Abstract Interpretation III

Semantics and Application to Program Verification

Antoine Miné

École normale supérieure, Paris
year 2014-2015

Course 12
13 May 2015

Overview

- Last week: non-relational abstract domains
- This week: relational abstract domains
more precise, but more costly
- the need for relational domains
- linear equality domain $\left(\sum_{i} \alpha_{i} V_{i}=\beta_{i}\right)$
- polyhedra domain $\left(\sum_{i} \alpha_{i} V_{i} \geq \beta_{i}\right)$
- practical exercises: relational analysis with the Apron library
- Next week: selected advanced topics on abstract domains

Motivation

Relational assignments and tests

$$
\begin{aligned}
& \text { Example } \\
& X \leftarrow \operatorname{rand}(0,10) ; Y \leftarrow \operatorname{rand}(0,10) ; \\
& \text { if } X \geq Y \text { then } X \leftarrow Y \text { else skip; } \\
& D \leftarrow Y-X ; \\
& \text { assert } D \geq 0
\end{aligned}
$$

Interval analysis:

- $S^{\sharp} \llbracket X \geq Y$? \rrbracket is abstracted as the identity

$$
\text { given } R^{\sharp} \stackrel{\text { def }}{=}[X \mapsto[0,10], Y \mapsto[0,10]]
$$

$$
S^{\sharp} \llbracket \text { if } X \geq Y \text { then } \cdots \rrbracket R^{\sharp}=R^{\sharp}
$$

- $D \leftarrow Y-X$ gives $D \in[0,10]-^{\sharp}[0,10]=[-10,10]$
- the assertion $D \geq 0$ fails

Relational assignments and tests

$$
\begin{aligned}
& \text { Example } \\
& X \leftarrow \operatorname{rand}(0,10) ; Y \leftarrow \operatorname{rand}(0,10) ; \\
& \text { if } X \geq Y \text { then } X \leftarrow Y \text { else skip; } \\
& D \leftarrow Y-X ; \\
& \text { assert } D \geq 0
\end{aligned}
$$

Solution: relational domain

- represent explicitly the information $X \leq Y$
- infer that $X \leq Y$ holds after the if \ldots then \cdots else \cdots
$X \leq Y$ both after $X \leftarrow Y$ when $X \geq Y$, and after skip when $X \leq Y$
- use $X \leq Y$ to deduce that $Y-X \in[0,10]$

[^0]
Relational loop invariants

$$
\begin{aligned}
& \text { Example } \\
& \begin{array}{l}
I \leftarrow 1 ; X \leftarrow 0 \text {; } \\
\text { while } I \leq 1000 \text { do } \\
\quad I \leftarrow I+1 ; X \leftarrow X+1 \text {; } \\
\text { assert } X \leq 1000
\end{array}
\end{aligned}
$$

Interval analysis:

- after iterations with widening, we get in 2 iterations:
as loop invariant: $I \in[1,+\infty]$ and $X \in[0,+\infty]$
after the loop: $I \in[1001,+\infty]$ and $X \in[0,+\infty] \Longrightarrow$ assert fails
- using a decreasing iteration after widening, we get:
as loop invariant: $I \in[1,1001]$ and $X \in[0,+\infty]$
after the loop: $I=1001$ and $X \in[0,+\infty] \Longrightarrow$ assert fails
(the test $I \leq 1000$ only refines I, but gives no information on X)
- without widening, we get $I=1001$ and $X=1000 \Longrightarrow$ assert passes but we need 1000 iterations! (\simeq concrete fixpoint computation)

Relational loop invariants

```
Example
\(I \leftarrow 1 ; X \leftarrow 0 ;\)
while \(/ \leq 1000\) do
    \(I \leftarrow I+1 ; X \leftarrow X+1 ;\)
assert \(X \leq 1000\)
```

Solution: relational domain

- infer a relational loop invariant: $I=X+1 \wedge 1 \leq I \leq 1001$
$I=X+1$ holds before entering the loop as $1=0+1$
$I=X+1$ is invariant by the loop body $I \leftarrow I+1$; $X \leftarrow X+1$
(can be inferred in 2 iterations with widening in the polyhedra domain)
- propagate the loop exit condition $I>1000$ to get:
$I=1001$
$X=I-1=1000 \Longrightarrow$ assert passes
Note:
the invariant we seek after the loop exit has an interval form: $X \leq 1000$
but we need to infer a more expressive loop invariant to deduce it

Affine Equalities

The affine equality domain

We look for invariants of the form:

$$
\wedge_{j}\left(\sum_{i=1}^{n} \alpha_{i j} V_{i}=\beta_{j}\right), \alpha_{i j}, \beta_{j} \in \mathbb{Q}
$$

where all the $\alpha_{i j}$ and β_{j} are inferred automatically

We use a domain of affine spaces proposed by Karr in 1976 $\mathcal{E}^{\sharp} \simeq\{$ affine subspaces of $\mathbb{V} \rightarrow \mathbb{R}\}$ (with a suitable machine representation)

Affine equality representation

Machine representation:

$$
\mathcal{E}^{\sharp} \stackrel{\text { def }}{=} \cup_{m}\left\{\langle\mathbf{M}, \vec{C}\rangle \mid \mathbf{M} \in \mathbb{Q}^{m \times n}, \vec{C} \in \mathbb{Q}^{m}\right\} \cup\{\perp\}
$$

- either the constant \perp
- or a pair $\langle\mathbf{M}, \vec{C}\rangle$ where
- $\mathbf{M} \in \mathbb{Q}^{m \times n}$ is a $m \times n$ matrix, $n=|\mathbb{V}|$ and $m \leq n$,
- $\vec{C} \in \mathbb{Q}^{m}$ is a row-vector with m rows
$\langle\mathbf{M}, \vec{C}\rangle$ represents an equation system, with solutions:

$$
\gamma(\langle\mathbf{M}, \vec{C}\rangle) \stackrel{\text { def }}{=}\left\{\vec{V} \in \mathbb{R}^{n} \mid \mathbf{M} \times \vec{V}=\vec{C}\right\}
$$

M should be in row echelon form:

- $\forall i \leq m: \exists k_{i}: M_{i k_{i}}=1$ and $\forall c<k_{i}: M_{i c}=0, \forall I \neq i: M_{l k_{i}}=0$,
- if $i<i^{\prime}$ then $k_{i}<k_{i^{\prime}} \quad$ (leading index)
example:

$$
\left[\begin{array}{lllll}
\mathbf{1} & 0 & 0 & 5 & 0 \\
0 & \mathbf{1} & 0 & 6 & 0 \\
0 & 0 & 1 & 7 & 0 \\
0 & 0 & 0 & 0 & \mathbf{1}
\end{array}\right]
$$

Remarks:
the representation is unique
as $m \leq n=|\mathbb{V}|$, the memory cost is in $\mathcal{O}\left(n^{2}\right)$ at worst
T is represented as the empty equation system: $m=0$

Galois connection

Galois connection:
between arbitrary subsets and affine subsets

$$
\left(\mathcal{P}\left(\mathbb{R}^{|\mathbb{V}|}\right), \subseteq\right) \underset{\alpha}{\leftrightharpoons}\left(A f f\left(\mathbb{R}^{|\mathbb{V}|}\right), \subseteq\right)
$$

- $\gamma(X) \stackrel{\text { def }}{=} \boldsymbol{X}$
(identity)
- $\alpha(X) \stackrel{\text { def }}{=}$ smallest affine subset containing X
$\operatorname{Aff}\left(\mathbb{R}^{|\mathbb{V}|}\right)$ is closed under arbitrary intersections, so we have:

$$
\alpha(X)=\cap\left\{Y \in \operatorname{Aff}\left(\mathbb{R}^{|\mathbb{V}|}\right) \mid X \subseteq Y\right\}
$$

$\operatorname{Aff}\left(\mathbb{R}^{|\mathbb{V}|}\right)$ contains every point in $\mathbb{R}^{|\mathbb{V}|}$
we can also construct $\alpha(X)$ by (abstract) union:
$\alpha(X)=\cup^{\sharp}\{\{x\} \mid x \in X\}$
Notes:

- we have assimilated $\mathbb{V} \rightarrow \mathbb{R}$ to $\mathbb{R}^{|\mathbb{V}|}$
- we have used $\operatorname{Aff}\left(\mathbb{R}^{|\mathcal{V}|}\right)$ instead of the matrix representation \mathcal{E}^{\sharp} for simplicity; a Galois connection also exists between $\mathcal{P}\left(\mathbb{R}^{|\mathbb{V}|}\right)$ and \mathcal{E}^{\sharp}

Normalisation and emptiness testing

Let $\mathbf{M} \times \vec{V}=\vec{C}$ be a system, not necessarily in normal form The Gaussian reduction tells in $\mathcal{O}\left(n^{3}\right)$ time:

- whether the system is satisfiable, and in that case
- gives an equivalent system in normal form
i.e.: it returns an element in \mathcal{E}^{\sharp}

Example:

$$
\begin{aligned}
&\left\{\begin{aligned}
2 X+Y+Z & =19 \\
2 X+Y-Z & =9 \\
\Downarrow & =15
\end{aligned}\right. \\
& \Downarrow \\
&\{X+0.5 Y=7 \\
& Z=5
\end{aligned}
$$

Normalisation and emptiness testing (cont.)

Gaussian reduction algorithm: $\quad \operatorname{Gauss}(\langle\mathbf{M}, \vec{C}\rangle)$

$$
\begin{aligned}
& r \leftarrow 0 \quad \text { (rank r) } \\
& \text { for } c \text { from } 1 \text { to } n \quad \text { (column } c \text {) } \\
& \text { if } \exists \ell>r: M_{\ell c} \neq 0 \quad \text { (pivot } \ell \text {) } \\
& r \leftarrow r+1 \\
& \text { swap }\left\langle\vec{M}_{\ell}, C_{\ell}\right\rangle \text { and }\left\langle\vec{M}_{r}, C_{r}\right\rangle \\
& \text { divide }\left\langle\vec{M}_{r}, C_{r}\right\rangle \text { by } M_{r c} \\
& \text { for } j \text { from } 1 \text { to } n, j \neq r \\
& \text { replace }\left\langle\vec{M}_{j}, C_{j}\right\rangle \text { with }\left\langle\vec{M}_{j}, C_{j}\right\rangle-M_{j c}\left\langle\vec{M}_{r}, C_{r}\right\rangle \\
& \text { if } \exists \ell:\left\langle\vec{M}_{\ell}, C_{\ell}\right\rangle=\langle 0, \ldots, 0, c\rangle, c \neq 0 \\
& \text { then return } \perp \\
& \text { remove all rows }\left\langle\vec{M}_{\ell}, C_{\ell}\right\rangle \text { that equal }\langle 0, \ldots, 0,0\rangle
\end{aligned}
$$

Affine equality operators

Abstract operators:

If $X^{\sharp}, Y^{\sharp} \neq \perp$, we define:
$X^{\sharp} \cap^{\sharp} Y^{\sharp} \stackrel{\text { def }}{=} \operatorname{Gauss}\left(\left\langle\left[\begin{array}{l}\mathbf{M}_{X^{\sharp}} \\ \mathbf{M}_{Y^{\sharp}}\end{array}\right],\left[\begin{array}{c}\vec{C}_{X^{\sharp}} \\ \vec{C}_{Y^{\sharp}}\end{array}\right]\right\rangle\right)$
$X^{\sharp}={ }^{\sharp} Y^{\sharp} \stackrel{\text { def }}{\Longleftrightarrow} \mathbf{M}_{X^{\sharp}}=\mathbf{M}_{Y^{\sharp}} \quad$ and $\quad \vec{C}_{X^{\sharp}}=\vec{C}_{Y^{\sharp}}$
(join equations)
(uniqueness)
$X^{\sharp} \subseteq Y^{\sharp} \stackrel{\text { def }}{\Longleftrightarrow} X^{\sharp} \cap^{\sharp} Y^{\sharp}=X^{\sharp}$
$S^{\sharp} \llbracket \sum_{j} \alpha_{j} V_{j}=\beta ? \rrbracket X^{\sharp} \stackrel{\text { def }}{=} \operatorname{Gauss}\left(\left\langle\left[\begin{array}{c}\mathbf{M}_{X^{\sharp}} \\ \alpha_{1} \cdots \alpha_{n}\end{array}\right],\left[\begin{array}{c}\vec{C}_{X \sharp} \\ \beta\end{array}\right]\right\rangle\right) \quad$ (add equation)
$S^{\sharp} \llbracket e \bowtie e^{\prime} ? \rrbracket X^{\sharp} \stackrel{\text { def }}{=} X^{\sharp} \quad$ for other tests

Remark:

$$
\begin{aligned}
& \subseteq^{\sharp},=^{\sharp}, \cap^{\sharp},=^{\sharp} \text { and } S^{\sharp} \llbracket \sum_{j} \alpha_{j} V_{j}-\beta=0 ? \rrbracket \text { are exact: } \\
& \left(X^{\sharp} \subseteq^{\sharp} Y^{\sharp} \Longleftrightarrow \gamma\left(X^{\sharp}\right) \subseteq \gamma\left(Y^{\sharp}\right), \quad \gamma\left(X^{\sharp} \cap^{\sharp} \gamma^{\sharp}\right)=\gamma\left(X^{\sharp}\right) \cap \gamma\left(Y^{\sharp}\right), \ldots\right)
\end{aligned}
$$

Affine equality assignment

Non-deterministic assignment: $\quad S^{\sharp} \llbracket V_{j} \leftarrow[-\infty,+\infty] \rrbracket$

Principle: remove all the occurrences of V_{j} but reduce the number of equations by only one (add a single degree of freedom)

Algorithm: assuming V_{j} occurs in M

- Pick the row $\left\langle\vec{M}_{i}, C_{i}\right\rangle$ such that $M_{i j} \neq 0$ and i maximal
- Use it to eliminate all the occurrences of V_{j} in lines before i
(i maximal $\Longrightarrow \mathrm{M}$ stays in row echelon form)
- Remove the row $\left\langle\vec{M}_{i}, C_{i}\right\rangle$

Example: forgetting Z
$\left\{\begin{aligned} & X+Z=10 \\ & Y+Z=7\end{aligned} \quad \Longrightarrow \quad\{X-Y=3\right.$
The operator is exact

Affine equality assignment

Affine assignments: $\quad S^{\sharp} \llbracket V_{j} \leftarrow \sum_{i} \alpha_{i} V_{i}+\beta \rrbracket$

$$
S^{\sharp} \llbracket V_{j} \leftarrow \sum_{i} \alpha_{i} V_{i}+\beta \rrbracket X^{\sharp} \stackrel{\text { def }}{=}
$$

$$
\text { if } \alpha_{j}=0,\left(S^{\sharp} \llbracket V_{j}=\sum_{i} \alpha_{i} V_{i}+\beta ? \rrbracket \circ S^{\sharp} \llbracket V_{j} \leftarrow[-\infty,+\infty] \rrbracket\right) X^{\sharp}
$$

$$
\text { if } \alpha_{j} \neq 0,\langle\mathbf{M}, \vec{C}\rangle \text { where } V_{j} \text { is replaced with } \frac{1}{\alpha_{j}}\left(V_{j}-\sum_{i \neq j} \alpha_{i} V_{i}-\beta\right)
$$ (variable substitution)

Proof sketch: based on properties in the concrete non-invertible assignment: $\alpha_{j}=0$

$$
\mathrm{S} \llbracket V_{j} \leftarrow e \rrbracket=\mathrm{S} \llbracket V_{j} \leftarrow e \rrbracket \circ \mathrm{~S} \llbracket V_{j} \leftarrow[-\infty,+\infty] \rrbracket \text { as the value of } V \text { is not used in } e
$$

$$
\text { so } \mathrm{S} \llbracket V_{j} \leftarrow e \rrbracket=\mathrm{S} \llbracket V_{j}=e ? \rrbracket \circ \mathrm{~S} \llbracket V_{j} \leftarrow[-\infty,+\infty] \rrbracket
$$

invertible assignment: $\alpha_{j} \neq 0$

$$
\begin{aligned}
& \mathrm{S} \llbracket V_{j} \leftarrow e \rrbracket \subsetneq \mathrm{~S} \llbracket V_{j} \leftarrow e \rrbracket \circ \mathrm{~S} \llbracket V_{j} \leftarrow[-\infty,+\infty] \rrbracket \text { as } e \text { depends on } V \\
& \rho \in \mathrm{~S} \llbracket V_{j} \leftarrow e \rrbracket R \Longleftrightarrow \exists \rho^{\prime} \in R: \rho=\rho^{\prime}\left[V_{j} \mapsto \sum_{i} \alpha_{i} \rho^{\prime}\left(V_{i}\right)+\beta\right] \\
& \Longleftrightarrow \exists \rho^{\prime} \in R: \rho\left[V_{j} \mapsto\left(\rho\left(V_{j}\right)-\sum_{i \neq j} \alpha_{i} \rho^{\prime}\left(V_{i}\right)-\beta\right) / \alpha_{j}\right]=\rho^{\prime} \\
& \Longleftrightarrow \quad \rho\left[V_{j} \mapsto\left(\rho\left(V_{j}\right)-\sum_{i \neq j} \alpha_{i} \rho\left(V_{i}\right)-\beta\right) / \alpha_{j}\right] \in R
\end{aligned}
$$

Non-affine assignments: revert to non-deterministic case

$$
S^{\sharp} \llbracket V_{j} \leftarrow e \rrbracket X^{\sharp} \stackrel{\text { def }}{=} S^{\sharp} \llbracket V_{j} \leftarrow[-\infty,+\infty] \rrbracket X^{\sharp}
$$

Affine equality join

Join: $\langle\mathbf{M}, \vec{C}\rangle \cup^{\sharp}\langle\mathbf{N}, \vec{D}\rangle$
Idea: unify columns 1 to n of $\langle\mathbf{M}, \vec{C}\rangle$ and $\langle\mathbf{N}, \vec{D}\rangle$ using row operations

Example:

Assume that we have unified columns 1 to k to get $\binom{\mathbf{R}}{\mathbf{0}}$, arguments are in row echelon form, and we have to unify at column $k+1:{ }^{t}(\overrightarrow{0} 1 \overrightarrow{0})$ with ${ }^{t}\left(\begin{array}{ll}\vec{\beta} & 0\end{array}\right)$

$$
\left(\begin{array}{ccc}
\mathrm{R} & \overrightarrow{0} & \mathrm{M}_{1} \\
\overrightarrow{0} & 1 & \vec{M}_{2} \\
0 & \overrightarrow{0} & \mathrm{M}_{3}
\end{array}\right),\left(\begin{array}{ccc}
\mathrm{R} & \vec{\beta} & \mathrm{~N}_{1} \\
\overrightarrow{0} & 0 & \overrightarrow{N_{2}} \\
0 & \overrightarrow{0} & \mathrm{~N}_{3}
\end{array}\right) \Longrightarrow\left(\begin{array}{ccc}
\mathrm{R} & \vec{\beta} & \mathrm{M}_{1}^{\prime} \\
\overrightarrow{0} & 0 & \overrightarrow{0} \\
0 & \overrightarrow{0} & \mathrm{M}_{3}
\end{array}\right),\left(\begin{array}{ccc}
\mathrm{R} & \vec{\beta} & \mathrm{~N}_{1} \\
\overrightarrow{0} & 0 & \overrightarrow{N_{2}} \\
0 & \overrightarrow{0} & \mathrm{~N}_{3}
\end{array}\right)
$$

Use the row ($\overrightarrow{0} 1 \vec{M}_{2}$) to create $\vec{\beta}$ in the left argument
Then remove the row ($\overrightarrow{0} 1 \vec{M}_{2}$)
The right argument is unchanged
\Longrightarrow we have now unified columns 1 to $k+1$
Unifying ${ }^{t}(\vec{\alpha} 0 \overrightarrow{0})$ and ${ }^{t}(\overrightarrow{0} 1 \overrightarrow{0})$ is similar
Unifying ${ }^{t}(\vec{\alpha} 0 \overrightarrow{0})$ and ${ }^{t}(\vec{\beta} 0 \overrightarrow{0})$ is a bit more complicated. .
No other case possible as we are in row echelon form

Analysis example

No infinite increasing chain: we can iterate without widening!

$$
\begin{aligned}
& \text { Example } \\
& \begin{array}{l}
X \leftarrow 10 ; Y \leftarrow 100 ; \\
\text { while } X \neq 0 \text { do } \\
X \leftarrow X-1 ; \\
Y \leftarrow Y+10
\end{array}
\end{aligned}
$$

Abstract loop iterations: $\quad \lim \lambda X^{\sharp} . I^{\sharp} \cup^{\sharp} S^{\sharp} \llbracket$ body $\rrbracket\left(S^{\sharp} \llbracket X \neq 0 ? \rrbracket X^{\sharp}\right)$

- loop entry: $I^{\sharp}=(X=10 \wedge Y=100)$
- after one loop body iteration: $F^{\sharp}\left(I^{\sharp}\right)=(X=9 \wedge Y=110)$
- $\Longrightarrow X^{\sharp} \stackrel{\text { def }}{=} I^{\sharp} \cup^{\sharp} F^{\sharp}\left(I^{\sharp}\right)=(10 X+Y=200)$
- X^{\sharp} is stable
at loop exit, we get $S^{\sharp} \llbracket X=0 ? \rrbracket(10 X+Y=200)=(X=0 \wedge Y=200)$

Polyhedra

The polyhedron domain

We look for invariants of the form: $\wedge_{j}\left(\sum_{i=1}^{n} \alpha_{i j} V_{i} \geq \beta_{j}\right)$
We use the polyhedron domain by Cousot and Halbwachs (1978)
$\mathcal{E}^{\sharp} \simeq\{$ closed convex polyhedra of $\mathbb{V} \rightarrow \mathbb{R}\}$

Note: polyhedra need not be bounded (\neq polytopes)

Double description of polyhedra

Polyhedra have dual representations (Weyl-Minkowski Theorem)
Constraint representation
$\langle\mathbf{M}, \vec{C}\rangle$ with $\mathbf{M} \in \mathbb{Q}^{m \times n}$ and $\vec{C} \in \mathbb{Q}^{m}$ represents:

$$
\gamma(\langle\mathbf{M}, \vec{C}\rangle) \stackrel{\text { def }}{=}\{\vec{V} \mid \mathbf{M} \times \vec{V} \geq \vec{C}\}
$$

We will also often use a constraint set notation $\left\{\sum_{i} \alpha_{i j} V_{i} \geq \beta_{j}\right\}$
Generator representation
$[\mathbf{P}, \mathbf{R}]$ where

- $\mathbf{P} \in \mathbb{Q}^{n \times p}$ is a set of p points: $\vec{P}_{1}, \ldots, \vec{P}_{p}$
- $\mathbf{R} \in \mathbb{Q}^{n \times r}$ is a set of r rays: $\vec{R}_{1}, \ldots, \vec{R}_{r}$
$\gamma([\mathbf{P}, \mathbf{R}]) \stackrel{\text { def }}{=}\left\{\left(\sum_{j=1}^{p} \alpha_{j} \vec{P}_{j}\right)+\left(\sum_{j=1}^{r} \beta_{j} \vec{R}_{j}\right) \mid \forall j, \alpha_{j}, \beta_{j} \geq 0: \sum_{j=1}^{p} \alpha_{j}=1\right\}$

Double description of polyhedra (cont.)

Generator representation examples:
$\gamma([\mathbf{P}, \mathbf{R}]) \stackrel{\text { def }}{=}\left\{\left(\sum_{j=1}^{p} \alpha_{j} \vec{P}_{j}\right)+\left(\sum_{j=1}^{r} \beta_{j} \vec{R}_{j}\right) \mid \forall j, \alpha_{j}, \beta_{j} \geq 0: \sum_{j=1}^{p} \alpha_{j}=1\right\}$

Duality in polyhedra

Duality: $\quad P^{*}$ is the dual of P, so that:

- the generators of P^{*} are the constraints of P
- the constraints of P^{*} are the generators of P
- $P^{* *}=P$

Polyhedra representations

Minimal representations

- A constraint / generator system is minimal if no constraint / generator can be omitted without changing the concretization
- Minimal representations are not unique

Example: three different constraint representations for a point

(a)

(b)

(c)

- (a) $y+x \geq 0, y-x \geq 0, y \leq 0, y \geq-5$
- (b) $y+x \geq 0, y-x \geq 0, y \leq 0$
- (c) $x \leq 0, x \geq 0, y \leq 0, y \geq 0$
(minimal)
(minimal)

Polyhedra representations (cont.)

- No bound on the size of representations
(even minimal ones)
- No best abstraction α

Example: a disc has infinitely many polyhedral over-approximations, but no best one

Chernikova's algorithm

Algorithm by Chernikova (1968), improved by LeVerge (1992) to switch from a constraint system to an equivalent generator system

Motivation: most operators are easier on one representation

- By duality, we can use the same algorithm to switch from generators to constraints
- The minimal generator system can be exponential in the original constraint system (e.g., hypercube: $2 n$ constraints, 2^{n} vertices)
- Equality constraints and lines (pairs of opposed rays) may be handled separately and more efficiently
- Chernikova's algorithm minimizes the representation on-the-fly (not presented here)

Algorithm: incrementally add constraints one by one
Start with:

$$
\left\{\begin{array}{l}
\mathbf{P}_{0}=\{(0, \ldots, 0)\} \\
\mathbf{R}_{0}=\left\{\vec{x}_{i},-\vec{x}_{i} \mid 1 \leq i \leq n\right\} \quad \text { (origin) } \\
\text { (axes) }
\end{array}\right.
$$

Chernikova's algorithm (cont.)

Update $\left[\mathbf{P}_{k-1}, \mathbf{R}_{k-1}\right.$] to $\left[\mathbf{P}_{k}, \mathbf{R}_{k}\right]$
by adding one constraint $\vec{M}_{k} \cdot \vec{V} \geq C_{k} \in\langle\mathbf{M}, \vec{C}\rangle$:
start with $\mathbf{P}_{k}=\mathbf{R}_{k}=\emptyset$,

- for any $\vec{P} \in \mathbf{P}_{k-1}$ s.t. $\vec{M}_{k} \cdot \vec{P} \geq C_{k}$, add \vec{P} to \mathbf{P}_{k}
- for any $\vec{R} \in \mathbf{R}_{k-1}$ s.t. $\vec{M}_{k} \cdot \vec{R} \geq 0$, add \vec{R} to \mathbf{R}_{k}
- for any $\vec{P}, \vec{Q} \in \mathbf{P}_{k-1}$ s.t. $\vec{M}_{k} \cdot \vec{P}>C_{k}$ and $\vec{M}_{k} \cdot \vec{Q}<C_{k}$, add to \mathbf{P}_{k} :
$\vec{O} \stackrel{\text { def }}{=} \frac{C_{k}-\vec{M}_{k} \cdot \vec{Q}}{\vec{M}_{k} \cdot \vec{P}-\vec{M}_{k} \cdot \vec{Q}} \vec{P}-\frac{C_{k}-\vec{M}_{k} \cdot \vec{P}}{\vec{M}_{k} \cdot \vec{P}-\vec{M}_{k} \cdot \vec{Q}} \vec{Q}$

Chernikova's algorithm (cont.)

- for any $\vec{R}, \vec{S} \in \mathbf{R}_{k-1}$ s.t. $\vec{M}_{k} \cdot \vec{R}>0$ and $\vec{M}_{k} \cdot \vec{S}<0$, add to \mathbf{R}_{k} :

$$
\vec{O} \stackrel{\text { def }}{=}\left(\vec{M}_{k} \cdot \vec{S}\right) \vec{R}-\left(\vec{M}_{k} \cdot \vec{R}\right) \vec{S}
$$

- for any $\vec{P} \in \mathbf{P}_{k-1}, \vec{R} \in \mathbf{R}_{k-1}$ s.t. either $\vec{M}_{k} \cdot \vec{P}>C_{k}$ and $\vec{M}_{k} \cdot \vec{R}<0$, or $\vec{M}_{k} \cdot \vec{P}<C_{k}$ and $\vec{M}_{k} \cdot \vec{R}>0$, add to \mathbf{P}_{k} : $\vec{O} \stackrel{\text { def }}{=} \vec{P}+\frac{C_{k}-\vec{M}_{k} \cdot \vec{P}}{\vec{M}_{k} \cdot \vec{R}} \vec{R}$

Chernikova's algorithm example

Example:

(0)

$$
\mathbf{P}_{0}=\{(0,0)\} \quad \mathbf{R}_{0}=\{(1,0),(-1,0),(0,1),(0,-1)\}
$$

Chernikova's algorithm example

Example:

$$
\begin{aligned}
& \quad \begin{array}{l}
\mathbf{P}_{0}=\{(0,0)\} \\
\mathbf{P}_{1}=\{(0,1)\}
\end{array} \\
& \begin{array}{ll}
\mathbf{R}_{0}=\{(1,0),(-1,0),(0,1),(0,-1)\} \\
\mathbf{R}_{1}=\{(1,0),(-1,0),(0,1)\}
\end{array}
\end{aligned}
$$

Chernikova's algorithm example

Example:

(0)

(1)
$\mathbf{P}_{0}=\{(0,0)\}$
$\mathbf{P}_{1}=\{(0,1)\}$
$\mathbf{P}_{2}=\{(2,1)\}$

(2)
$Y \geq 1$

$$
\mathbf{R}_{1}=\{(1,0),(-1,0),(0,1)\}
$$

$$
\mathbf{R}_{2}=\{(1,0),(-1,1),(0,1)\}
$$

Chernikova's algorithm example

Example:

(0)

(1)

(2)

(3)

$$
\begin{array}{lll}
& \mathbf{P}_{0}=\{(0,0)\} & \mathbf{R}_{0}=\{(1,0),(-1,0),(0,1),(0,-1)\} \\
Y \geq 1 & \mathbf{P}_{1}=\{(0,1)\} & \mathbf{R}_{1}=\{(1,0),(-1,0),(0,1)\} \\
X+Y \geq 3 & \mathbf{P}_{2}=\{(2,1)\} & \mathbf{R}_{2}=\{(1,0),(-1,1),(0,1)\} \\
X-Y \leq 1 & \mathbf{P}_{3}=\{(2,1),(1,2)\} & \mathbf{R}_{3}=\{(0,1),(1,1)\}
\end{array}
$$

Operators on polyhedra

Abstract operators:

Given $X^{\sharp}, Y^{\sharp} \neq \perp$, we define:

$$
\begin{aligned}
& X^{\sharp} \subseteq^{\sharp} Y^{\sharp} \quad \stackrel{\text { def }}{\Longleftrightarrow} \quad\left\{\begin{array}{l}
\forall \vec{P} \in \mathbf{P}_{X^{\sharp}}: \mathbf{M}_{Y^{\sharp}} \times \vec{P} \geq \vec{C}_{Y^{\sharp}} \\
\forall \vec{R} \in \mathbf{R}_{X^{\sharp}}: \mathbf{M}_{Y^{\sharp}} \times \vec{R} \geq \overrightarrow{0}
\end{array}\right. \\
& X^{\sharp}=Y^{\sharp} \quad Y^{\sharp} \quad{ }^{\text {def }} \quad X^{\sharp} \subseteq Y^{\sharp} \quad \text { and } \quad Y^{\sharp} \subseteq X^{\sharp} \\
& X^{\sharp} \cap^{\sharp} Y^{\sharp} \quad \stackrel{\text { def }}{=} \quad\left\langle\left[\begin{array}{l}
\mathbf{M}_{X \sharp} \\
\mathbf{M}_{Y^{\sharp}}
\end{array}\right],\left[\begin{array}{c}
\vec{C}_{X \sharp} \\
\vec{C}_{Y^{\sharp}}
\end{array}\right]\right\rangle \quad \text { (join constraint sets) } \\
& \subseteq^{\sharp},={ }^{\sharp} \text { and } \cap^{\sharp} \text { are exact (in } \mathcal{P}(\vee \rightarrow \mathbb{R}) \text {) }
\end{aligned}
$$

Operators on polyhedra (cont.)

Join: $\quad X^{\sharp} \cup^{\sharp} Y^{\sharp} \stackrel{\text { def }}{=}\left[\left[\mathbf{P}_{X^{\sharp}} \mathbf{P}_{Y^{\sharp}}\right],\left[\mathbf{R}_{X^{\sharp}} \mathbf{R}_{Y^{\sharp}}\right]\right.$] (join generator sets)
Examples:

two polytopes

U^{\sharp} is optimal (in $\mathcal{P}(\mathbb{V} \rightarrow \mathbb{R})$):
we get the topological closure of the convex hull of $\gamma\left(X^{\sharp}\right) \cup \gamma\left(Y^{\sharp}\right)$

Operators on polyhedra (cont.)

Affine tests:

$$
S^{\sharp} \llbracket \sum_{i} \alpha_{i} V_{i} \geq \beta ? \rrbracket X^{\sharp} \stackrel{\text { def }}{=}\left\langle\left[\begin{array}{c}
\mathbf{M}_{X^{\sharp}} \\
\alpha_{1} \cdots \alpha_{n}
\end{array}\right],\left[\begin{array}{c}
\vec{C}_{X^{\sharp}} \\
\beta
\end{array}\right]\right\rangle
$$

Non-deterministic assignment:

$$
S^{\sharp} \llbracket V_{j} \leftarrow[-\infty,+\infty] \rrbracket X^{\sharp} \stackrel{\text { def }}{=}\left[\mathbf{P}_{X^{\sharp}},\left[\begin{array}{lll}
\mathbf{R}_{X^{\sharp}} & \vec{x}_{j} & \left.\left.\left(-\vec{x}_{j}\right)\right]\right]
\end{array}\right.\right.
$$

- these operators are exact (in $\mathcal{P}(\mathbb{V} \rightarrow \mathbb{R})$)
- other tests can be abstracted as $S^{\sharp} \llbracket c ? \rrbracket X^{\sharp} \stackrel{\text { def }}{=} X^{\sharp}$ (sound but not optimal)

Operators on polyhedra (cont.)

Affine assignment:

$$
\begin{aligned}
& S^{\sharp} \llbracket V_{j} \leftarrow \sum_{i} \alpha_{i} V_{i}+\beta \rrbracket X^{\sharp} \stackrel{\text { def }}{=} \\
& \quad \text { if } \alpha_{j}=0,\left(S^{\sharp} \llbracket \sum_{i} \alpha_{i} V_{i}=V_{j}-\beta ? \rrbracket \circ S^{\sharp} \llbracket V_{j} \leftarrow[-\infty,+\infty] \rrbracket\right) X^{\sharp} \\
& \quad \text { if } \alpha_{j} \neq 0,\langle\mathbf{M}, \vec{C}\rangle \text { where } V_{j} \text { is replaced with } \frac{1}{\alpha_{j}}\left(V_{j}-\sum_{i \neq j} \alpha_{i} V_{i}-\beta\right)
\end{aligned}
$$

- similar to the assignment in the equality domain
- the assignment is exact (in $\mathcal{P}(\vee \rightarrow \mathbb{R})$)
- assignments can also be defined on the generator system
- for non-affine assignments: $S^{\sharp} \llbracket V \leftarrow e \rrbracket \stackrel{\text { def }}{=} S^{\sharp} \llbracket V \leftarrow[-\infty,+\infty] \rrbracket$ (sound but not optimal)

Polyhedra widening

\mathcal{E}^{\sharp} has strictly increasing infinite chains \Longrightarrow we need a widening Definition:
Take X^{\sharp} and Y^{\sharp} in minimal constraint-set form

$$
X^{\sharp} \nabla Y^{\sharp} \quad \stackrel{\text { def }}{=} \quad\left\{c \in X^{\sharp} \mid Y^{\sharp} \subseteq\{c\}\right\}
$$

We suppress any unstable constraint $c \in X^{\sharp}$, i.e., $Y^{\sharp} \not \mathbb{Z}^{\sharp}\{c\}$

Example:

∇

Polyhedra widening

\mathcal{E}^{\sharp} has strictly increasing infinite chains \Longrightarrow we need a widening

Definition:

Take X^{\sharp} and Y^{\sharp} in minimal constraint-set form

$$
\begin{array}{rll}
X^{\sharp} \nabla Y^{\sharp} & \stackrel{\text { def }}{=} & \left\{c \in X^{\sharp} \mid Y^{\sharp} \subseteq \sharp\{c\}\right\} \\
& \cup & \left\{c \in Y^{\sharp} \mid \exists c^{\prime} \in X^{\sharp}: X^{\sharp}=\sharp\left(X^{\sharp} \backslash c^{\prime}\right) \cup\{c\}\right\}
\end{array}
$$

We suppress any unstable constraint $c \in X^{\sharp}$, i.e., $Y^{\sharp} \not \mathbb{Z}^{\sharp}\{c\}$
We also keep constraints $c \in Y^{\sharp}$ equivalent to those in X^{\sharp}, i.e., when $\exists c^{\prime} \in X^{\sharp}: X^{\sharp}=\sharp\left(X^{\sharp} \backslash c^{\prime}\right) \cup\{c\}$

Example:

Example analysis

Example

$$
\begin{aligned}
& X \leftarrow 2 ; I \leftarrow 0 \\
& \text { while } I<10 \text { do } \\
& \quad \text { if rand }(0,1)=0 \text { then } X \leftarrow X+2 \text { else } X \leftarrow X-3 ; \\
& \quad I \leftarrow I+1
\end{aligned}
$$

Loop invariant:
increasing iterations with widening:

$$
\begin{aligned}
X_{1}^{\sharp} & =\{X=2, I=0\} \\
X_{2}^{\sharp} & =\{X=2, I=0\} \nabla(\{X=2, I=0\} \cup \sharp\{X \in[-1,4], I=1\}) \\
& =\{X=2, I=0\} \nabla\{I \in[0,1], 2-3 I \leq X \leq 2 I+2\} \\
& =\{I \geq 0,2-3 I \leq X \leq 2 I+2\}
\end{aligned}
$$

decreasing iteration: (recover $I \leq 10$)

$$
\begin{aligned}
X_{3}^{\#} & =\{X=2, I=0\} \cup \sharp\{I \in[1,10], 2-3 I \leq X \leq 2 I+2\} \\
& =\{I \in[0,10], 2-3 I \leq X \leq 2 I+2\}
\end{aligned}
$$

at the loop exit, we find eventually: $I=10 \wedge X \in[-28,22]$

Partial conclusion

Cost vs. precision:

Domain	Invariants	Memory cost	Time cost (per op.)
intervals	$V \in[\ell, h]$	$\mathcal{O}(\|\mathbb{V}\|)$	$\mathcal{O}(\|\mathbb{V}\|)$
affine equalities	$\sum_{i} \alpha_{i} V_{i}=\beta_{i}$	$\mathcal{O}\left(\|\mathbb{V}\|^{2}\right)$	$\mathcal{O}\left(\|\mathbb{V}\|^{3}\right)$
polyhedra	$\sum_{i} \alpha_{i} V_{i} \geq \beta_{i}$	unbounded, exponential in practice	

- domains provide a tradeoff between precision and cost
- relational invariants are sometimes necessary even to prove non-relational properties
- an abstract domain is defined by
- a choice of abstract properties and operators (semantic aspect)
- data-structures and algorithms (algorithmic aspect)
- an abstract domain mixes two kinds of approximations:
- static approximations (choice of abstract properties)
- dynamic approximations

Weakly relational domains

Principle: restrict the expressiveness of polyhedra

 to be more efficient at the cost of precision
Example domains:

- Based on constraint propagation: (closure algorithms)
- Octagons: $\pm X \pm Y \leq c$
shortest path closure: $x+y \leq c \wedge-y+z \leq d \Longrightarrow x+z \leq c+d$ quadratic memory cost, cubic time cost
- Two-variables per inequality: $\alpha x+\beta y \leq c$
slightly more complex closure algorithm, by Nelson
- Octahedra: $\sum \alpha_{i} V_{i} \leq c, \alpha_{i} \in\{-1,0,1\}$ incomplete propagation, to avoid exponential cost
- Pentagons: $X-Y \leq 0$
restriction of octagons
incomplete propagation, aims at linear cost
- Based on linear programming:
- Template polyhedra: $\mathbf{M} \times \vec{V} \geq \vec{C}$ for a fixed \mathbf{M}

Integers

Issue:

in relational domains we used implicitly real-valued environments $\mathbb{V} \rightarrow \mathbb{R}$ our concrete semantics is based on integer-valued environments $\mathbb{V} \rightarrow \mathbb{Z}$ In fact, an abstract element X^{\sharp} does not represent $\gamma\left(X^{\sharp}\right) \subseteq \mathbb{R}^{|\mathbb{V}|}$, but:

$$
\gamma_{\mathbb{Z}}\left(X^{\sharp}\right) \stackrel{\text { def }}{=} \gamma\left(X^{\sharp}\right) \cap \mathbb{Z}^{|\mathbb{V}|}
$$

(keep only integer points)

Soundness and exactness for $\gamma_{\mathbb{Z}}$

- \subseteq^{\sharp} and $=\sharp$ are is no longer exact e.g., $\gamma(2 X=1) \neq \gamma(\perp)$, but $\gamma_{\mathbb{Z}}(2 X=1)=\gamma(\perp)=\emptyset$
- \cap^{\sharp} and affine tests are still exact
- affine and non-deterministic assignments are no longer exact

$$
\begin{aligned}
& \text { e.g., } R^{\sharp}=(Y=2 X), S^{\sharp} \llbracket X \leftarrow[-\infty,+\infty] \rrbracket R^{\sharp}=\top \text {, } \\
& \text { but } \mathrm{S} \llbracket X \leftarrow[-\infty,+\infty] \rrbracket\left(\gamma_{\mathbb{Z}}\left(R^{\sharp}\right)\right)=\mathbb{Z} \times(2 \mathbb{Z})
\end{aligned}
$$

- all the operators are still sound

$$
\mathbb{Z}^{|\mathbb{V}|} \subseteq \mathbb{R}^{|\mathbb{V}|} \text {, so } \forall X^{\sharp}: \gamma_{\mathbb{Z}}\left(X^{\sharp}\right) \subseteq \gamma\left(X^{\sharp}\right)
$$

(in general, soundness, exactness, optimality depend on the definition of γ)

Integers (cont.)

Possible solutions:

- enrich the domain (add exact representations for operation results)
- congruence equalities: $\wedge_{i} \sum_{j} \alpha_{i j} V_{j} \equiv \beta_{i}\left[\gamma_{i}\right] \quad$ (Granger 1991)
- Pressburger arithmetic decidable, but with very costly algorithms (first order logic with $0,1,+$)
- design optimal (non-exact) operators
also based on costly algorithms, e.g.:
- normalization: integer hull smallest polyhedra containing $\gamma_{Z}\left(X^{\sharp}\right)$
- emptiness testing: integer programming NP-hard, while linear programming is P
- pragmatic solution (efficient, non-optimal) use regular operators for $\mathbb{R}^{|\mathbb{V}|}$, then tighten each constraint to remove as many non-integer points as possible
e.g.: $2 X+6 Y \geq 3 \rightarrow X+3 Y \geq 2$

Note: we abstract integers as reals!

Using the Apron Library

Apron library

Apron modules

The Apron module contains sub-modules:

- Abstract1
abstract elements
- Manager
abstract domains (arguments to all Abstract1 operations)
- Polka
creates a manager for polyhedra abstract elements
- Var
integer or real program variables (denoted as a string)
- Environment
sets of integer and real program variables
- Texpr1
arithmetic expression trees
- Tcons1
arithmetic constraints (based on Texpr1)
- Coeff
numeric coefficients (appear in Texpr1, Tcons1)

Variables and environments

Variables: type var.t
variables are denoted by their name, as a string:
(assumes implicitly that no two program variables have the same name)

- Var.of_string: string -> Var.t

Environments: type Environment.t

an abstract element abstracts a set of mappings in $\mathbb{V} \rightarrow \mathbb{R}$
\mathbb{V} is the environment; it contains integer-valued and real-valued variables

- Environment.make: Var.t array \rightarrow Var.t array \rightarrow t make ivars rvars creates an environment with ivars integer variables and rvars real variables;
make [||] [||] is the empty environment
- Environment.add: Environment.t -> Var.t array \rightarrow Var.t array \rightarrow t add env ivars rvars adds some integer or real variables to env
- Environment.remove: t -> Var.t array -> t
internally, an abstract element abstracts a set of points in \mathbb{R}^{n};
the environment maintains the mapping from variable names to dimensions in $[1, n]$

Expressions

Concrete expression trees: type Texpr1.expr

```
type expr = | Cst of Coeff.t (constants)
    I Var of Var.t (variables)
    | Unop of unop * expr * typ * round (unary op.)
    | Binop of binop * expr * expr * typ * round (binary op.)
```

- unary operators
type Texpr1.unop $=$ Neg | \ldots
- binary operators
type Texpr1.binop = Add | Sub | Mul | Div | ...
- numeric type:
(we only use integers, but reals and floats are also possible)
type Texpr1.typ = Int | ...
- rounding direction:
(only useful for the division on integers; we use rounding to zero, i.e., truncation) type Texpr1.round = Zero | ...

Expressions (cont.)

Internal expression form: type Texpr1.t

concrete expression trees must be converted to an internal form to be used in abstract operations

- Texpr1.of_expr: Environment.t -> Texpr1.expr -> Texpr1.t (the environment is used to convert variable names to dimensions in \mathbb{R}^{n})

Coefficients: type Coeff.t
can be either a scalar $\{c\}$ or an interval $[a, b]$
we can use the Mpqf module to convert from strings to arbitrary precision integers, before converting them into Coeff.t:

- for scalars $\{c\}$:

```
Coeff.s_of_mpqf (Mpqf.of_string c)
```

- for intervals $[a, b]$:

Coeff.i_of_mpqf (Mpqf.of_string a) (Mpqf.of_string b)

Constraints

Constraints: type Tcons1.t
constructor expr $\bowtie 0$:

- Tcons1.make: Texpr1.t \rightarrow TCons1.typ \rightarrow Tcons1.t where:

Note: avoid using DISEQ directly, which is not very precise; but use a disjunction of two SUP constraints instead

Constraint arrays: type Tcons1.earray

abstract operators do not use constraints, but constraint arrays instead
Example: constructing an array ar containing a single constraint:
let $c=$ Tcons1.make texpr1 typ in
let ar = Tcons1.array_make env 1 in
Tcons1.array_set ar 0 c

Abstract operators

Abstract elements: type Abstract1.t

- Abstract1.top: Manager.t -> Environment.t -> t create an abstract element where variables have any value
- Abstract1.env: t -> Environment.t recover the environment on which the abstract element is defined
- Abstract1.change_environment: Manager.t -> t ->

Environment.t -> bool -> t
set the new environment, adding or removing variables if necessary the bool argument should be set to false: variables are not initialized

- Abstract1.assign_texpr: Manager.t -> t -> Var.t -> Texpr1.t ->
t option -> t
abstract assignment; the option argument should be set to None
- Abstract1.forget_array: Manager.t -> t -> Var.t array -> bool -> t non-deterministic assignment: forget the value of variables (when bool is false)
- Abstract1.meet_tcons_array: Manager.t \rightarrow t \rightarrow Tcons1.earray \rightarrow t abstract test: add one or several constraint(s)

Abstract operators (cont.)

- Abstract1.join: Manager.t -> t -> t -> t abstract union \cup^{\sharp}
- Abstract1.meet: Manager.t -> t -> t -> t abstract intersection \cap^{\sharp}
- Abstract1.widen: Manager.t \rightarrow t \rightarrow t \rightarrow t widening ∇
- Abstract1.is_leq: Manager.t -> t \rightarrow t \rightarrow bool \subseteq^{\sharp} : return true if the first argument is included in the second
- Abstract1.is_bottom: Manager.t -> t -> t bool whether the abstract element represents \emptyset
- Abstract1.print: Format.formatter -> t -> unit print the abstract element

Contract:

- operators return a new, immutable abstract element (functional style)
- operators return over-approximations (not always optimal; e.g.: for non-linear expressions)
- predicates return true (definitely true) or false (don't know)

Managers

Managers: type Manager.t

The manager denotes a choice of abstract domain To use the polyhedra domain, construct the manager with:

- let manager = Polka.manager_alloc_loose ()
the same manager variable is passed to all Abstract1 function
to choose another domain, you only need to change the line defining manager Other libraries:
- Polka.manager_alloc_equalities
- Polka.manager_alloc_strict
- Box.manager_alloc
- Oct.manager_alloc
- Ppl.manager_alloc_grid
- PolkaGrid.manager_alloc
(affine equalities)
(\geq and $>$ affine inequalities over \mathbb{R})
(affine inequalities and congruences)

Errors

Argument compatibility: ensure that:

- the same manager is used when creating and using an abstract element the type system checks for the compatibility between 'a Manager.t and 'a Abstract1.t
- expressions and abstract elements have the same environment
- assigned variables exist in the environment of the abstract element
- both abstract elements of binary operators ($\cup, \cap, \nabla, \subseteq$) are defined on the same environment

Failure to ensure this results in a Manager. Error exception

Abstract domain skeleton using Apron

```
open Apron
module RelationalDomain = (struct
    (* manager *)
    type man = Polka.loose Polka.t
    let manager = Polka.manager_alloc_loose ()
    (* abstract elements *)
    type t = man Abstract1.t
    (* utilities *)
    val expr_to_texpr: expr -> Texpr1.expr
    (* implementation *)
end: ENVIRONMENT_DOMAIN)
```

To compile: add to the Makefile:

```
OCAMLINC = ... -I +zarith -I +apron -I +gmp
CMA = bigarray.cma gmp.cma apron.cma polkaMPQ.cma
```


Fall-back assignments and tests

```
let rec expr_to_texpr = function
| AST_binary (op, e1, e2) ->
    match op with
        | AST_PLUS -> Texpr1.Binop ...
        | ...
        | _ -> raise Top
let assign env var expr =
    try
        let e = expr_to_texpr expr in
        Abstract1.assign_texpr ...
    with Top -> Abstract1.forget_array ...
let compare abs e1 e2 =
    try
        Abstract1.meet_tcons_array ...
    with Top -> abs
```


Idea:

raise Top to abort a computation
catch it to fall-back to sound coarse assignments and tests

[^0]: Note:
 the invariant we seek, $D \geq 0$, can be exactly represented in the interval domain but inferring $D \geq 0$ requires a more expressive domain locally

