Operational Semantics

 Semantics and applications to verification

 Semantics and applications to verification}

Xavier Rival

École Normale Supérieure

February 19, 2016

Program of this first lecture

Operational semantics

Mathematical description of the executions of a program
(1) A model of programs: transition systems

- definition, a small step semantics
- a few common examples
(2) Trace semantics: a kind of big step semantics
- finite and infinite executions
- fixpoint-based definitions
- notion of compositional semantics

Outline

(1) Transition systems and small step semantics

- Definition and properties
- Examples
(3) Summary

Definition

We will characterize a program by:

- states:
photography of the program status at an instant of the execution
- execution steps: how do we move from one state to the next one

Definition: transition systems (TS)
A transition system is a tuple $(\mathbb{S}, \rightarrow)$ where:

- \mathbb{S} is the set of states of the system
- $\rightarrow \subseteq \mathcal{P}(\mathbb{S} \times \mathbb{S})$ is the transition relation of the system

Note:

- the set of states may be infinite

Transition systems: properties of the transition relation

A deterministic system is such that a state fully determines the next state

$$
\forall s_{0}, s_{1}, s_{1}^{\prime} \in \mathbb{S},\left(s_{0} \rightarrow s_{1} \wedge s_{0} \rightarrow s_{1}^{\prime}\right) \Longrightarrow s_{1}=s_{1}^{\prime}
$$

Otherwise, a transition system is non deterministic, i.e.:

$$
\exists s_{0}, s_{1}, s_{1}^{\prime} \in \mathbb{S}, s_{0} \rightarrow s_{1} \wedge s_{0} \rightarrow s_{1}^{\prime} \wedge s_{1} \neq s_{1}^{\prime}
$$

Notes:

- the transition relation \rightarrow defines atomic execution steps; it is often called small-step semantics or structured operational semantics
- steps are discrete (not continuous) to describe both discrete and continuous behaviors, we would need to look at hybrid systems (beyond the scope of this lecture)

Transition systems: initial and final states

Initial / final states:
we often consider transition systems with a set of initial and final states:

- a set of initial states $\mathbb{S}_{\mathcal{I}} \subseteq \mathbb{S}$ denotes states where the execution should start
- a set of final states $\mathbb{S}_{\mathcal{F}} \subseteq \mathbb{S}$ denotes states where the execution should reach the end of the program
When needed, we add these to the definition of the transition systems $\left(\left(\mathbb{S}, \rightarrow, \mathbb{S}_{\mathcal{I}}, \mathbb{S}_{\mathcal{F}}\right)\right.$.

Blocking state (not the same as final state):

- a state $s_{0} \in \mathbb{S}$ is blocking when it is the origin of no transition: $\forall s_{1} \in \mathbb{S}, \neg\left(s_{0} \rightarrow s_{1}\right)$
- example: we often introduce an error state (usually noted Ω to denote the erroneous, blocking configuration)

Outline

(1) Transition systems and small step semantics

- Definition and properties
- Examples
(2) Traces semantics
(3) Summary

Finite automata as transition systems

We can clearly formalize the word recognition by a finite automaton using a transition system:

- We consider automaton $\mathcal{A}=\left(Q, q_{\mathrm{i}}, q_{\mathrm{f}}, \rightarrow\right)$
- A "state" is defined by:
- the remaining of the word to recognize
- the automaton state that has been reached so far
thus, $\mathbb{S}=Q \times L^{*}$
- The transition relation \rightarrow of the transition system is defined by:

$$
\left(q_{0}, a w\right) \rightarrow\left(q_{1}, w\right) \Longleftrightarrow q_{0} \xrightarrow{a} q_{1}
$$

- The initial and final states are defined by:

$$
\mathbb{S}_{\mathcal{I}}=\left\{\left(q_{\mathrm{i}}, w\right) \mid w \in L^{\star}\right\} \quad \mathbb{S}_{\mathcal{F}}=\left\{\left(q_{\mathrm{f}}, \epsilon\right)\right\}
$$

Pure λ-calculus

A bare bones model of functional programing:

λ-terms

The set of λ-terms is defined by:

$$
\begin{array}{llll}
t, u, \ldots & ::= & x & \text { variable } \\
& \mid & \lambda x \cdot t & \text { abstraction } \\
& & t u & \text { application }
\end{array}
$$

β-reduction

- $(\lambda x \cdot t) u \rightarrow_{\beta} t[x \leftarrow u]$
- if $u \rightarrow_{\beta} v$ then $\lambda x \cdot u \rightarrow_{\beta} \lambda x \cdot v$
- if $u \rightarrow_{\beta} v$ then $u t \rightarrow_{\beta} v t$
- if $u \rightarrow_{\beta} v$ then $t u \rightarrow_{\beta} t v$

The λ-calculus defines a transition system:

- \mathbb{S} is the set of λ-terms and \rightarrow_{β} the transition relation
- \rightarrow_{β} is non-deterministic; example ? though, ML fixes an execution order
- given a lambda term t_{0}, we may consider $\left(\mathbb{S}, \rightarrow_{\beta}, \mathbb{S}_{\mathcal{I}}\right)$ where $\mathbb{S}_{\mathcal{I}}=\left\{t_{0}\right\}$
- blocking states are terms with no redex $(\lambda x \cdot u) v$

A MIPS like assembly language: syntax

We now consider a (very simplified) assembly language

- machine integers: sequences of 32 -bits (set: \mathbb{B}^{32})
- instructions are encoded over 32 -bits (set: $\mathbb{I}_{\text {MIPS }}$) and stored into the same space as data (i.e., $\mathbb{I}_{\text {MIPS }} \subseteq \mathbb{B}^{32}$)
- we assume a fixed set of addresses \mathbb{A}

Memory configurations

- Program counter pc current instruction
- General purpose registers $\mathbf{r}_{0} \ldots \mathbf{r}_{31}$
- Main memory (RAM)
mem : $\mathbb{A} \rightarrow \mathbb{B}^{32}$
where $\mathbb{A} \subseteq \mathbb{B}^{32}$

Instructions

$$
\begin{aligned}
& i::=\left(\in \mathbb{I}_{\text {MIPS }}\right) \\
& \text { add } \mathbf{r}_{d}, \mathbf{r}_{s}, \mathbf{r}_{s^{\prime}} \text { addition } \\
& \text { addi } \mathbf{r}_{d}, \mathbf{r}_{s}, v \quad \text { add. } v \in \mathbb{B}^{32} \\
& \text { sub } \mathbf{r}_{d}, \mathbf{r}_{s}, \boldsymbol{r}_{s^{\prime}} \text { subtraction } \\
& \text { b } t \\
& \text { blt } \mathbf{r}_{s}, \mathbf{r}_{s^{\prime}}, t \\
& \text { Id } \mathbf{r}_{\boldsymbol{d}}, o, \boldsymbol{r}_{x} \quad \text { relative load } \\
& \text { st } \mathbf{r}_{d}, o, \mathbf{r}_{x} \quad \text { relative store } \\
& v, t, o \in \mathbb{B}^{32}, d, s, s^{\prime}, x \in[0,31]
\end{aligned}
$$

A MIPS like assembly language: states

Definition: state

A state is a tuple (π, ρ, μ) which comprises:

- A program counter value $\pi \in \mathbb{B}^{32}$
- A function mapping each general purpose register to its value $\rho:\{0, \ldots, 31\} \rightarrow \mathbb{B}^{32}$
- A function mapping each memory cell to its value $\mu: \mathbb{A} \rightarrow \mathbb{B}^{32}$

What would a dangerous state be ?

- writing over an instruction
- reading or writing outside the program's memory
- we cannot fully formalize these yet... as we need to formalize the behavior of each instruction first

A MIPS like assembly language: transition relation

We assume a state $s=(\pi, \rho, \mu)$ and that $\mu(\pi)=i$; then:

- if $i=$ add $\mathbf{r}_{d}, \mathbf{r}_{s}, \boldsymbol{r}_{s^{\prime}}$, then:

$$
s \rightarrow\left(\pi+4, \rho\left[d \leftarrow \rho(s)+\rho\left(s^{\prime}\right)\right], \mu\right)
$$

- if $i=$ addi r_{d}, r_{s}, v, then:

$$
s \rightarrow(\pi+4, \rho[d \leftarrow \rho(s)+v], \mu)
$$

- if $i=\operatorname{sub} \boldsymbol{r}_{d}, \mathbf{r}_{s}, \boldsymbol{r}_{s^{\prime}}$, then:

$$
s \rightarrow\left(\pi+4, \rho\left[d \leftarrow \rho(s)-\rho\left(s^{\prime}\right)\right], \mu\right)
$$

- if $i=\mathbf{b} t$, then:

$$
s \rightarrow(t, \rho, \mu)
$$

A MIPS like assembly language: transition relation

We assume a state $s=(\pi, \rho, \mu)$ and that $\mu(\pi)=i$; then:

- if $i=$ blt $\mathbf{r}_{s}, \mathbf{r}_{s^{\prime}}, t$, then:

$$
s \rightarrow \begin{cases}(t, \rho, \mu) & \text { if } \rho(s)<\rho\left(s^{\prime}\right) \\ (\pi+4, \rho, \mu) & \text { otherwise }\end{cases}
$$

- if $i=\mathbf{l d} \mathbf{r}_{d}, o, \mathbf{r}_{x}$, then:

$$
s \rightarrow \begin{cases}(\pi+4, \rho[d \leftarrow \mu(\rho(x)+o)], \mu) & \text { if } \rho(x)+o \in \mathbb{A} \\ \Omega & \text { otherwise }\end{cases}
$$

- if $i=\boldsymbol{s t} \mathbf{r}_{d}, o, \mathbf{r}_{x}$, then:

$$
s \rightarrow \begin{cases}(\pi+4, \rho, \mu[\rho(x)+o \leftarrow \rho(d)]) & \text { if } \rho(x)+o \in \mathbb{A} \\ \Omega & \text { otherwise }\end{cases}
$$

A simple imperative language: syntax

We now look at a more classical imperative language (intuitively, a bare-bone subset of C):

- variables \mathbb{X} : finite, predefined set of variables
- labels \mathbb{L} : before and after each statement
- values $\mathbb{V}: \mathbb{V}_{\text {int }} \cup \mathbb{V}_{\text {float }} \cup \ldots$

Syntax

e ::=	$v(v \in \mathbb{V})\|\mathrm{x}(\mathrm{x} \in \mathbb{X})\| \mathrm{e}+\mathrm{e}\|\mathrm{e} * \mathrm{e}\|$	expressions	
c : $:=$	TRUE \| FALSE	e $<\mathrm{e} \mid \mathrm{e}=\mathrm{e}$	conditions
i $::=$	$\mathrm{x}:=\mathrm{e}$;	assignment	
	if(c) b else b	condition	
\|	while(c) b	loop	
b :: $=$	\{i; ...;i; \}	block, program(\mathbb{P})	

A simple imperative language: states

A non-error state should fully describe the configuration at one instant of the program execution

The control state defines where the program currently is

- analoguous to the program counter
- can be defined by adding labels $\mathbb{L}=\left\{\mathscr{L}_{0}, f_{1}, \ldots\right\}$ between each pair of consecutive statements; then:

$$
\mathbb{S}=\mathbb{L} \times \mathbb{M} \uplus\{\Omega\}
$$

- or by the program remaining to be executed; then:

$$
\mathbb{S}=\mathbb{P} \times \mathbb{M} \uplus\{\Omega\}
$$

The memory state defines the current contents of the memory

$$
m \in \mathbb{M}=\mathbb{X} \longrightarrow \mathbb{V}
$$

A simple imperative language: semantics of expressions

- The semantics $\llbracket e \rrbracket$ of expression e should evaluate each expression into a value, given a memory state
- Evaluation errors may occur: division by zero... error value is also noted Ω

Thus: $\llbracket \mathrm{e} \rrbracket: \mathbb{M} \longrightarrow \mathbb{V} \uplus\{\Omega\}$

Definition, by induction over the syntax:

$$
\begin{aligned}
\llbracket v \rrbracket(m) & =v \\
\llbracket \mathrm{x} \rrbracket(m) & =m(\mathrm{x}) \\
\llbracket \mathrm{e}_{0}+\mathrm{e}_{1} \rrbracket(m) & =\llbracket \mathrm{e}_{0} \rrbracket(m) \pm \llbracket \mathrm{e}_{1} \rrbracket(m) \\
\llbracket \mathrm{e}_{0} / \mathrm{e}_{1} \rrbracket(m) & = \begin{cases}\Omega & \text { if } \llbracket \mathrm{e}_{1} \rrbracket(m)=0 \\
\llbracket \mathrm{e}_{0} \rrbracket(m) \underline{\mathrm{e}_{1} \rrbracket(m)} & \text { otherwise }\end{cases}
\end{aligned}
$$

where \oplus is the machine implementation of operator \oplus, and is Ω-strict, i.e., $\forall v \in \mathbb{V}, v \underline{\oplus}=\Omega \underline{\oplus} v=\Omega$.

A simple imperative language: semantics of conditions

- The semantics $\llbracket c \rrbracket$ of condition c should return a boolean value
- It follows a similar definition to that of the semantics of expressions: $\llbracket c \rrbracket: \mathbb{M} \longrightarrow \mathbb{V}_{\text {bool }} \uplus\{\Omega\}$

Definition, by induction over the syntax:

$$
\begin{aligned}
\llbracket \mathrm{TRUE} \rrbracket(m) & =\text { TRUE } \\
\llbracket \mathrm{FALSE} \rrbracket(m) & =\text { FALSE } \\
\llbracket \mathrm{e}_{0}<\mathrm{e}_{1} \rrbracket(m) & = \begin{cases}\text { TRUE } & \text { if } \llbracket \mathrm{e}_{0} \rrbracket(m)<\llbracket \mathrm{e}_{1} \rrbracket(m) \\
\text { FALSE } & \text { if } \llbracket \mathrm{e}_{0} \rrbracket(m) \geq \llbracket \mathrm{e}_{1} \rrbracket(m) \\
\Omega & \text { if } \llbracket \mathrm{e}_{0} \rrbracket(m)=\Omega \text { or } \llbracket \mathrm{e}_{1} \rrbracket(m)=\Omega\end{cases} \\
\llbracket \mathrm{e}_{0}=\mathrm{e}_{1} \rrbracket(m) & = \begin{cases}\text { TRUE } & \text { if } \llbracket \mathrm{e}_{0} \rrbracket(m)=\llbracket \mathrm{e}_{1} \rrbracket(m) \\
\text { FALSE } & \text { if } \llbracket \mathrm{e}_{0} \rrbracket(m) \neq \llbracket \mathrm{e}_{1} \rrbracket(m) \\
\Omega & \text { if } \llbracket \mathrm{e}_{0} \rrbracket(m)=\Omega \text { or } \llbracket \mathrm{e}_{1} \rrbracket(m)=\Omega\end{cases}
\end{aligned}
$$

A simple imperative language: transitions

Transitions describe local program execution steps, thus are defined by case analysis on the program statements

Case of assignment $\varepsilon_{0}: \mathrm{x}=\mathrm{e} ; \mathfrak{q}_{1}$

- if $\llbracket \mathrm{e} \rrbracket(m) \neq \Omega$, then $\left(\mathcal{L}_{0}, m\right) \rightarrow\left(\mathcal{L}_{1}, m[\mathrm{x} \leftarrow \llbracket e \rrbracket(m)]\right)$
- if $\llbracket \mathrm{e} \rrbracket(m)=\Omega$, then $\left(\mathcal{L}_{0}, m\right) \rightarrow \Omega$

Case of condition $\mathscr{C}_{0}: \operatorname{if}(c)\left\{\mathfrak{l}_{1}: \mathrm{b}_{t} \mathfrak{l}_{2}\right\}$ else $\left\{\mathfrak{l}_{3}: \mathrm{b}_{f} \mathfrak{l}_{4}\right\} \mathscr{l}_{5}$

- if $\llbracket c \rrbracket(m)=$ TRUE, then $\left(\mathcal{L}_{0}, m\right) \rightarrow\left(\mathcal{L}_{1}, m\right)$
- if $\llbracket c \rrbracket(m)=$ FALSE, then $\left(\mathscr{L}_{0}, m\right) \rightarrow\left(\digamma_{3}, m\right)$
- if $\llbracket c \rrbracket(m)=\Omega$, then $\left(L_{0}, m\right) \rightarrow \Omega$
- $\left(\mathcal{L}_{2}, m\right) \rightarrow\left(\mathcal{L}_{5}, m\right)$
- $\left(\mathcal{L}_{4}, m\right) \rightarrow\left(\mathcal{L}_{5}, m\right)$

A simple imperative language: transitions

Case of loop $\mathscr{C}_{0}:$ while $(c)\left\{\mathscr{C}_{1}: b_{t} \mathscr{L}_{2}\right\} \mathscr{C}_{3}$

- if $\llbracket c \rrbracket(m)=$ TRUE, then $\left\{\begin{array}{l}\left(\mathcal{L}_{0}, m\right) \rightarrow\left(\mathcal{L}_{1}, m\right) \\ \left(\mathfrak{L}_{2}, m\right) \rightarrow\left(\mathcal{L}_{1}, m\right)\end{array}\right.$
- if $\llbracket c \rrbracket(m)=$ FALSE, then $\left\{\begin{array}{l}\left(\mathcal{L}_{0}, m\right) \rightarrow\left(\mathcal{L}_{3}, m\right) \\ \left(\mathcal{L}_{2}, m\right) \rightarrow\left(\mathcal{L}_{3}, m\right)\end{array}\right.$
- if $\llbracket c \rrbracket(m)=\Omega$, then $\left\{\begin{array}{l}\left(\mathscr{L}_{0}, m\right) \rightarrow \Omega \\ \left(\mathscr{L}_{2}, m\right) \rightarrow \Omega\end{array}\right.$

Case of $\left\{\mathscr{l}_{0}: i_{0} ; \mathfrak{l}_{1}: \ldots ; \mathfrak{l}_{n-1} i_{n-1} ; \mathfrak{l}_{n}\right\}$

- the transition relation is defined by the individual instructions

Extending the language with non-determinism

The language we have considered so far is a bit limited:

- it is deterministic: at most one transition possible from any state
- it does not support the input of values

Changes if we model non deterministic inputs...
... with an input instruction:
... with a random function:

- i $::=\ldots \mid x:=\operatorname{input}()$
- $f_{0}: x:=\operatorname{input}() ; f_{1}$ generates transitions

$$
\forall v \in \mathbb{V},\left(\mathfrak{l}_{0}, m\right) \rightarrow\left(\mathfrak{f}_{1}, m[\mathrm{x} \leftarrow v]\right)
$$

- one instruction induces non determinism
- e $::=\ldots$. $\mathbf{r a n d}()$
- expressions have a non-deterministic semantics:

$$
\begin{gathered}
\llbracket \mathrm{e} \rrbracket: \mathbb{M} \rightarrow \mathcal{P}(\mathbb{V} \uplus\{\Omega\}) \\
\llbracket \operatorname{rand}() \rrbracket(m)=\mathbb{V} \\
\llbracket v \rrbracket(m)=\{v\} \\
\llbracket \mathrm{c} \rrbracket: \mathbb{M} \rightarrow \mathcal{P}\left(\mathbb{V}_{\text {bool }} \uplus\{\Omega\}\right)
\end{gathered}
$$

- all instructions induce non determinism

Semantics of real world programming languages

C language:

- several norms: ANSI C'99, ANSI C'11, K\&R...
- not fully specified:
- undefined behavior
- implementation dependent behavior: architecture (ABI) or implementation (compiler...)
- unspecified parts: leave room for implementation of compilers and optimizations
- formalizations in HOL (C'99), in Coq (CompCert C compiler)

OCaml language:

- more formal...
- ... but still with some unspecified parts, e.g., execution order

Outline

(1) Transition systems and small step semantics
(2) Traces semantics

- Definitions
- Finite traces semantics
- Fixpoint definition
- Compositionality
- Infinite traces semantics

Execution traces

- So far, we considered only states and atomic transitions
- We now consider program executions as a whole

Definition: traces

- A finite trace is a finite sequence of states s_{0}, \ldots, s_{n}, noted $\left\langle s_{0}, \ldots, s_{n}\right\rangle$
- An infinite trace is an infinite sequence of states $\left\langle s_{0}, \ldots\right\rangle$

Besides, we write:

- \mathbb{S}^{*} for the set of finite traces
- \mathbb{S}^{ω} for the set of infinite traces
- $\mathbb{S}^{\alpha}=\mathbb{S}^{*} \cup \mathbb{S}^{\omega}$ for the set of finite or infinite traces

Operations on traces: concatenation

Definition: concatenation

The concatenation operator • is defined by:

$$
\begin{aligned}
\left\langle s_{0}, \ldots, s_{n}\right\rangle \cdot\left\langle s_{0}^{\prime}, \ldots, s_{n^{\prime}}^{\prime}\right\rangle & =\left\langle s_{0}, \ldots, s_{n}, s_{0}^{\prime}, \ldots, s_{n^{\prime}}^{\prime}\right\rangle \\
\left\langle s_{0}, \ldots, s_{n}\right\rangle \cdot\left\langle s_{0}^{\prime}, \ldots\right\rangle & =\left\langle s_{0}, \ldots, s_{n}, s_{0}^{\prime}, \ldots\right\rangle \\
\left\langle s_{0}, \ldots, s_{n}, \ldots\right\rangle \cdot \sigma^{\prime} & =\left\langle s_{0}, \ldots, s_{n}, \ldots\right\rangle
\end{aligned}
$$

We also define:

- the empty trace ϵ, neutral element for .
- the length operator |.|:

$$
\left\{\begin{array}{lll}
|\epsilon| & = & 0 \\
\left|\left\langle s_{0}, \ldots, s_{n}\right\rangle\right| & = & n+1 \\
\left|\left\langle s_{0}, \ldots\right\rangle\right| & =\omega
\end{array}\right.
$$

Comparing traces: the prefix order relation

Definition: prefix order relation
Relation \prec is defined by:

$$
\begin{aligned}
\left\langle s_{0}, \ldots, s_{n}\right\rangle \prec\left\langle s_{0}^{\prime}, \ldots, s_{n^{\prime}}^{\prime}\right\rangle & \Longleftrightarrow\left\{\begin{array}{l}
n \leq n^{\prime} \\
\forall i \in \llbracket 0, n \rrbracket, s_{i}=s_{i}^{\prime}
\end{array}\right. \\
\left\langle s_{0}, \ldots\right\rangle \prec\left\langle s_{0}^{\prime}, \ldots\right\rangle & \Longleftrightarrow \forall i \in \mathbb{N}, s_{i}=s_{i}^{\prime} \\
\left\langle s_{0}, \ldots, s_{n}\right\rangle \prec\left\langle s_{0}^{\prime}, \ldots\right\rangle & \Longleftrightarrow \forall i \in \llbracket 0, n \rrbracket, s_{i}=s_{i}^{\prime}
\end{aligned}
$$

Proof: straightforward application of the definition of order relations

Outline

(1) Transition systems and small step semantics
(2) Traces semantics

- Definitions
- Finite traces semantics
- Fixpoint definition
- Compositionality
- Infinite traces semantics

Semantics of finite traces

We consider a transition system $\mathcal{S}=(\mathbb{S}, \rightarrow)$

Definition

The finite traces semantics $\llbracket \mathcal{S} \rrbracket^{*}$ is defined by:

$$
\llbracket \mathcal{S} \rrbracket^{*}=\left\{\left\langle s_{0}, \ldots, s_{n}\right\rangle \in \mathbb{S}^{*} \mid \forall i, s_{i} \rightarrow s_{i+1}\right\}
$$

Example:

- contrived transition system $\mathcal{S}=(\{a, b, c, d\},\{(a, b),(b, a),(b, c)\})$
- finite traces semantics:

$$
\begin{aligned}
& \llbracket \mathcal{S} \rrbracket^{*}=\{\epsilon, \\
& \langle a, b, \ldots, a, b, a\rangle, \quad\langle b, a, \ldots, a, b, a\rangle, \\
& \langle a, b, \ldots, a, b, a, b\rangle, \quad\langle b, a, \ldots, a, b, a, b\rangle, \\
& \langle a, b, \ldots, a, b, a, b, c\rangle, \quad\langle b, a, \ldots, a, b, a, b, c\rangle \\
& \langle c\rangle, \\
& \langle d\rangle
\end{aligned}
$$

Interesting subsets of the finite trace semantics

We consider a transition system $\mathcal{S}=\left(\mathbb{S}, \rightarrow, \mathbb{S}_{\mathcal{I}}, \mathbb{S}_{\mathcal{F}}\right)$

- the initial traces, i.e., starting from an initial state:

$$
\left\{\left\langle s_{0}, \ldots, s_{n}\right\rangle \in \llbracket \mathcal{S} \rrbracket^{*} \mid s_{0} \in \mathbb{S}_{\mathcal{I}}\right\}
$$

- the traces reaching a blocking state:

$$
\left\{\sigma \in \llbracket \mathcal{S} \rrbracket^{*} \mid \forall \sigma^{\prime} \in \llbracket \mathcal{S} \rrbracket^{*}, \sigma \prec \sigma^{\prime} \Longrightarrow \sigma=\sigma^{\prime}\right\}
$$

- the traces ending in a final state:

$$
\left\{\left\langle s_{0}, \ldots, s_{n}\right\rangle \in \llbracket \mathcal{S} \rrbracket^{*} \mid s_{n} \in \mathbb{S}_{\mathcal{F}}\right\}
$$

- the maximal traces are both initial and final

Example (same transition system, with $\mathbb{S}_{\mathcal{I}}=\{a\}$ and $\mathbb{S}_{\mathcal{F}}=\{c\}$):

- traces from an initial state ending in a final state:

$$
\{\langle a, b, \ldots, a, b, a, b, c\rangle\}
$$

Example: finite automaton

We consider the example of the previous course:

$$
\begin{array}{cl}
L=\{a, b\} & Q=\left\{q_{0}, q_{1}, q_{2}\right\} \\
q_{\mathrm{i}}=q_{0} & q_{\mathrm{f}}=q_{2} \\
q_{0} \xrightarrow{a} q_{1} & q_{1} \xrightarrow{b} q_{2} \quad q_{2} \xrightarrow{a} q_{1}
\end{array}
$$

Then, we have the following traces:

$$
\begin{aligned}
& \tau_{0}=\left\langle\left(q_{0}, a b\right),\left(q_{1}, b\right),\left(q_{2}, \epsilon\right)\right\rangle \\
& \tau_{1}=\left\langle\left(q_{0}, a b a b\right),\left(q_{1}, b a b\right),\left(q_{2}, a b\right),\left(q_{1}, b\right),\left(q_{2}, \epsilon\right)\right\rangle \\
& \tau_{2}=\left\langle\left(q_{0}, a b a b a b\right),\left(q_{1}, b a b a b\right),\left(q_{2}, a b a b\right),\left(q_{1}, b a b\right)\right\rangle \\
& \tau_{3}=\left\langle\left(q_{0}, a b a a a\right),\left(q_{1}, b a a a\right),\left(q_{2}, a a a\right),\left(q_{1}, a a\right)\right\rangle
\end{aligned}
$$

Then:

- τ_{0}, τ_{1} are initial traces, reaching a final state
- τ_{2} is an initial trace, and is not maximal
- τ_{3} reaches a blocking state, but not a final state

Example: λ-term

We consider λ-term $\lambda y \cdot((\lambda x \cdot y)((\lambda x \cdot x x)(\lambda x \cdot x x)))$, and show two traces generated from it (at each step the reduced lambda is shown in red):

$$
\left.\begin{array}{rl}
\tau_{0}=\langle\quad & \lambda y \cdot((\lambda x \cdot y)((\lambda x \cdot x x)(\lambda x \cdot x x))) \\
& \lambda y \cdot y\rangle
\end{array}\right\} \begin{aligned}
& \\
& \tau_{1}=\langle\quad \lambda y \cdot((\lambda x \cdot y)((\lambda x \cdot x x)(\lambda x \cdot x x))), \\
& \lambda y \cdot((\lambda x \cdot y)((\lambda x \cdot x x)(\lambda x \cdot x x))), \\
&\lambda y \cdot((\lambda x \cdot y)((\lambda x \cdot x x)(\lambda x \cdot x x)))\rangle
\end{aligned}
$$

Then:

- τ_{0} is a maximal trace; it reaches a blocking state (no more reduction can be done)
- τ_{1} can be extended for arbitrarily many steps ; the second part of the course will study infinite traces

Example: imperative program

Similarly, we can write the traces of a simple imperative program:
$\kappa_{0}: \quad \mathrm{x}:=1$;
$\mathfrak{l}_{1}: ~ y:=0$;
I_{2} : while $(x<4)\{$
$\zeta_{3}: \quad y:=y+x ;$
$\varsigma_{4}: \quad \mathrm{x}:=\mathrm{x}+1$;
55 : \}
τ_{6} : (final program point)

$$
\tau=\left\langle\left(f_{0},(x=6, y=8)\right),\left(\mathfrak{c}_{1},(x=1, y=8)\right)\right.
$$

$$
\left.\left(\zeta_{2}, 0 x=1, y=0\right)\right),\left(\zeta_{3},(x=1, y=0)\right)
$$

$$
\left(\mathscr{L}_{4},(\mathrm{x}=1, \mathrm{y}=1)\right),\left(\mathcal{L}_{5},(\mathrm{x}=2, \mathrm{y}=1)\right)
$$

$$
\left(f_{3},(x=2, y=1)\right),\left(L_{4},(x=2, y=3)\right)
$$

$$
\left(6_{5},(x=3, y=3)\right),\left(c_{3},(x=3, y=3)\right),
$$

$$
\left(f_{4},(x=3, y=6)\right),\left(L_{5},(x=4, y=6)\right)
$$

$$
\left({\left.\left.\kappa_{6},(x=4, y=6)\right)\right\rangle}\right.
$$

- very precise description of what the program does...
- ... but quite cumbersome

Outline

(1) Transition systems and small step semantics
(2) Traces semantics

- Definitions
- Finite traces semantics
- Fixpoint definition
- Compositionality
- Infinite traces semantics

Towards a fixpoint definition

We consider again our contrived transition system

$$
\mathcal{S}=(\{a, b, c, d\},\{(a, b),(b, a),(b, c)\})
$$

Traces by length:

i	traces of length i
0	ϵ
1	$\langle a\rangle,\langle b\rangle,\langle c\rangle,\langle d\rangle$
2	$\langle a, b\rangle,\langle b, a\rangle,\langle b, c\rangle$
3	$\langle a, b, a\rangle,\langle b, a, b\rangle,\langle a, b, c\rangle$
4	$\langle a, b, a, b\rangle,\langle b, a, b, a\rangle,\langle b, a, b, c\rangle$

Like the automaton in lecture 1, this suggests a least fixpoint definition: traces of length $i+1$ can be derived from the traces of length i, by adding a transition

Trace semantics fixpoint form

We define a semantic function, that computes the traces of length $i+1$ from the traces of length i (where $i \geq 1$), and adds the traces of length 1 :

Finite traces semantics as a fixpoint
Let $\mathcal{I}=\{\epsilon\} \cup\{\langle s\rangle \mid s \in \mathbb{S}\}$. Let F_{*} be the function defined by:
$F_{*}: \mathcal{P}\left(\mathbb{S}^{*}\right) \longrightarrow \mathcal{P}\left(\mathbb{S}^{*}\right)$

$$
X \quad \longmapsto \mathcal{I} \cup\left\{\left\langle s_{0}, \ldots, s_{n}, s_{n+1}\right\rangle \mid\left\langle s_{0}, \ldots, s_{n}\right\rangle \in X \wedge s_{n} \rightarrow s_{n+1}\right\}
$$

Then, F_{*} is continuous and thus has a least-fixpoint and:

$$
\text { Ifp } F_{*}=\llbracket \mathcal{S} \rrbracket^{*}=\bigcup_{n \in \mathbb{N}} F_{*}^{n}(\emptyset)
$$

Fixpoint definition: proof (1), fixpoint existence

First, we prove that F_{*} is continuous.
Let $\mathcal{X} \subseteq \mathcal{P}\left(\mathbb{S}^{*}\right)$ such that $\mathcal{X} \neq \emptyset$ and $A=\bigcup_{U \in \mathcal{X}} U$. Then:

$$
\begin{aligned}
& F_{*}\left(\cup_{X \in \mathcal{X}} X\right) \\
& =\mathcal{I} \cup\left\{\left\langle s_{0}, \ldots, s_{n}, s_{n+1}\right\rangle \mid\left(\left\langle s_{0}, \ldots, s_{n}\right\rangle \in \bigcup_{U \in \mathcal{X}} U\right) \wedge s_{n} \rightarrow s_{n+1}\right\} \\
& =\mathcal{I} \cup\left\{\left\langle s_{0}, \ldots, s_{n}, s_{n+1}\right\rangle \mid \exists U \in \mathcal{X},\left\langle s_{0}, \ldots, s_{n}\right\rangle \in U \wedge s_{n} \rightarrow s_{n+1}\right\} \\
& =\mathcal{I} \cup\left(\bigcup_{U \in \mathcal{X}}\left\{\left\langle s_{0}, \ldots, s_{n}, s_{n+1}\right\rangle \mid\left\langle s_{0}, \ldots, s_{n}\right\rangle \in U \wedge s_{n} \rightarrow s_{n+1}\right\}\right) \\
& =\bigcup_{U \in \mathcal{X}}\left(\mathcal{I} \cup\left\{\left\langle s_{0}, \ldots, s_{n}, s_{n+1}\right\rangle \mid\left\langle s_{0}, \ldots, s_{n}\right\rangle \in U \wedge s_{n} \rightarrow s_{n+1}\right\}\right) \\
& =\bigcup_{U \in \mathcal{X}} F_{*}(U)
\end{aligned}
$$

In particular, this is true for any increasing chain \mathcal{X} (here, we considered any non empty family), hence F_{*} is continuous.
As $\left(\mathcal{P}\left(\mathbb{S}^{*}\right), \subseteq\right)$ is a CPO, the continuity of F_{*} entails the existence of a least-fixpoint (Kleene theorem); moreover, it implies that:

$$
\text { Ifp } F_{*}=\bigcup_{n \in \mathbb{N}} F_{*}^{n}(\emptyset)
$$

Fixpoint definition: proof (2), fixpoint equality

We now show that $\llbracket \mathcal{S} \rrbracket^{*}$ is equal to Ifp F_{*}, by showing the property below, by induction over n :

$$
\forall k<n,\left\langle s_{0}, \ldots, s_{k}\right\rangle \in F_{*}^{n}(\emptyset) \Longleftrightarrow\left\langle s_{0}, \ldots, s_{k}\right\rangle \in \llbracket \mathcal{S} \rrbracket^{*}
$$

- at rank 0 , only trace ϵ needs to be considered, and its case is trivial
- at rank $n+1$, we need to consider both traces of length 1 (the case of which is trivial) and traces of length $n+1$ for some integer $n \geq 1$:

$$
\begin{aligned}
& \left\langle s_{0}, \ldots, s_{k}, s_{k+1}\right\rangle \in \llbracket \mathcal{S} \rrbracket^{*} \\
& \Longleftrightarrow \Longleftrightarrow\left\langle s_{0}, \ldots, s_{k}\right\rangle \in \llbracket \mathcal{S} \rrbracket^{*} \wedge s_{k} \rightarrow s_{k+1} \\
& \Longleftrightarrow\left\langle s_{0}, \ldots, s_{k}\right\rangle \in F_{*}^{n}(\emptyset) \wedge s_{k} \rightarrow s_{k+1} \quad(k<n \text { since } k+1<n+1) \\
& \Longleftrightarrow\left\langle s_{0}, \ldots, s_{k}, s_{k+1}\right\rangle \in F_{*}^{n+1}(\emptyset)
\end{aligned}
$$

Trace semantics fixpoint form: example

Example, with the same simple transition system $\mathcal{S}=(\mathbb{S}, \rightarrow)$:

- $\mathbb{S}=\{a, b, c, d\}$
- \rightarrow is defined by $a \rightarrow b, b \rightarrow a$ and $b \rightarrow c$

Then, the first iterates are:

$$
\begin{aligned}
F_{*}^{0}(\emptyset) & =\emptyset \\
F_{*}^{1}(\emptyset) & =\{\epsilon,\langle a\rangle,\langle b\rangle,\langle c\rangle,\langle d\rangle\} \\
F_{*}^{2}(\emptyset) & =F_{*}^{1}(\emptyset) \cup\{\langle b, a\rangle,\langle a, b\rangle,\langle b, c\rangle\} \\
F_{*}^{3}(\emptyset) & =F_{*}^{2}(\emptyset) \cup\{\langle a, b, a\rangle,\langle b, a, b\rangle,\langle a, b, c\rangle\} \\
F_{*}^{4}(\emptyset) & =F_{*}^{3}(\emptyset) \cup\{\langle b, a, b, a\rangle,\langle a, b, a, b\rangle,\langle b, a, b, c\rangle\} \\
F_{*}^{5}(\emptyset) & =F_{*}^{4}(\emptyset) \cup\{\langle a, b, a, b, a\rangle,\langle b, a, b, a, b\rangle,\langle a, b, a, b, c\rangle\} \\
F_{*}^{6}(\emptyset) & =\cdots
\end{aligned}
$$

The traces of $\llbracket \mathcal{S} \rrbracket^{*}$ of length $n+1$ appear in $F_{*}^{n}(\emptyset)$

Outline

(1) Transition systems and small step semantics
(2) Traces semantics

- Definitions
- Finite traces semantics
- Fixpoint definition
- Compositionality
- Infinite traces semantics

Notion of compositional semantics

The traces semantics definition we have seen is global:

- the whole system defines a transition relation
- we iterate this relation until we get a fixpoint

Though, a modular definition would be nicer, to allow reasoning on program fragments, or derive properties of a program from properties of its pieces...

Can we derive a more modular expression of the semantics ?

Notion of compositional semantics

Observation: programs often have an inductive structure

- λ-terms are defined by induction over the syntax
- imperative programs are defined by induction over the syntax
- there are exceptions: our MIPS language does not naturally look that way

Definition: compositional semantics

A semantics $\llbracket . \rrbracket$ is said to be compositional when the semantics of a program can be defined as a function of the semantics of its parts, i.e., When program π writes down as $C\left[\pi_{0}, \ldots, \pi_{k}\right]$ where π_{0}, \ldots, π_{k} are its components, there exists a function F_{C} such that $\llbracket \pi \rrbracket=F_{C}\left(\llbracket \pi_{0} \rrbracket, \ldots, \llbracket \pi_{k} \rrbracket\right)$, where F_{C} depends only on syntactic construction F_{C}.

Case of a simplified imperative language

Case of a sequence of two instructions $b \equiv \mathscr{l}_{0}: i_{0} ; \mathfrak{l}_{1}: i_{1} ; \mathfrak{l}_{2}$:

$$
\begin{aligned}
\llbracket \mathrm{b} \rrbracket^{*}= & \llbracket \mathrm{i}_{0} \rrbracket^{*} \cup \llbracket \mathrm{i}_{1} \rrbracket^{*} \\
& \cup\left\{\left\langle s_{0}, \ldots, s_{m}\right\rangle \mid \exists n \in \llbracket 0, m \rrbracket,\right. \\
& \left.\left\langle s_{0}, \ldots, s_{n}\right\rangle \in \llbracket \mathrm{i}_{0} \rrbracket^{*} \wedge\left\langle s_{n}, \ldots, s_{m}\right\rangle \in \llbracket i_{1} \rrbracket^{*}\right\}
\end{aligned}
$$

This amounts to concatenating traces of $\llbracket i_{0} \rrbracket^{*}$ and $\llbracket i_{1} \rrbracket^{*}$ that share a state in common (necessarily at point l_{1}).

Cases of a condition, a loop: similar

- by concatenation of traces around junction points
- by doing a least-fixpoint computation over loops

We can provide a compositional semantics for our simplified imperative language

Case of λ-calculus

Case of a λ-term $t=(\lambda x \cdot u) v$:

- executions may start with a reduction in u
- executions may start with a reduction in v
- executions may start with the reduction of the head redex
- an execution may mix reductions steps in u and v in an arbitrary order

No nice compositional trace semantics of λ-calculus...

Outline

(1) Transition systems and small step semantics
(2) Traces semantics

- Definitions
- Finite traces semantics
- Fixpoint definition
- Compositionality
- Infinite traces semantics

Non termination

Can the finite traces semantics express non termination ?

Consider the case of our contrived system:

$$
\mathbb{S}=\{a, b, c, d\} \quad(\rightarrow)=\{(a, b),(b, a),(b, c)\}
$$

System behaviors:

- this system clearly has non-terminating behaviors: it can loop from a to b and back forever
- the finite traces semantics does show the existence of this cycle as there exists an infinite chain of finite traces for the prefix order \prec :

$$
\langle a, b\rangle,\langle a, b, a\rangle,\langle a, b, a, b\rangle,\langle a, b, a, b, a\rangle, \ldots \in \llbracket \mathcal{S} \rrbracket^{*}
$$

- though, the existence of this chain is not very obvious

Thus, we now define a semantics made of infinite traces

Semantics of infinite traces

We consider a transition system $\mathcal{S}=(\mathbb{S}, \rightarrow)$

Definition

The infinite traces semantics $\llbracket \mathcal{S} \rrbracket^{\omega}$ is defined by:

$$
\llbracket \mathcal{S} \rrbracket^{\omega}=\left\{\left\langle s_{0}, \ldots\right\rangle \in \mathbb{S}^{\omega} \mid \forall i, s_{i} \rightarrow s_{i+1}\right\}
$$

Infinite traces starting from an initial state (considering $\left.\mathcal{S}=\left(\mathbb{S}, \rightarrow, \mathbb{S}_{\mathcal{I}}, \mathbb{S}_{\mathcal{F}}\right)\right):$

$$
\left\{\left\langle s_{0}, \ldots\right\rangle \in \llbracket \mathcal{S} \rrbracket^{\omega} \mid s_{0} \in \mathbb{S}_{\mathcal{I}}\right\}
$$

Example:

- contrived transition system defined by

$$
\mathbb{S}=\{a, b, c, d\} \quad(\rightarrow)=\{(a, b),(b, a),(b, c)\}
$$

- the infinite traces semantics contains exactly two traces

$$
\llbracket \mathcal{S} \rrbracket^{\omega}=\{\langle a, b, \ldots, a, b, a, b, \ldots\rangle,\langle b, a, \ldots, b, a, b, a, \ldots\rangle\}
$$

Fixpoint form

Can we also provide a fixpoint form for $\llbracket \mathfrak{S} \rrbracket^{\omega}$?

Intuitively, $\left\langle s_{0}, s_{1}, \ldots\right\rangle \in \llbracket \mathcal{S} \rrbracket^{\omega}$ if and only if $\forall n, s_{n} \rightarrow s_{n+1}$, i.e.,

$$
\forall n \in \mathbb{N}, \forall k \leq n, s_{k} \rightarrow s_{k+1}
$$

Let F_{ω} be defined by:

$$
\begin{aligned}
F_{\omega}: \mathcal{P}\left(\mathbb{S}^{\omega}\right) & \longrightarrow \mathcal{P}\left(\mathbb{S}^{\omega}\right) \\
X & \longmapsto\left\{\left\langle s_{0}, s_{1}, \ldots, s_{n}, \ldots\right\rangle \mid\left\langle s_{1}, \ldots, s_{n}, \ldots\right\rangle \in X \wedge s_{0} \rightarrow s_{1}\right\}
\end{aligned}
$$

Then, we can show by induction that:

$$
\begin{aligned}
\sigma \in \llbracket \mathcal{S} \rrbracket^{\omega} & \Longleftrightarrow \not \forall n \in \mathbb{N}, \sigma \in F_{\omega}^{n}\left(\mathbb{S}^{\omega}\right) \\
& \Longleftrightarrow \bigcap_{n \in \mathbb{N}} F_{\omega}^{n}\left(\mathbb{S}^{\omega}\right)
\end{aligned}
$$

Fixpoint form of the semantics of infinite traces

Infinite traces semantics as a fixpoint

Let F_{ω} be the function defined by:

$$
\begin{aligned}
F_{\omega}: \mathcal{P}\left(\mathbb{S}^{\omega}\right) & \longrightarrow \mathcal{P}\left(\mathbb{S}^{\omega}\right) \\
X & \longmapsto\left\{\left\langle s_{0}, s_{1}, \ldots, s_{n}, \ldots\right\rangle \mid\left\langle s_{1}, \ldots, s_{n}, \ldots\right\rangle \in X \wedge s_{0} \rightarrow s_{1}\right\}
\end{aligned}
$$

Then, F_{ω} is \cap-continuous and thus has a greatest-fixpoint; moreover:

$$
\operatorname{gfp} F_{\omega}=\llbracket S \rrbracket^{\omega}=\bigcap_{n \in \mathbb{N}} F_{\omega}^{n}\left(\mathbb{S}^{\omega}\right)
$$

Proof sketch:

- the \cap-contiunity proof is similar as for the \cup-continuity of F_{*}
- by the dual version of Kleene's theorem, $\mathbf{g f p} F_{\omega}$ exists and is equal to $\bigcap_{n \in \mathbb{N}} F_{\omega}^{n}\left(\mathbb{S}^{\omega}\right)$, i.e. to $\llbracket \mathcal{S} \rrbracket^{\omega}$ (similar induction proof)

Fixpoint form of the infinite traces semantics: iterates

Example, with the same simple transition system:

- $\mathbb{S}=\{a, b, c, d\}$
- \rightarrow is defined by $a \rightarrow b, b \rightarrow a$ and $b \rightarrow c$

Then, the first iterates are:

$$
\begin{aligned}
F_{\omega}^{0}\left(\mathbb{S}^{\omega}\right) & =\mathbb{S}^{\omega} \\
F_{\omega}^{1}\left(\mathbb{S}^{\omega}\right) & =\langle a, b\rangle \cdot \mathbb{S}^{\omega} \cup\langle b, a\rangle \cdot \mathbb{S}^{\omega} \cup\langle b, c\rangle \cdot \mathbb{S}^{\omega} \\
\left.F_{\omega}^{2} \mathbb{S}^{\omega}\right) & =\langle b, a, b\rangle \cdot \mathbb{S}^{\omega} \cup\langle a, b, a\rangle \cdot \mathbb{S}^{\omega} \cup\langle a, b, c\rangle \cdot \mathbb{S}^{\omega} \\
F_{\omega}^{3}\left(\mathbb{S}^{\omega}\right) & =\langle a, b, a, b\rangle \cdot \mathbb{S}^{\omega} \cup\langle b, a, b, a\rangle \cdot \mathbb{S}^{\omega} \cup\langle b, a, b, c\rangle \cdot \mathbb{S}^{\omega} \\
F_{\omega}^{4}\left(\mathbb{S}^{\omega}\right) & =\cdots
\end{aligned}
$$

Intuition

- at iterate n, prefixes of length $n+1$ match the traces in the infinite semantics
- only $\langle a, b, \ldots, a, b, a, b, \ldots\rangle$ and $\langle b, a, \ldots, b, a, b, a, \ldots\rangle$ belong to all iterates

Outline

(1) Transition systems and small step semantics
(2) Traces semantics
(3) Summary

Summary

We have discussed today:

- small-step / structural operational semantics: individual program steps
- big-step / natural semantics: program executions as sequences of transitions
- their fixpoint definitions and properties will play a great role to design verification techniques

Next lectures:

- another family of semantics, more compact and compositional
- semantic program and proof methods

