. 43 / 58

Higher-order programs

Order on semantic domains

Order: all domains are cpos

Dint
def
= Z⊥, Dbool

def
= B⊥ use a flat ordering

Dt1→t2

def
= (Dt1

c→ Dt2)⊥

with order f v g ⇐⇒ f = ⊥ ∨ (f , g 6= ⊥ ∧ ∀x : f (x) v g(x))

Dt1

c→ Dt2 is ordered point-wise

each domain has its fresh minimal ⊥ element

(to distinguish Ωint→int from λX int.Ωint)

we restrict → to continuous functions
(to be able to take fixpoints)

(see [Scott93])

Course 4 Denotational semantics Antoine Miné p. 44 / 58

Higher-order programs

Denotational semantics

Environments: E def
= V→ (∪t∈type Dt)

Semantics: TJm K : E → Dtyp(m)

TJX K ρ def
= ρ(X)

TJ c K ρ def
= c

TJλX t .m K ρ def
= λx .TJm K (ρ[X 7→ x])

TJm1 m2 K ρ
def
= (TJm1 K ρ)(TJm2 K ρ)

TJYt m K ρ def
= lfp (TJm K ρ)

TJΩt K ρ def
= ⊥t

program functions λ are mapped to mathematical functions λ

program recursion Y is mapped to fixpoints lfp

errors and non-termination are mapped to (typed) ⊥
we should prove that TJ m K is indeed continuous (by induction) so that lfp
exists, and also that TJ m1 K is indeed a function (by soundness of typing)

Course 4 Denotational semantics Antoine Miné p. 45 / 58

Higher-order programs

Operational semantics

Operational semantics: based on the λ−calculus

states are terms: Σ
def
= term

transitions correspond to reductions:

(λX t .m1) m2 → m1[X 7→ m2] (λ−reduction)

Ωt → Ωt (failure)

Yt m→ m (Yt m) (iteration)

plus c1 c2 → (c1 + c2) (arithmetic)

if true m1 m2 → m1 (if-then-else)

if false m1 m2 → m2 (if-then-else)

m1 → m′1
m1 m2 → m′1 m2

(context rule)

. . .

big-step semantics m ⇓: maximal reductions

m ⇓ = m′
def⇐⇒ m→∗ m′∧ 6 ∃m′′: m′ → m′′

(PCF is deterministic)

Course 4 Denotational semantics Antoine Miné p. 46 / 58

Higher-order programs

Links between operational and denotational semantics

How do we check that operational and denotational semantics match?

check that they have the same view of “semantically equal programs”

denotational way: we can use TJm1 K = TJm2 K

we need an operational way to compare functions
comparing the syntax is too fine grained,

Example: (λX int.0) 6= (λX int.minus 1 1), but they have the same denotation

Observational equivalence: observe terms in all contexts

contexts c: terms with holes �
c[m] term obtained by substituting m in hole

ground is the set of terms of type int or bool

term equivalence ≈:
m1 ≈ m2

def⇐⇒ (∀c: c[m1] ⇓ = c[m2] ⇓ when c[m1] ∈ ground)

(don’t look at a function’s syntax, force its full evaluation and look at the value result)

Course 4 Denotational semantics Antoine Miné p. 47 / 58

Higher-order programs

Full abstraction

Full abstraction: ∀m1,m2: m1 ≈ m2 ⇐⇒ TJm1 K = TJm2 K

Unexpected result: for PCF, ⇐ holds (adequacy), but not ⇒!

(full abstraction concept introduced by Milner in 1975, proof by Plotkin 1977)

Compare with: IMP, NIMP are fully abstract

∀s1, s2 ∈ stat: SJ s1 K = SJ s2 K ⇐⇒ ∀c: AJ c[s1] K = AJ c[s2] K

Intuitive explanation:

Domains such as Dt1→t2 contain many functions, most of them do not correspond to
any program (this is expected: many functions are not computable).

The problem is that, if m1,m2 have the form λX t1→t2 .m, TJ m1 K = TJ m2 K imposes
TJ m1 K f = TJ m2 K f for all f ∈ Dt1→t2 , including many f that are not computable.

It is actually possible to construct m1, m2 where TJ m1 K f 6= TJ m2 K f only for some
non-program functions f , so that m1 ≈ m2 actually holds

Two solutions come to mind:

enrich the language to express more functions in Dt1→t2 (next slide)

restrict Dt1→t2 to contain less non-program objects

Fruitful but complex research topic. . .

Course 4 Denotational semantics Antoine Miné p. 48 / 58

Higher-order programs

Full abstraction

Example: the parallel or function por

por(a)(b)
def
=

true if a = true ∨ b = true

false if a = false ∧ b = false

⊥ otherwise

por can observe a and b concurrently, and return as soon as one returns true

compare with sequential or , where ∀b: or(⊥)(b) = ⊥

We have the following non-obvious result:

por cannot be defined in PCF

(por is a parallel construct, PCF is a sequential language)

PCF+por is fully abstract

(see [Ong95], [Winskel97] for references on the subject)

Course 4 Denotational semantics Antoine Miné p. 49 / 58

Recursive domain equations

Recursive domain equations

Course 4 Denotational semantics Antoine Miné p. 50 / 58

Recursive domain equations

Untyped higher order language

λ−calculus (with arithmetic)

term ::= X (variable X ∈ V)

| c (constants)

| λX .term (abstraction)

| term term (application)

| Ω (failure)

we can write truly polymorphic functions: e.g., λX .X
(in PCF we would have to choose a type: int→ int or bool→ bool or
(int→ int)→ (int→ int) or . . .)

no need for a recursion combinator Y
(we can define Y

def
= λF .(λX .F (X X))(λX .F (X X)), not typable in PCF)

operational semantics based on reduction, similarly to PCF

denotational semantics also similar to PCF, but. . .

Course 4 Denotational semantics Antoine Miné p. 51 / 58

Recursive domain equations

Domain equations

How to choose the domain of denotations TJm K ?

we need a unique domain D for all terms
(no type information to help us)

λX .X is a function
=⇒ it should have denotation in (X → Y)⊥ for some X ,Y ⊆ D

λX .X is polymorphic; it accepts any term as argument
=⇒ D ⊆ X ,Y

We have a domain equation to solve:

D ' (Z ∪ B ∪ (D → D))⊥

Problem: no solution in set theory
(D → D has a strictly larger cardinal than D)

Course 4 Denotational semantics Antoine Miné p. 52 / 58

Recursive domain equations

Inverse limits

Given a fixpoint domain equation D = F (D)
we construct an infinite sequence of domains:

D0
def
= {⊥}

Di+1
def
= F (Di)

We require the existence of continuous retractions:

γi : Di
c→ Di+1 (embedding)

αi : Di+1
c→ Di (projection)

αi ◦ γi = λx .x (Di ' a subset of Di+1)

γi ◦ αi v λx .x (Di+1 can be approximated by Di)

This is denoted: D0 −−−→←−−−
γ0

α0 D1 −−−→←−−−
γ1

α1 · · ·

Inverse limit: D∞
def
= { (a0, a1, . . .) | ∀i : ai ∈ Di ∧ ai = α(ai+1) }

(infinite sequences of elements; able to represent an element of any Di)

Course 4 Denotational semantics Antoine Miné p. 53 / 58

Recursive domain equations

Inverse limits

Inverse limits: D∞
def
= { (a0, a1, . . .) | ∀i : ai ∈ Di ∧ ai = α(ai+1) }

Theorem

D∞ is a cpo and F (D∞) is isomorphic to D∞

Application to λ−calculus

If we restrict ourself to continuous functions
retractions can be computed for F (D)

def
= (Z ∪ B ∪ (D c→ D))⊥

(γi (f)
def
= λx .f

αi (x)
def
= x if x ∈ Z ∪ B ∪ {⊥} and αi (f)

def
= f (⊥) if f ∈ Di

c→ Di)

=⇒ we found our semantic domain!

(pioneered by [Scott-Strachey71], see [Abramsky-Jung94] for a reference)

Course 4 Denotational semantics Antoine Miné p. 54 / 58

feret

Recursive domain equations

Restrictions of function spaces

The restriction to continuous functions seems merely technical
but there are some valid justifications:

all the denotations in IMP, NIMP, PCF were continuous
(this appeared naturally, not as an a priori restriction)

intuitively, computable functions should at least be monotonic
recall that v is an information order

a function cannot give a more precise result with less information

e.g.: if f (a) = ⊥ for some a 6= ⊥, then f (⊥) = ⊥

continuity is also reasonable
given a problem on an infinite data set S

computers can only process finite parts Si of S

continuity ensures that the solution of S is contained in that of all Si

e.g.: if 0 v 1 v · · · v ω and ∀i < ω: f (i) = 0, then f (ω) should also be 0

Course 4 Denotational semantics Antoine Miné p. 55 / 58

Recursive domain equations

Domain equations for data-types

Solution domains of recursive equations can also give the semantics of a
variety of inductive or polymorphic data-types

Examples:

integer lists:
D = ({empty} ∪ (Z×D))⊥

pairs:
D = (Z ∪ (D ×D))⊥
(allows arbitrary nested pairs, and also contains trees and lists)

records:
D = (Z ∪ (N→ D))⊥
(fields are named by integer position)

sum types:
D = (Z ∪ ({1} × D) ∪ ({2} × D))⊥
(we “tag” each case of the sum with an integer)

Course 4 Denotational semantics Antoine Miné p. 56 / 58

Recursive domain equations

Bibliography

Courses and references on denotational semantics:

[Benton96] P. N. Benton. Semantics of programming languages In University of
Cambridge, 1996.

[Winskel97] G. Winskel. Lecture notes on denotational semantics. In University of
Cambridge, 1997.

[Schmidt86] D. Schmidt. Denotational semantics. A methodology for language
development. In Allyn and Bacon, 1986.

[Abramsky-Jung94] S. Abramsky and A. Jung. Domain theory. In Handbook of Logic
in Computer Science, Clarendon Press, Oxford, 1994.

Course 4 Denotational semantics Antoine Miné p. 57 / 58

Recursive domain equations

Bibliography

Research articles and surveys:

[Scott-Strachey71] D. Scott and C. Strachey. Toward a mathematical semantics for
computer languages. In Oxford Programming Research Group Technical Monograph.
PRG-6. 1971.

[Scott93] D. Scott. A type-theoretical alternative to ISWIM, CUCH, OWHY. In TCS,
121(1–2):411–440, 1993.

[Cousot02] P. Cousot. Constructive design of a hierarchy of semantics of a transition
system by abstract interpretation. In TCS, 277(1–2):47–103, 2002.

[Ong95] C.-H. L. Ong. Correspondence between operational and denotational
semantics: the full abstraction problem for PCF In Oxford University, 1995.

Course 4 Denotational semantics Antoine Miné p. 58 / 58

	Deterministic imperative programs
	Non-determinism
	Link between operational and denotational semantics
	Higher-order programs
	Recursive domain equations

