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Program of this lecture

Studied so far:
semantics: behaviors of programs
properties: safety, liveness, security...
approaches to verification: typing, use of proof assistants, model
checking

Today’s lecture: introduction to abstract interpretation
a general framework for comparing semantics
introduced by Patrick Cousot and Radhia Cousot (1977)
abstraction: use of a lattice of predicates
computing abstract over-approximations, while preserving
soundness
computing abstract over-approximations for loops

Xavier Rival Abstract Interpretation: Introduction April 15th, 2016 2 / 54



Abstraction Notion of abstraction

Outline

1 Abstraction
Notion of abstraction
Abstraction and concretization functions
Galois connections

2 Abstract interpretation

3 Application of abstract interpretation

4 Conclusion

Xavier Rival Abstract Interpretation: Introduction April 15th, 2016 3 / 54



Abstraction Notion of abstraction

Abstraction example 1: signs

Abstraction: defined by a family of properties to use in proofs

Example:
objects under study: sets of mathematical integers
abstract elements: signs

Lattice of signs

⊥

− 0 +

>
⊥ denotes only ∅
+ denotes any set of positive integers
0 denotes any subset of {0}
− denotes any set of negative integers
> denotes any set of integers

Note: the order in the abstract lattice corresponds to inclusion...
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Abstraction Notion of abstraction

Abstraction example 1: signs

Definition: abstraction relation
concrete elements: elements of the original lattice (c ∈ P(Z))
abstract elements: predicate (a: “· ∈ {+, 0, . . .}”)
abstraction relation: c `S a when a describes c

Examples:
{1, 2, 3, 5, 7, 11, 13, 17, 19, 23, . . .} `S +

{1, 2, 3, 5, 7, 11, 13, 17, 19, 23, . . .} `S >

We use abstract elements to reason about operations:
if c0 `S + and c1 `S +, then {x0 + x1 | xi ∈ ci} `S +

if c0 `S + and c1 `S +, then {x0 · x1 | xi ∈ ci} `S +

if c0 `S + and c1 `S 0, then {x0 · x1 | xi ∈ ci} `S 0
if c0 `S + and c1 `S ⊥, then {x0 · x1 | xi ∈ ci} `S ⊥
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Abstraction Notion of abstraction

Abstraction example 1: signs

We can also consider the union operation:
if c0 `S + and c1 `S +, then c0 ∪ c1 `S +
if c0 `S + and c1 `S ⊥, then c0 ∪ c1 `S +

But, what can we say about c0 ∪ c1, when c0 `S 0 and c1 `S + ?
clearly, c0 ∪ c1 `S >...
but no other relation holds
in the abstract, we do not rule out negative values

We can extend the initial lattice:
≥ 0 denotes any set of positive or null integers
≤ 0 denotes any set of negative or null integers
6= 0 denotes any set of non null integers
if c0 `S + and c1 `S 0, then c0 ∪ c1 `S ≥ 0

⊥

− 0 +

≤ 0 6= 0 ≥ 0

>
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Abstraction Notion of abstraction

Abstraction example 2: constants

Definition: abstraction based on constants
concrete elements: P(Z)

abstract elements: ⊥,>, n where n ∈ Z
(D]
C = {⊥,>} ∪ {n | n ∈ Z})

abstraction relation: c `C n ⇐⇒ c ⊆ {n}

We obtain a flat lattice:

⊥

. . . [−2] [−1] [0] [1] [2] . . .

>

Abstract reasoning:
if c0 `C n0 and c1 `C n1, then {k0 + k1 | ki ∈ ci} `C n0 + n1
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Abstraction Notion of abstraction

Abstraction example 3: Parikh vector

Definition: Parikh vector abstraction
concrete elements: P(A?) (sets of words over alphabet A)
abstract elements: {⊥,>} ∪ (A → N)

abstraction relation: c `P φ : A → N if and only if:

∀w ∈ c, ∀a ∈ A, a appears φ(a) times in w

Abstract reasoning:
concatenation:
if φ0, φ1 : A → N and c0, c1 are such that ci `P φi ,

{w0 · w1 | wi ∈ ci} `P φ0 + φ1

Information preserved, information deleted:
very precise information about the number of occurrences
the order of letters is totally abstracted away (lost)
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Abstraction Notion of abstraction

Abstraction example 4: interval abstraction

Definition: abstraction based on intervals
concrete elements: P(Z)

abstract elements: ⊥,>, (a, b) where a ∈ {−∞} ∪ Z,
b ∈ Z ∪ {+∞} and a ≤ b

abstraction relation:

∅ `I ⊥
S `I >
S `I (a, b) ⇐⇒ ∀x ∈ S , a ≤ x ≤ b

Operations: TD
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Abstraction Notion of abstraction

Abstraction example 5: non relational abstraction

Definition: non relational abstraction
concrete elements: P(X → Y ), inclusion ordering
abstract elements: X → P(Y ), pointwise inclusion ordering
abstraction relation: c `NR a ⇐⇒ ∀φ ∈ c , ∀x ∈ X , φ(x) ∈ a(x)

Information preserved, information deleted:
very precise information about the image of the functions in c

relations such as (for given x0, x1 ∈ X , y0, y1 ∈ Y ) the following are
lost:

∀φ ∈ c , φ(x0) = φ(x1)

∀φ ∈ c , ∀x , x ′ ∈ X , φ(x) 6= y0 ∨ φ(x ′) 6= y1
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Abstraction Notion of abstraction

Notion of abstraction relation

Concrete order: so far, always inclusion
the tighter the concrete set, the fewer behaviors
smaller concrete sets correspond to more precise properties

Abstraction relation: c ` a when c satisfies a
if c0 ⊆ c1 and c1 satisfies a, in all our examples, c0 also satisfies a

Abstract order: in all our examples,
it matches the abstraction relation as well:
if a0 v a1 and c satisfies a0, then c also satisfies a1

great advantage: we can reason about implication in the
abstract, without looking back at the concrete properties

We will now formalize this in detail...
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Abstraction Abstraction and concretization functions

Towards adjoint functions

We consider a concrete lattice (C ,⊆) and an abstract lattice (A,v).

So far, we used abstraction relations, that are consistent with orderings:

Abstraction relation compatibility
∀c0, c1 ∈ C , ∀a ∈ A, c0 ⊆ c1 ∧ c1 ` a =⇒ c0 ` a

∀c ∈ C , ∀a0, a1 ∈ A, c ` a0 ∧ a0 v a1 =⇒ c ` a1

When we have a c (resp., a) and try to map it into a compatible a (resp. a
c), the abstraction relation is not a convenient tool.

Hence, we shall use adjoint functions between C and A.
from concrete to abstract: abstraction
from abstract to concrete: concretization
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Abstraction Abstraction and concretization functions

Concretization function

Our first adjoint function:

Definition: concretization function
Concretization function γ : A→ C (if it exists) maps abstract a into the
weakest (i.e., most general) concrete c that satisfies a (i.e., c ` a).

Note: in common cases, there exists a γ.
c ` a if and only if c ⊆ γ(a)
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Abstraction Abstraction and concretization functions

Concretization function: a few examples

Signs abstraction:

γS : > 7−→ Z
+ 7−→ Z?+
0 7−→ {0}
− 7−→ Z?−
⊥ 7−→ ∅

Constants abstraction:

γC : > 7−→ Z
n 7−→ {n}
⊥ 7−→ ∅

Non relational abstraction:

γNR : (X → P(Y )) −→ P(X → Y )
Φ 7−→ {φ : X → Y | ∀x ∈ X , φ(x) ∈ Φ(x)}

Parikh vector abstraction: exercise!
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Abstraction Abstraction and concretization functions

Abstraction function

Our second adjoint function:

Definition: abstraction function
Abstraction function α : C → A (if it exists) maps concrete c into the
most precise abstract a that soundly describes c (i.e., c ` a).

Note: in quite a few cases (including some in this course), there is no α.

Summary on adjoint functions:
α returns the most precise abstract predicate that holds true for its
argument
this is called the best abstraction
γ returns the most general concrete meaning of its argument
hence, is called the concretization
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Abstraction Abstraction and concretization functions

Abstraction: a few examples

Constants abstraction:

αC : (c ⊆ Z) 7−→


⊥ if c = ∅
n if c = {n}
> otherwise

blank line
Non relational abstraction:

αNR : (c ⊆ (X → Y )) 7−→ (x ∈ X ) 7→ {φ(x) | φ ∈ c}

Signs abstraction and Parikh vector abstraction: exercises
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Abstraction Galois connections

Definition

So far, we have:
abstraction α : C → A

concretization γ : A→ C

How to tie them together ?
They should agree on a same abstraction relation ` !

Definition: Galois connection
A Galois connection is defined by a concrete lattice (C ,⊆), an abstract
lattice (A,v), an abstraction function α : C → A and a concretization
function γ : A→ C such that:

∀c ∈ C , ∀a ∈ A, α(c) v a⇐⇒ c ⊆ γ(a) (⇐⇒ c ` a)

Notation: (C ,⊆) −−−→←−−−α
γ

(A,v)

Note: in practice, we shall rarely use `; we use α, γ instead
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Abstraction Galois connections

Example: constants abstraction and Galois connection

Constants lattice D]
C = {⊥,>} ] {n | n ∈ Z}

αC(c) = ⊥ if c = ∅
αC(c) = n if c = {n}
αC(c) = > otherwise

γC(>) 7−→ Z
γC(n) 7−→ {n}
γC(⊥) 7−→ ∅

Thus:
if c = ∅, ∀a, c ⊆ γC(a), i.e., c ⊆ γC(a) ⇐⇒ αC(c) = ⊥ v a

if c = {n},
αC({n}) = n v c ⇐⇒ c = n ∨ c = > ⇐⇒ c = {n} ⊆ γC(a)

if c has at least two distinct elements n0, n1, αC(c) = > and
c ⊆ γC(a)⇒ a = >, i.e., c ⊆ γC(a) ⇐⇒ αC(c) = ⊥ v a

Constant abstraction: Galois connection

c ⊆ γC(a) ⇐⇒ αC(c) v a, therefore, (P(Z),⊆) −−−−→←−−−−
αC

γC
(D]
C ,v)
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Abstraction Galois connections

Example: non relational abstraction Galois connection

We have defined:
αNR : (c ⊆ (X → Y )) 7−→ (x ∈ X ) 7→ {f (x) | f ∈ c}
γNR : (Φ ∈ (X → P(Y ))) 7−→ {f : X → Y | ∀x ∈ X , f (x) ∈ Φ(x)}

Let c ∈ P(X → Y ) and Φ ∈ (X → P(Y )); then:

αNR(c) v Φ ⇐⇒ ∀x ∈ X , αNR(c)(x) ⊆ Φ(x)
⇐⇒ ∀x ∈ X , {f (x) | f ∈ c} ⊆ Φ(x)
⇐⇒ ∀f ∈ c , ∀x ∈ X , f (x) ∈ Φ(x)
⇐⇒ ∀f ∈ c , f ∈ γNR(Φ)
⇐⇒ c ⊆ γNR(Φ)

Non relational abstraction: Galois connection
c ⊆ γNR(a) ⇐⇒ αNR(c) v a, therefore,

(P(X → Y ),⊆) −−−−−→←−−−−−
αNR

γNR
(X → P(Y ),v)
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Abstraction Galois connections

Galois connection properties

Galois connections have many useful properties.

In the next few slides, we consider a Galois connection (C ,⊆) −−−→←−−−α
γ

(A,v)
and establish a few interesting properties.

Extensivity, contractivity
α ◦ γ is contractive: ∀a ∈ A, α ◦ γ(a) v a

γ ◦ α is extensive: ∀c ∈ C , c ⊆ γ ◦ α(c)

Proof:
let a ∈ A; then, γ(a) ⊆ γ(a), thus α(γ(a)) v a

let c ∈ C ; then, α(c) v α(c), thus c ⊆ γ(α(a))
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Abstraction Galois connections

Galois connection properties

Monotonicity of adjoints
α is monotone
γ is monotone

Proof:
monotonicity of α: let c0, c1 ∈ C such that c0 ⊆ c1;
by extensivity of γ ◦α, c1 ⊆ γ(α(c1)), so by transitivity, c0 ⊆ γ(α(c1))
by definition of the Galois connnection, α(c0) v α(c1)

monotonicity of γ: same principle

Note: many proofs can be derived by duality

Duality principle applied for Galois connections

If (C ,⊆) −−−→←−−−α
γ

(A,v), then (A,w) −−−→←−−−γ
α

(C ,⊇)
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Abstraction Galois connections

Galois connection properties

Iteration of adjoints
α ◦ γ ◦ α = α

γ ◦ α ◦ γ = γ

α ◦ γ (resp., γ ◦ α) is idempotent, hence a lower (resp., upper) closure
operator

Proof:
α ◦ γ ◦ α = α:
let c ∈ C , then γ ◦ α(c) ⊆ γ ◦ α(c)
hence, by the Galois connection property, α ◦ γ ◦ α(c) v α(c)
moreover, γ ◦ α is extensive and α monotone, so α(c) v α ◦ γ ◦ α(c)
thus, α ◦ γ ◦ α(c) = α(c)

the second point can be proved similarly (duality); the others follow
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Abstraction Galois connections

Galois connection properties

Properties on iterations of adjoint functions:

concrete domain abstract domain

α

α

γ

α

γ
γ
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Abstraction Galois connections

Galois connection properties

α preserves least upper bounds

∀c0, c1 ∈ C , α(c0 ∪ c1) = α(c0) t α(c1)

By duality:
∀a0, a1 ∈ A, γ(c0 u c1) = γ(c0) u γ(c1)

Proof:
First, we observe that α(c0) t α(c1) v α(c0 ∪ c1), i.e. α(c0 ∪ c1) is an
upper bound of {α(c0), α(c1)}.
We now prove it is the least upper bound. For all a ∈ A:

α(c0 ∪ c1) v a ⇐⇒ c0 ∪ c1 ⊆ γ(a)
⇐⇒ c0 ⊆ γ(a) ∧ c1 ⊆ γ(a)
⇐⇒ α(c0) v a ∧ α(c1) v a
⇐⇒ α(c0) t α(c1) v a

Note: when C ,A are complete lattices, this extends to families of elements
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Abstraction Galois connections

Galois connection properties

Uniqueness of adjoints
given γ : C → A, there exists at most one α : A→ C such that
(C ,⊆) −−−→←−−−α

γ
(A,v), and, if it exists, α(c) = u{a ∈ A | c ⊆ γ(a)}

similarly, given α : A→ C , there exists at most one γ : C → A such
that (C ,⊆) −−−→←−−−α

γ
(A,v), and it is defined dually

Proof of the first point (the other follows by duality):
we assume that there exists an α so that we have a Galois connection and
prove that, α(c) = u{a ∈ A | c ⊆ γ(a)} for a given c ∈ C .

if a ∈ A is such that c ⊆ γ(a), then α(a) v c thus, α(a) is a lower
bound of {a ∈ A | c ⊆ γ(a)}.
let a0 ∈ A be a lower bound of {a ∈ A | c ⊆ γ(a)}.
since γ ◦ α is extensive, c ⊆ γ(α(c)) and α(c) ∈ {a ∈ A | c ⊆ γ(a)}.
hence, a0 v α(c)

Thus, α(c) is the least upper bound of {a ∈ A | c ⊆ γ(a)}
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Abstraction Galois connections

Construction of adjoint functions

The adjoint uniqueness property is actually a very strong property:
it allows to construct an abstraction from a concretization
... or to understand why no abstraction can be constructed :-)

Turning an adjoint into a Galois connection (1)
Let (C ,⊆) and (A,v) be two lattices, such that any subset of A as a
greatest lower bound and let γ : (A,v)→ (C ,⊆) be a monotone function.

Then, the function below defines a Galois connection:

α(c) = u{a ∈ A | c ⊆ γ(a)}

Example of abstraction with no α: when u is not defined on all
families, e.g., lattice of convex polyedra, abstracting sets of points in R2.

Exercise: state the dual property and apply the same principle to the
concretization
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Abstraction Galois connections

Galois connection characterization

A characterization of Galois connections
Let (C ,⊆) and (A,v) be two lattices, and α : C → A and γ : A→ C be
two monotone functions, such that:

α ◦ γ is contractive
γ ◦ α is extensive

Then, we have a Galois connection

(C ,⊆) −−−→←−−−α
γ

(A,v)

Proof:
let c ∈ C and a ∈ A such that α(c) v a.
then: γ(α(c)) ⊆ γ(a) (as γ is monotone)
c ⊆ γ(α(c)) (as γ ◦ α is extensive)

thus, c ⊆ γ(a), by transitivity
the other implication can be proved by duality
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Abstract interpretation Abstract computation

Constructing a static analysis

We have set up a notion of abstraction:
it describes sound approximations of concrete properties with
abstract predicates
there are several ways to formalize it (abstraction, concretization...)
we now wish to compute sound abstract predicates

In the following, we assume
a Galois connection

(C ,⊆) −−−→←−−−α
γ

(A,v)

a concrete semantics J.K, with a constructive definition
i.e., JPK is defined by constructive equations (JPK = f (. . .)), least
fixpoint formula (JPK = lfp∅ f )...
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Abstract interpretation Abstract computation

Abstract transformer
A fixed concrete element c0 can be abstracted by α(c0).

We now consider a monotone concrete function
f : C → C

given c ∈ C , α ◦ f (c) abstracts the image of c by f

if c ∈ C is abstracted by a ∈ A, then f (c) is
abstracted by α ◦ f ◦ γ(a):

c ⊆ γ(a) by assumption
f (c) ⊆ f (γ(a)) by monotonicity of f
α(f (c)) ⊆ α(f (γ(a))) by monotonicity of α

A A

C C
f

f ]

γ α

Definition: best and sound abstract transformers
the best abstract transformer approximating f is f ] = α ◦ f ◦ γ
a sound abstract transformer approximating f is any operator
f ] : A→ A, such that α ◦ f ◦ γ v f ] (or equivalently, f ◦ γ ⊆ γ ◦ f ])
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Abstract interpretation Abstract computation

Example: lattice of signs

f : D]
C → D]

C , c 7→ {−n | n ∈ c}
f ] = α ◦ f ◦ γ

Lattice of signs:

⊥

− 0 +

>

Abstract negation operator:

a 	](a)

⊥ ⊥
− +

0 0
+ −
> >

here, the best abstract transformer is very easy to compute
no need to use an approximate one
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Abstract interpretation Abstract computation

Abstract n-ary operators

We can generalize this to n-ary operators, such as boolean operators
and arithmetic operators

Definition: sound and exact abstract operators
Let g : Cn → C be a monotone n-ary operator.
Then:

the best abstract operator approximating g is defined by:
g ] : An 7−→ A

(a0, . . . , an−1) 7−→ α ◦ g(γ(a0), . . . , γ(an−1))

a sound abstract transformer approximating g is any operator
g ] : An → A, such that
∀(a0, . . . , an−1) ∈ An, α ◦ g(γ(a0), . . . , γ(an−1)) v g ](a0, . . . , an−1)
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Abstract interpretation Abstract computation

Example: lattice of signs arithmetic operators

Application:
⊕ : C 2 → C , (c0, c1) 7→ {n0 + n1 | ni ∈ ci}
⊗ : C 2 → C , (c0, c1) 7→ {n0 · n1 | ni ∈ ci}

Best abstract operators:

⊕] ⊥ − 0 + >
⊥ ⊥ ⊥ ⊥ ⊥ ⊥
− ⊥ − − > >
0 ⊥ − 0 + >
+ ⊥ > + + >
> ⊥ > > > >

⊗] ⊥ − 0 + >
⊥ ⊥ ⊥ ⊥ ⊥ ⊥
− ⊥ + 0 − >
0 ⊥ 0 0 0 0
+ ⊥ − 0 + >
> ⊥ > 0 > >

Example of loss in precision:
{8} ∈ γS(+) and {−2} ∈ γS(−)

⊕](+,−) = > is a lot worse than αS(⊕({8}, {−2})) = +
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Abstract interpretation Abstract computation

Example: lattice of signs set operators

Best abstract operators approximating ∪ and ∩:

∪] ⊥ − 0 + >
⊥ ⊥ − 0 + >
− − − > > >
0 0 > 0 > >
+ + > > + >
> > > > > >

∩] ⊥ − 0 + >
⊥ ⊥ ⊥ ⊥ ⊥ ⊥
− ⊥ − ⊥ ⊥ −
0 ⊥ ⊥ 0 ⊥ 0
+ ⊥ ⊥ ⊥ + +

> ⊥ − 0 + >

Example of loss in precision:
γ(−) ∪ γ(+) = {n ∈ Z | n 6= 0} ⊂ γ(>)
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Abstract interpretation Fixpoint transfer
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Abstract interpretation Fixpoint transfer

Fixpoint transfer

What about loops ? semantic functions defined by fixpoints ?

Theorem: exact fixpoint transfer

We consider a Galois connection (C ,⊆) −−−→←−−−α
γ

(A,v), two functions
f : C → C and f ] : A→ A and two elements c0 ∈ C , a0 ∈ A such that:

f is continuous
f ] is monotone
α ◦ f = f ] ◦ α
α(c0) = a0

Then:
both f and f ] have a least-fixpoint (Tarski’s fixpoint theorem)
α(lfpc0 f ) = lfpa0 f

]
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Abstract interpretation Fixpoint transfer

Fixpoint transfer: proof

α(lfpc0 f ) is a fixpoint of f ] since:

f ](α(lfpc0 f )) = α(f (lfpc0 f )) since α ◦ f = f ] ◦ α
= α(lfpc0 f ) by definition of the fixpoints

To show that α(lfpc0 f ) is the least-fixpoint of f ],
we assume that X is another fixpoint of f ] greater than a0 and we
show that α(lfpc0 f ) v X , i.e., that lfpc0 f ⊆ γ(X ).
As lfpc0 f =

⋃
n∈N f n0 (c0), it amounts to proving that

∀n ∈ N, f n0 (c0) ⊆ γ(X ).
By induction over n:

I f 0(c0) = c0, thus α(f 0(c0)) = a0 v X ; thus, f 0(c0) ⊆ γ(X ).
I let us assume that f n(c0) ⊆ γ(X ), and let us show that

f n+1(c0) ⊆ γ(X ), i.e. that α(f n+1(c0)) v X :

α(f n+1(c0)) = α ◦ f (f n(c0)) = f ] ◦ α(f n(c0)) v f ](X ) = X

as α(f n(c0)) v X and f ] is monotone.
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Abstract interpretation Fixpoint transfer

Constructive analysis of loops

How to get a constructive fixpoint transfer theorem ?

Theorem: fixpoint abstraction
Under the assumptions of the previous theorem, and with the following
additional hypothesis:

lattice A is of finite height
We compute the sequence (an)n∈N defined by an+1 = an t f ](an).
Then, (an)n∈N converges and its limit a∞ is such that α(lfpc0 f ) = a∞.

Proof: exercise.

Note:
the assumptions we have made are too restrictive in practice
more general fixpoint abstraction methods in the next lectures
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Application of abstract interpretation

Comparing existing semantics

1 A concrete semantics JPK is given: e.g., big steps operational
semantics

2 An abstract semantics JPK] is given: e.g., denotational semantics

3 Search for an abstraction relation between them
e.g., JPK] = α(JPK), or JPK ⊆ γ(JPK])

Examples:
finite traces semantics as an abstraction of bi-finitary trace semantics
denotational semantics as an abstraction of trace semantics
types as an abstraction of denotational semantics
...

Payoff:
better understanding of ties across semantics
chance to generalize existing definitions
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Application of abstract interpretation

Derivation of a static analysis

1 Start from a concrete semantics JPK
2 Choose an abstraction defined by a Galois connection or a

concretization function (usually)
3 Derive an abstract semantics JPK] such that JPK ⊆ γ(JPK])

Examples:
derivation of an analysis with a numerical lattice (constants,
intervals...)
construction of an analysis for a complex programming language

Payoff:
the derivation of the abstract semantics is quite systematic
this process offers good opportunities for a modular analysis design

There are many ways to apply abstract interpretation.
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Application of abstract interpretation

A very simple language and its semantics

We now apply this to a very simple language, and derive a static analysis
step by step, from a concrete semantics and an abstraction.

we assume a fixed set of n integer variables x0, . . . , xn−1
we consider the language defined by the grammar below:

P ::= xi = n where n ∈ Z
| xi = xj + xk basic, three-addresses arithmetics
| xi = xj − xk basic, three-addresses arithmetics
| xi = xj · xk basic, three-addresses arithmetics
| P;P concatenation
| input(xi ) reading of a positive input
| if(xi > 0)P else P
| while(xi > 0)P

a state is a vector σ = (σ0, . . . , σn−1) ∈ Zn

a single initial state σinit = (0, . . . , 0)
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Application of abstract interpretation

Concrete semantics

Concrete semantics
We let JPK : P(Zn)→ P(Zn) be defined by:

Jxi = nK(S) = {σ[i ← n] | σ ∈ S}
Jxi = xj + xkK(S) = {σ[i ← σj + σk ] | σ ∈ S}
Jxi = xj − xkK(S) = {σ[i ← σj − σk ] | σ ∈ S}
Jxi = xj · xkK(S) = {σ[i ← σj · σk ] | σ ∈ S}

Jinput(xi )K(S) = {σ[i ← n] | σ ∈ S ∧ n > 0}
Jif(xi > 0)P0 else P1K(S) = JP0K({σ ∈ S | σi > 0})

∪ JP1K({σ ∈ S | σi ≤ 0})
Jwhile(xi > 0)PK(S) = {σ ∈ lfpS f | σi ≤ 0} where

f : S ′ 7→ S ′ ∪ JPK({σ ∈ S ′ | σi > 0})

given a complete program P , the reachable states are defined by
JPK({σinit})
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Application of abstract interpretation

Abstraction

We compose two abstractions:
non relational abstraction: the values a variable may take is
abstracted separately from the other variables
sign abstraction: the set of values observed for each variable is
abstracted into the lattice of signs

Abstraction
concrete domain: (P(Zn),⊆)

abstract domain: (D],v), where D] = (D]
S)n and v is the pointwise

ordering

Galois connection (P(Z),⊆) −−−→←−−−α
γ

(D],v), defined by

α : S 7−→ (αS({σ0 | σ ∈ S}), . . . , αS({σn−1 | σ ∈ S}))

γ : S ] 7−→ {σ ∈ Zn | ∀i , σi ∈ γS(S ]i )}
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Application of abstract interpretation

Example

Factorial function:

input(x0);
x1 = 1;
x2 = 1;
while(x0 > 0){

x1 = x0 · x1;
x0 = x0 − x2;

}

Abstraction of the semantics:
abstract pre-condition: (>,>,>)

abstract state before the loop: (+,+,+)

abstract post-condition (after the loop): (>,+,+)
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Application of abstract interpretation

Computation of the abstract semantics

We search for an abstract semantics JPK] : D] → D] such that:

α ◦ JPK = JPK] ◦ α

We observe that:
α(S) = (αS({σ0 | σ ∈ S}), . . . , αS({σn−1 | σ ∈ S}))

α ◦ JPK(S) = (αS({σ0 | σ ∈ JPK(S)}), . . . , αS({σn−1 | σ ∈ JPK(S)}))

We start with xi = n:
α ◦ Jxi = nK(S)
= (αS({σ0 | σ ∈ JPK({σ[i ← n] | σ ∈ S})}), . . . ,

αS({σn−1 | σ ∈ JPK({σ[i ← n] | σ ∈ S})}))
= (αS({σ0 | σ ∈ S}), . . . , αS({σn−1 | σ ∈ S}))[i ← αS({n})]
= α(S)[i ← αS({n})]
= Jxi = nK](α(S))

where Jxi = nK](S ]) = S ][i ← αS({n})]
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Application of abstract interpretation

Computation of the abstract semantics

Other assignments are treated in a similar manner:

Jxi = xj + xkK](S ]) = S ][i ← S ]j ⊕] S
]
k ]

Jxi = xj − xkK(S ]) = S ][i ← S ]j 	] S
]
k ]

Jxi = xj · xkK](S ]) = S ][i ← S ]j ⊗] S
]
k ]

Jinput(xi )K](S ]) = S ][i ← +]

Proofs are left as exercises
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Application of abstract interpretation

Computation of the abstract semantics

We now consider the case of tests:
α ◦ Jif(xi > 0)P0 else P1K(S)
= α(JP0K({σ ∈ S | σi > 0}) ∪ JP1K({σ ∈ S | σi ≤ 0}))
= α(JP0K({σ ∈ S | σi > 0})) t α(JP1K({σ ∈ S | σi ≤ 0}))

as α preserves least upper bounds
= JP0K](α({σ ∈ S | σi > 0})) t JP1K](α({σ ∈ S | σi ≤ 0}))
= JP0K](α(S) u >[i ← +]) t JP1K](α(S))
= Jif(xi > 0)P0 else P1K](α(S))

where Jif(xi > 0)P0 else P1K](S ]) = JP0K](S ] u >[i ← +]) t JP1K](S ])

In the case of loops:
Jwhile(xi > 0)PK](S ]) = lfpS] f ]

where f ] : S ] 7→ S ] t JPK](S ] u >[i ← +])

Proof: exercise
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Application of abstract interpretation

Abstract semantics

Abstract semantics and soundness
We have derived the following definition of JPK]:

Jxi = nK](S ]) = S ][i ← αS({n})]

Jxi = xj + xkK](S ]) = S ][i ← S ]j ⊕] S
]
k ]

Jxi = xj − xkK](S ]) = S ][i ← S ]j 	] S
]
k ]

Jxi = xj · xkK](S ]) = S ][i ← S ]j ⊗] S
]
k ]

Jinput(xi )K](S ]) = S ][i ← +]
Jif(xi > 0)P0 else P1K](S ]) = JP0K](S ] u >[i ← +]) t JP1K](S ])

Jwhile(xi > 0)PK](S ]) = lfpS] f ] where
f ] : S ] 7→ S ] t JPK](S ] u >[i ← +])

Furthermore, for all program P : α ◦ JPK = JPK] ◦ α

An over-approximation of the final states is computed by JPK](>).
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Application of abstract interpretation

Example

Factorial function:

input(x0);
x1 = 1;
x2 = 1;
while(x0 > 0){

x1 = x0 · x1;
x0 = x0 − x2;

}

Abstract state before the loop:
(+,+,+)

Iterates on the loop:

iterate 0 1 2
x0 + > >
x1 + + +

x2 + + +

Abstract state after the loop: (>,+,+)
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Conclusion

Summary

This lecture:
abstraction and its formalization
computation of an abstract semantics in a very simplified case

Next lectures:
construction of a few non trivial abstractions
more general ways to compute sound abstract properties

Update on projects...
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