The Coq Proof Assistant

Semantics and applications to verification

Xavier Rival

École Normale Supérieure
March, 2nd. 2018

What is a proof assistant?

A tool to formalize and verify proofs

The key word is assistant: it assists the user in

- defining the proof goals formally;
- setting up the structure of the proofs;
- making the proof steps;
- checking the overall consistency of the proof, at the end.

Some steps are more assisted than others:

- formalization is done with respect to the knowledge of the user, it is error prone
- key structural arguments (induction hypotheses and such) are very hard to get right in general
- checking a series of proof steps is easier to mechanize...

Purpose of Coq and principle

Coq is a programming language

- We can define data-types and write programs in Coq
- Language similar to a pure functional language
- Very expressive type system (more on this later)
- Programs can be ran inside Coq
- Programming language of the year ACM Award in 2014...

Coq is a proof assistant

- It allows to express theorems and proofs
- It can verify a proof
- It can also infer some proofs or proof steps
- Proof search is usually mostly manual and takes most of the time

Main proof assistants

Coq: the topic of this lecture
Isabelle / HOL: a higher order logic framework

- syntax is closer to the logics
- proof term underneath...

ACL2: A Computational Logic for Applicative Common Lisp

- a framework for automated reasoning
- based on functional common lisp

PVS: Prototype Verification System

- kernel extends Church types
- less emphasis on the notion of proof term, more emphasis on automation

Overall workflow

(1) Define the objects properties need be proved about Data-structures, base types, programs written in the Coq (or vernacular) language
(2) Write and prove intermediate lemmas

- a theorem is defined by a formula in the Coq language.
- a proof requires a sequence of tactics applications tactics are described as part of a separate language.
- at the end of the proof, a proof term is constructed and verified.
(3) Write and prove the main theorems
(9) If needed, extract programs

Two languages: one for definitions/theorems/proofs, one for tactics

In Coq, everything is a term

- The core of Coq is defined by a language of terms
- Commands are used in order to manipulate terms

Examples of terms:

- base values: 0,1 , true...
- types: nat, bool, but also Prop...
- functions: fun (n: nat) => n + 1
- function applications: (fun (n: nat) $=>n+1$) 8
- logical formulas:

$$
\begin{aligned}
& \text { exists } p \text { : nat, } 8=2 * p \text {, } \\
& \text { forall } a \text { : Prop, } a / \backslash b \text { a }
\end{aligned}
$$

- complex functions (more on this one later):

```
fun (a b : Prop) (H : a /\ b) =>
    and_ind (fun (HO : a) (_ : b) => HO) H
```


In Coq, every term has a type

- As observed, types are terms
- Every term also has a type, denoted by term: type
- 0: nat
- nat: Set
- Set: Type
- Type: Type (caveat: not quite the same instance)
- (fun (n: nat) => n + 1): nat -> nat
- more complex types get interesting:

```
fun (a b : Prop) (H : a /\ b) =>
    and_ind (fun (HO : a) (_ : b) => HO) H
    : forall a b: Prop, a /\ b -> a
```


Curry-Howard correspondence

The core principle of Coq

- A proof of P can be viewed a term of type P
- A proof of $P \Longrightarrow Q$ can be viewed a function transforming a proof of P into a proof of Q, hence, a function of type $P \rightarrow Q \ldots$

Similarity between typing rules and proof rules:

$$
\begin{array}{cc}
\begin{array}{r}
\Gamma, x: P \vdash u: Q \\
\Gamma \vdash \lambda x \cdot u: P \longrightarrow Q \\
\text { fun }
\end{array} & \frac{\Gamma, P \vdash Q}{\Gamma \vdash P \Longrightarrow Q} \text { implic } \\
\frac{\Gamma \vdash u: P \longrightarrow Q\ulcorner\vdash: P}{\Gamma \vdash u v: Q} \text { app } & \frac{\Gamma \vdash P \Longrightarrow Q}{\Gamma \vdash P} m p
\end{array}
$$

Correspondance:

program	proof
type	theorem

Searching a proof of P
\equiv searching u of type P

Defining a term

Two ways:
(1) Define it fully, with its type and its definition

Definition zero: nat := 0 .
Definition incr (n : nat): nat := $\mathrm{n}+1$.
(2) Provide only its type and search for a proof of it

Lemma lzero: nat. exact 0 .
Save.
Definition lincr: forall n: nat, nat.
intro. exact ($n+1$).
Save.

- Definition: Definition name u : t := def.
- Proof: Definition name u : t. or Lemma name u : t.

Inductive definition

- A very powerful mechanism
- In Coq, almost everything is actually an inductive definition ... examples: integers, booleans, equality, conjunction...
- Syntax:

```
Inductive tree : Set :=
    | leaf: tree
    | node: tree -> tree -> tree.
```

- Induction principles automatically provided by Coq, and to use in induction proofs:

```
tree_ind: forall P : tree -> Prop,
    P leaf
    -> (forall t : tree, P t -> forall t0 : tree, P t0
    -> P (node t t0))
    -> forall t : tree, P t
```


Recursive functions

- Very natural to work with inductive definitions
- Caveat: must provably terminate this is usually checked with a strict sub-term condition
- Syntax:

```
Fixpoint size (t: tree) : nat :=
match t with
    | leaf => 0
    | node t0 t1 \(=>1+(\) size t 0\()+(\) size t 1\()\)
```

end.

- III formed definition, rejected by the system (termination issue): Fixpoint f (t: tree) : nat := match t with
| leaf | node leaf leaf $=>0$
| node _ _ => f (node leaf leaf)
end.

Proving a term

View in proof mode:

```
a : Prop
b : Prop
H : a /\ b
HO : a
H1 : b
```

a

- above the bar: current assumptions
- below the bar: current subgoal (there may be several goals)
- at the end: displays No more subgoals.
- command Save. stores the term.

Progression towards a finished proof:

- based on commands called tactics
- in the background, Coq constructs the proof term

A few tactics, and their effect

- Each tactic performs a basic operation on the current goal
- In the background, Coq constructs the proof term
- At the end, the term is independantly checked (very reliable!)
- Introduction of an assumption (proof tree and term):

$$
\frac{\Gamma, P \vdash Q}{\Gamma \vdash P \Longrightarrow Q} \quad \frac{\Gamma, x: P \vdash u: Q}{\Gamma \vdash \lambda x \cdot u: P \longrightarrow Q}
$$

- Application of an implication:

$$
\frac{\Gamma \vdash P \Longrightarrow Q \quad \Gamma \vdash P}{\Gamma \vdash Q} \quad \frac{\Gamma \vdash u: P \longrightarrow Q \quad \Gamma \vdash v: P}{\Gamma \vdash u v: Q}
$$

- Immediate conclusion of a subgoal:

$$
\overline{\Gamma, P \vdash P} \quad \overline{\Gamma, x: P \vdash x: P}
$$

Automation in Coq

So far, we have considered fairly manual tactics...
There are also automated tactics, that typically call an external program to try to solve a goal, and then constructs a proof term:

- either verify the proof term afterwards...
- ... or call a function proved once and for all to build it

Examples:

- Tauto: decides propositional logic
- Omega: solves a class of numeric (in)-equalities (see manual)

Language of tactics:
more advanced users can combine tactics to build their own
Proof by reflection: prove decision procedures, and invoke them...

A glimpse at the tactic language

Most common tactics:

Tactic	Effect
intro.	Introduce one assumption
intros.	Introduce as many assumptions as possible
apply H.	Applies assumption H (should be of the form A->B)
elim H.	Decomposes assumption H
exact t.	Provides a proof term for current sub-goal
trivial.	Conclude immediately very simple proofs.
induction t.	Perform induction proof over term t
rewrite H.	Rewrite assumption H (should be of the form t0=t1)
tauto.	Decision procedure in propositional logic

Do not hesitate to look at the online manual !

A glimpse at the command language

Most common tactics (should be enough for a TD):

Command	Meaning
Check t.	Prints the type of term t
Print t.	Prints the type and definition of term t
Definition $\mathrm{u}: \mathrm{t}:=$ [term].	Full definition of term u
Lemma t. Theorem t. Definition t.	Start a proof of term t
Save.	

