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Overview

Last week: non-relational abstract domains (intervals)

abstract each variable independently from the others
can express important properties (e.g., absence of overflow)
unable to represent relations between variables

This week: relational abstract domains
more precise, but more costly

the need for relational domains

linear equality domain (
∑

i αi Vi = βi )

polyhedra domain (
∑

i αi Vi ≥ βi )

practical exercises: relational analysis with the Apron library

Next week: selected advanced topics on abstract domains
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Motivation

Motivation
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Motivation

Relational assignments and tests

Example

X ← rand(0, 10); Y ← rand(0, 10);
if X ≥ Y then X ← Y else skip;
D ← Y − X ;
assert D ≥ 0

Interval analysis:

S]J X ≥ Y ? K is abstracted as the identity

given R] def
= [X 7→ [0, 10],Y 7→ [0, 10]]

S]J if X ≥ Y then · · · K R] = R]

D ← Y − X gives D ∈ [0, 10]−] [0, 10] = [−10, 10]

the assertion D ≥ 0 fails
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Motivation

Relational assignments and tests

Example

X ← rand(0, 10); Y ← rand(0, 10);
if X ≥ Y then X ← Y else skip;
D ← Y − X ;
assert D ≥ 0

Solution: relational domain

represent explicitly the information X ≤ Y

infer that X ≤ Y holds after the if · · · then · · · else · · ·
X ≤ Y both after X ← Y when X ≥ Y , and after skip when X ≤ Y

use X ≤ Y to deduce that Y − X ∈ [0, 10]

Note:

the invariant we seek, D ≥ 0, can be exactly represented in the interval domain

but inferring D ≥ 0 requires a more expressive domain locally
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Motivation

Relational loop invariants

Example

I ← 1; X ← 0;
while I ≤ 1000 do

I ← I + 1; X ← X + 1;
assert X ≤ 1000

Interval analysis:

after iterations with widening, we get in 2 iterations:
as loop invariant: I ∈ [1,+∞] and X ∈ [0,+∞]
after the loop: I ∈ [1001,+∞] and X ∈ [0,+∞] =⇒ assert fails

using a decreasing iteration after widening, we get:
as loop invariant: I ∈ [1, 1001] and X ∈ [0,+∞]
after the loop: I = 1001 and X ∈ [0,+∞] =⇒ assert fails

(the test I ≤ 1000 only refines I , but gives no information on X )

without widening, we get I = 1001 and X = 1000 =⇒ assert passes
but we need 1000 iterations! (' concrete fixpoint computation)
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Motivation

Relational loop invariants

Example

I ← 1; X ← 0;
while I ≤ 1000 do

I ← I + 1; X ← X + 1;
assert X ≤ 1000

Solution: relational domain

infer a relational loop invariant: I = X + 1 ∧ 1 ≤ I ≤ 1001
I = X + 1 holds before entering the loop as 1 = 0 + 1

I = X + 1 is invariant by the loop body I ← I + 1; X ← X + 1

(can be inferred in 2 iterations with widening in the polyhedra domain)

propagate the loop exit condition I > 1000 to get:
I = 1001
X = I − 1 = 1000 =⇒ assert passes

Note:

the invariant we seek after the loop exit has an interval form: X ≤ 1000
but we need to infer a more expressive loop invariant to deduce it
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Affine Equalities

Affine Equalities
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Affine Equalities Affine equalities

The affine equality domain

We look for invariants of the form:

∧j (
∑n

i=1 αij Vi = βj ), αij , βj ∈ Q

where all the αij and βj are inferred automatically

We use a domain of affine spaces proposed by Karr in 1976

E] ' { affine subspaces of V→ R }
(with a suitable machine representation)
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Affine Equalities Affine equalities

Affine equality representation

Machine representation:

E] def
= ∪m { 〈M, ~C 〉 |M ∈ Qm×n, ~C ∈ Qm } ∪ {⊥}

either the constant ⊥
or a pair 〈M, ~C 〉 where

M ∈ Qm×n is a m × n matrix, n = |V| and m ≤ n,
~C ∈ Qm is a row-vector with m rows

〈M, ~C 〉 represents an equation system, with solutions:

γ(〈M, ~C 〉) def
= { ~V ∈ Rn |M× ~V = ~C }

M should be in row echelon form:
∀i ≤ m:∃ki : Miki = 1 and
∀c < ki : Mic = 0, ∀l 6= i : Mlki = 0,

if i < i ′ then ki < ki ′ (leading index)

example:
1 0 0 5 0
0 1 0 6 0
0 0 1 7 0
0 0 0 0 1


Remarks:

the representation is unique
as m ≤ n = |V|, the memory cost is in O(n2) at worst
> is represented as the empty equation system: m = 0

Course 12 Abstract Interpretation III Antoine Miné p. 8 / 50



Affine Equalities Affine equalities

Galois connection

Galois connection: (actually, a Galois insertion)

between arbitrary subsets and affine subsets

(P(R|V|),⊆) −−−→−→←−−−−
α

γ
(Aff (R|V|),⊆)

γ(X )
def
= X (identity)

α(X )
def
= smallest affine subset containing X

Aff (R|V|) is closed under arbitrary intersections, so we have:

α(X ) = ∩ {Y ∈ Aff (R|V|) |X ⊆ Y }

Aff (R|V|) contains every point in R|V|

we can also construct α(X ) by (abstract) union:
α(X ) = ∪] { {x} | x ∈ X }

Notes:

we have assimilated V→ R to R|V|

we have used Aff (R|V|) instead of the matrix representation E] for simplicity;
a Galois connection also exists between P(R|V|) and E]

Course 12 Abstract Interpretation III Antoine Miné p. 9 / 50



Affine Equalities Affine equalities

Normalisation and emptiness testing

Let M× ~V = ~C be a system, not necessarily in normal form

The Gaussian reduction tells in O(n3) time:

whether the system is satisfiable, and in that case

gives an equivalent system in normal form

i.e.: it returns an element in E]

Example: 2X + Y + Z = 19
2X + Y − Z = 9

3Z = 15
⇓{

X + 0.5Y = 7
Z = 5
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Affine Equalities Affine equalities

Normalisation and emptiness testing (cont.)

Gaussian reduction algorithm: Gauss(〈M, ~C 〉)

r ← 0 (rank r)

for c from 1 to n (column c)

if ∃` > r : M`c 6= 0 (pivot `)

r ← r + 1

swap 〈 ~M`,C`〉 and 〈 ~Mr ,Cr 〉
divide 〈 ~Mr ,Cr 〉 by Mrc

for j from 1 to n, j 6= r

replace 〈 ~Mj ,Cj〉 with 〈 ~Mj ,Cj〉 −Mjc〈 ~Mr ,Cr 〉

if ∃`: 〈 ~M`,C`〉 = 〈0, . . . , 0, c〉, c 6= 0
then return ⊥

remove all rows 〈 ~M`,C`〉 that equal 〈0, . . . , 0, 0〉
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Affine Equalities Affine equalities

Affine equality operators

Abstract operators:

If X ],Y ] 6= ⊥, we define:

X ] ∩] Y ] def
= Gauss

(〈[
MX ]

MY ]

]
,

[
~CX ]

~CY ]

]〉)
(join equations)

X ] = ]Y ] def⇐⇒ MX ] = MY ] and ~CX ] = ~CY ] (uniqueness)

X ] ⊆] Y ] def⇐⇒ X ] ∩] Y ] =] X ]

S]J
∑

j αj Vj = β? K X ] def
= Gauss

(〈[
MX ]

α1 · · ·αn

]
,

[
~CX ]

β

]〉)
(add equation)

S]J e ./ e′? K X ] def
= X ] for other tests

Remark:

⊆], =], ∩], =] and S]J
∑

j αj Vj − β = 0? K are exact:
(X ] ⊆] Y ] ⇐⇒ γ(X ]) ⊆ γ(Y ]), γ(X ] ∩] Y ]) = γ(X ]) ∩ γ(Y ]), . . . )
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Affine Equalities Affine equalities

Affine equality assignment

Non-deterministic assignment: S]J Vj ← [−∞,+∞] K

Principle: remove all the occurrences of Vj

but reduce the number of equations by only one
(add a single degree of freedom)

Algorithm: assuming Vj occurs in M

Pick the row 〈 ~Mi ,Ci 〉 such that Mij 6= 0 and i maximal

Use it to eliminate all the occurrences of Vj in lines before i
(i maximal =⇒ M stays in row echelon form)

Remove the row 〈 ~Mi ,Ci 〉
Example: forgetting Z{

X + Z = 10
Y + Z = 7

=⇒
{

X − Y = 3

The operator is exact
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Affine Equalities Affine equalities

Affine equality assignment

Affine assignments: S]J Vj ←
∑

i αi Vi + β K

S]J Vj ←
∑

i αi Vi + β K X ] def
=

if αj = 0, (S]J Vj =
∑

i αi Vi + β? K ◦ S]J Vj ← [−∞,+∞] K )X ]

if αj 6= 0, 〈M, ~C 〉 where Vj is replaced with 1
αj

(Vj −
∑

i 6=j αi Vi − β)

(variable substitution)

Proof sketch: based on properties in the concrete

non-invertible assignment: αj = 0
SJ Vj ← e K = SJ Vj ← e K ◦ SJ Vj ← [−∞,+∞] K as the value of V is not used in e
so SJ Vj ← e K = SJ Vj = e? K ◦ SJ Vj ← [−∞,+∞] K

invertible assignment: αj 6= 0
SJ Vj ← e K ( SJ Vj ← e K ◦ SJ Vj ← [−∞,+∞] K as e depends on V

ρ ∈ SJ Vj ← e K R ⇐⇒ ∃ρ′ ∈ R: ρ = ρ′[Vj 7→
∑

i αiρ
′(Vi ) + β]

⇐⇒ ∃ρ′ ∈ R: ρ[Vj 7→ (ρ(Vj )−
∑

i 6=j αiρ
′(Vi )− β)/αj ] = ρ′

⇐⇒ ρ[Vj 7→ (ρ(Vj )−
∑

i 6=j αiρ(Vi )− β)/αj ] ∈ R

Non-affine assignments: revert to non-deterministic case

S]J Vj ← e K X ] def
= S]J Vj ← [−∞,+∞] K X ] (imprecise but sound)
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Affine Equalities Affine equalities

Affine equality join

Join: 〈M, ~C 〉 ∪] 〈N, ~D〉

Idea: unify columns 1 to n of 〈M, ~C 〉 and 〈N, ~D〉
using row operations

Example:

Assume that we have unified columns 1 to k to get

(
R
0

)
, arguments are in row

echelon form, and we have to unify at column k + 1: t (~0 1 ~0) with t (~β 0 ~0)
R ~0 M1

~0 1 ~M2

0 ~0 M3

 ,


R ~β N1

~0 0 ~N2

0 ~0 N3

 =⇒


R ~β M′

1

~0 0 ~0

0 ~0 M3

 ,


R ~β N1

~0 0 ~N2

0 ~0 N3


Use the row (~0 1 ~M2) to create ~β in the left argument

Then remove the row (~0 1 ~M2)
The right argument is unchanged
=⇒ we have now unified columns 1 to k + 1

Unifying t (~α 0 ~0) and t (~0 1 ~0) is similar

Unifying t (~α 0 ~0) and t (~β 0 ~0) is a bit more complicated. . .
No other case possible as we are in row echelon form
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Affine Equalities Affine equalities

Analysis example

No infinite increasing chain: we can iterate without widening!

Example

X ← 10; Y ← 100;
while X 6= 0 do

X ← X − 1;
Y ← Y + 10

Abstract loop iterations: lim λX ].I ] ∪] S]J body K (S]J X 6= 0? K X ])

loop entry: I ] = (X = 10 ∧ Y = 100)

after one loop body iteration: F ](I ]) = (X = 9 ∧ Y = 110)

=⇒ X ] def
= I ] ∪] F ](I ]) = (10X + Y = 200)

X ] is stable

at loop exit, we get S]J X = 0? K (10X + Y = 200) = (X = 0 ∧ Y = 200)
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Polyhedra

Polyhedra
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Polyhedra

The polyhedron domain

We look for invariants of the form: ∧j (
∑n

i=1 αij Vi ≥ βj )

We use the polyhedron domain by Cousot and Halbwachs (1978)

E] ' { closed convex polyhedra of V→ R }

Note: polyhedra need not be bounded (6= polytopes)
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Polyhedra

Double description of polyhedra

Polyhedra have dual representations (Weyl–Minkowski Theorem)

Constraint representation

〈M, ~C 〉 with M ∈ Qm×n and ~C ∈ Qm

represents: γ(〈M, ~C 〉) def
= { ~V |M× ~V ≥ ~C }

We will also often use a constraint set notation {
∑

i αij Vi ≥ βj }

Generator representation

[P,R] where

P ∈ Qn×p is a set of p points: ~P1, . . . , ~Pp

R ∈ Qn×r is a set of r rays: ~R1, . . . , ~Rr

γ([P,R])
def
= { (

∑p
j=1 αj

~Pj ) + (
∑r

j=1 βj
~Rj ) | ∀j , αj , βj ≥ 0:

∑p
j=1 αj = 1 }
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Polyhedra

Double description of polyhedra (cont.)

Generator representation examples:

γ([P,R])
def
= { (

∑p
j=1 αj

~Pj ) + (
∑r

j=1 βj
~Rj ) | ∀j , αj , βj ≥ 0:

∑p
j=1 αj = 1 }

P1

P2

P3

P4

P5

P1

P2

P3

R1

R2
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Polyhedra

Duality in polyhedra

P P∗

0x + 0y + 1z ≤ 1 ⇐⇒ (0, 0, 1)

Duality: P∗ is the dual of P, so that:

the generators of P∗ are the constraints of P

the constraints of P∗ are the generators of P

P∗∗ = P
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Polyhedra

Polyhedra representations

Minimal representations

A constraint / generator system is minimal if no constraint /
generator can be omitted without changing the concretization

Minimal representations are not unique

Example: three different constraint representations for a point

(a) (b) (c)

(a) y + x ≥ 0, y − x ≥ 0, y ≤ 0, y ≥ −5 (non mimimal)

(b) y + x ≥ 0, y − x ≥ 0, y ≤ 0 (minimal)

(c) x ≤ 0, x ≥ 0, y ≤ 0, y ≥ 0 (minimal)
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Polyhedra

Polyhedra representations (cont.)

No bound on the size of representations (even minimal ones)

No best abstraction α

Example: a disc has infinitely many polyhedral over-approximations, but no best one
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Polyhedra

Chernikova’s algorithm

Algorithm by Chernikova (1968), improved by LeVerge (1992) to
switch from a constraint system to an equivalent generator system

Motivation: most operators are easier on one representation

By duality, we can use the same algorithm to switch from

generators to constraints

The minimal generator system can be exponential in the original

constraint system (e.g., hypercube: 2n constraints, 2n vertices)

Equality constraints and lines (pairs of opposed rays) may be

handled separately and more efficiently

Chernikova’s algorithm minimizes the representation on-the-fly

(not presented here)

Algorithm: incrementally add constraints one by one

Start with:

{
P0 = { (0, . . . , 0) } (origin)
R0 = {~xi , −~xi | 1 ≤ i ≤ n } (axes)
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Polyhedra

Chernikova’s algorithm (cont.)

Update [Pk−1,Rk−1] to [Pk ,Rk ]
by adding one constraint ~Mk · ~V ≥ Ck ∈ 〈M, ~C 〉:
start with Pk = Rk = ∅,

for any ~P ∈ Pk−1 s.t. ~Mk · ~P ≥ Ck , add ~P to Pk

for any ~R ∈ Rk−1 s.t. ~Mk · ~R ≥ 0, add ~R to Rk

for any ~P, ~Q ∈ Pk−1 s.t. ~Mk · ~P > Ck and ~Mk · ~Q < Ck , add
to Pk :
~O

def
= Ck− ~Mk ·~Q

~Mk ·~P− ~Mk ·~Q
~P − Ck− ~Mk ·~P

~Mk ·~P− ~Mk ·~Q
~Q

Q

P
P

O
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Polyhedra

Chernikova’s algorithm (cont.)

for any ~R, ~S ∈ Rk−1 s.t. ~Mk · ~R > 0 and ~Mk · ~S < 0, add to
Rk :
~O

def
= ( ~Mk · ~S)~R − ( ~Mk · ~R)~S

R
R

OS

for any ~P ∈ Pk−1, ~R ∈ Rk−1 s.t. either ~Mk · ~P > Ck and
~Mk · ~R < 0, or ~Mk · ~P < Ck and ~Mk · ~R > 0, add to Pk :
~O

def
= ~P + Ck− ~Mk ·~P

~Mk ·~R
~R
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Polyhedra

Chernikova’s algorithm example

Example:

(0)

(1) (2) (3)

P0 = {(0, 0)} R0 = {(1, 0), (−1, 0), (0, 1), (0,−1)}

Y ≥ 1 P1 = {(0, 1)} R1 = {(1, 0), (−1, 0), (0, 1)}
X + Y ≥ 3 P2 = {(2, 1)} R2 = {(1, 0), (−1, 1), (0, 1)}
X − Y ≤ 1 P3 = {(2, 1), (1, 2)} R3 = {(0, 1), (1, 1)}
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Polyhedra
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Polyhedra
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Polyhedra

Chernikova’s algorithm example

Example:

(0) (1) (2) (3)

P0 = {(0, 0)} R0 = {(1, 0), (−1, 0), (0, 1), (0,−1)}
Y ≥ 1 P1 = {(0, 1)} R1 = {(1, 0), (−1, 0), (0, 1)}
X + Y ≥ 3 P2 = {(2, 1)} R2 = {(1, 0), (−1, 1), (0, 1)}
X − Y ≤ 1 P3 = {(2, 1), (1, 2)} R3 = {(0, 1), (1, 1)}

Course 12 Abstract Interpretation III Antoine Miné p. 27 / 50



Polyhedra

Operators on polyhedra

Abstract operators:

Given X ],Y ] 6= ⊥, we define:

X ] ⊆] Y ] def⇐⇒
{
∀~P ∈ PX ] : MY ] × ~P ≥ ~CY ]

∀~R ∈ RX ] : MY ] × ~R ≥ ~0

X ] =] Y ] def⇐⇒ X ] ⊆] Y ] and Y ] ⊆] X ]

X ] ∩] Y ] def
=

〈[
MX ]

MY ]

]
,

[
~CX ]

~CY ]

]〉
(join constraint sets)

⊆], =] and ∩] are exact (in P(V→ R))
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Polyhedra

Operators on polyhedra (cont.)

Join: X ] ∪] Y ] def
= [ [PX ] PY ] ], [RX ] RY ] ] ] (join generator sets)

Examples:

two polytopes a point and a line

∪] is optimal (in P(V→ R)):

we get the topological closure of the convex hull of γ(X ]) ∪ γ(Y ])
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Polyhedra

Operators on polyhedra (cont.)

Affine tests:

S]J
∑

i αi Vi ≥ β? K X ] def
=

〈[
MX ]

α1 · · ·αn

]
,

[
~CX ]

β

]〉

Non-deterministic assignment:

S]J Vj ← [−∞,+∞] K X ] def
= [ PX ] , [ RX ] ~xj (−~xj ) ] ]

these operators are exact (in P(V→ R))

other tests can be abstracted as S]J c? K X ] def
= X ]

(sound but not optimal)
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Polyhedra

Operators on polyhedra (cont.)

Affine assignment:

S]J Vj ←
∑

i αi Vi + β K X ] def
=

if αj = 0, (S]J
∑

i αi Vi = Vj − β? K ◦ S]J Vj ← [−∞,+∞] K )X ]

if αj 6= 0, 〈M, ~C 〉 where Vj is replaced with 1
αj

(Vj −
∑

i 6=j αi Vi − β)

similar to the assignment in the equality domain

the assignment is exact (in P(V→ R))

assignments can also be defined on the generator system

for non-affine assignments: S]J V ← e K def
= S]J V ← [−∞,+∞] K

(sound but not optimal)
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Polyhedra

Polyhedra widening

E] has strictly increasing infinite chains =⇒ we need a widening

Definition:

Take X ] and Y ] in minimal constraint-set form
X ] O Y ] def

= { c ∈ X ] |Y ] ⊆] {c} }

∪ { c ∈ Y ] | ∃c ′ ∈ X ]: X ] =] (X ] \ c ′) ∪ {c} }

We suppress any unstable constraint c ∈ X ], i.e., Y ] 6⊆] {c}

We also keep constraints c ∈ Y ] equivalent to those in X ],
i.e., when ∃c ′ ∈ X ]: X ] =] (X ] \ c ′) ∪ {c}

Example:
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Polyhedra

Example analysis

Example

X ← 2; I ← 0;
while I < 10 do

if rand(0, 1) = 0 then X ← X + 2 else X ← X − 3;
I ← I + 1

Loop invariant:

increasing iterations with widening:

X ]
1 = {X = 2, I = 0}

X ]
2 = {X = 2, I = 0} O ({X = 2, I = 0} ∪] {X ∈ [−1, 4], I = 1})

= {X = 2, I = 0} O { I ∈ [0, 1], 2− 3I ≤ X ≤ 2I + 2 }
= {I ≥ 0, 2− 3I ≤ X ≤ 2I + 2}

decreasing iteration: (recover I ≤ 10)

X ]
3 = {X = 2, I = 0} ∪] { I ∈ [1, 10], 2− 3I ≤ X ≤ 2I + 2 }

= {I ∈ [0, 10], 2− 3I ≤ X ≤ 2I + 2}

at the loop exit, we find eventually: I = 10 ∧ X ∈ [−28, 22]
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Polyhedra

Partial conclusion

Cost vs. precision:

Domain Invariants Memory cost Time cost (per op.)

intervals V ∈ [`, h] O(|V|) O(|V|)

affine equalities
∑

i αi Vi = βi O(|V|2) O(|V|3)

polyhedra
∑

i αi Vi ≥ βi unbounded, exponential in practice

domains provide a tradeoff between precision and cost

relational invariants are sometimes necessary
even to prove non-relational properties

an abstract domain is defined by

a choice of abstract properties and operators (semantic aspect)

data-structures and algorithms (algorithmic aspect)

an abstract domain mixes two kinds of approximations:

static approximations (choice of abstract properties)

dynamic approximations (widening)

Course 12 Abstract Interpretation III Antoine Miné p. 34 / 50



Polyhedra

Weakly relational domains

Principle: restrict the expressiveness of polyhedra
to be more efficient at the cost of precision

Example domains:

Based on constraint propagation: (closure algorithms)

Octagons: ±X ± Y ≤ c
shortest path closure: x + y ≤ c ∧ −y + z ≤ d =⇒ x + z ≤ c + d
quadratic memory cost, cubic time cost

Two-variables per inequality: αx + βy ≤ c
slightly more complex closure algorithm, by Nelson

Octahedra:
∑
αi Vi ≤ c, αi ∈ {−1, 0, 1 }

incomplete propagation, to avoid exponential cost

Pentagons: X − Y ≤ 0
restriction of octagons
incomplete propagation, aims at linear cost

Based on linear programming:

Template polyhedra: M× ~V ≥ ~C for a fixed M
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Polyhedra

Integers

Issue:

in relational domains we used implicitly real-valued environments V→ R
our concrete semantics is based on integer-valued environments V→ Z

In fact, an abstract element X ] does not represent γ(X ]) ⊆ R|V|, but:

γZ(X ])
def
= γ(X ]) ∩ Z|V| (keep only integer points)

Soundness and exactness for γZ

⊆] and =] are is no longer exact
e.g., γ(2X = 1) 6= γ(⊥), but γZ(2X = 1) = γ(⊥) = ∅

∩] and affine tests are still exact

affine and non-deterministic assignments are no longer exact
e.g., R] = (Y = 2X ), S]J X ← [−∞,+∞] K R] = >,
but SJ X ← [−∞,+∞] K (γZ(R])) = Z× (2Z)

all the operators are still sound
Z|V| ⊆ R|V|, so ∀X ]: γZ(X ]) ⊆ γ(X ])

(in general, soundness, exactness, optimality depend on the definition of γ)
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Polyhedra

Integers (cont.)

Possible solutions:

enrich the domain (add exact representations for operation results)

congruence equalities: ∧i

∑
j αij Vj ≡ βi [γi ] (Granger 1991)

Pressburger arithmetic (first order logic with 0, 1, +)
decidable, but with very costly algorithms

design optimal (non-exact) operators
also based on costly algorithms, e.g.:

normalization: integer hull
smallest polyhedra containing γZ (X ])

emptiness testing: integer programming
NP-hard, while linear programming is P

pragmatic solution (efficient, non-optimal)

use regular operators for R|V|, then tighten each constraint
to remove as many non-integer points as possible
e.g.: 2X + 6Y ≥ 3→ X + 3Y ≥ 2

Note: we abstract integers as reals!
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Using the Apron Library

Using the Apron Library
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Using the Apron Library

Apron library

Underlying libraries & abstract domains

box

intervals

octagons

octagons

NewPolka

convex polyhedra

linear equalities

PPL + Wrapper

convex polyhedra

b
b
b

b
b
b

linear congruences

Abstraction toolbox

– scalar & interval arithmetic
– linearization of expressions
– fall-back implementations

Data-types

Coefficients
Expressions
Constraints
Generators
Abs. values

Semantics: A
γ→ ℘(Zn × Rm)

dimensions and space dimensionality

Variables and Environments

Semantics: A
γ→ ℘(V → Z ⊎ R)

Developer interface

User interface

C API

OCaml binding C++ bindinghttp://apron.cri.ensmp.fr/library
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http://apron.cri.ensmp.fr/library


Using the Apron Library

Apron modules

The Apron module contains sub-modules:

Abstract1
abstract elements

Manager
abstract domains (arguments to all Abstract1 operations)

Polka
creates a manager for polyhedra abstract elements

Var
integer or real program variables (denoted as a string)

Environment
sets of integer and real program variables

Texpr1
arithmetic expression trees

Tcons1
arithmetic constraints (based on Texpr1)

Coeff
numeric coefficients (appear in Texpr1, Tcons1)
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Using the Apron Library

Variables and environments

Variables: type Var.t

variables are denoted by their name, as a string:
(assumes implicitly that no two program variables have the same name)

Var.of_string: string -> Var.t

Environments: type Environment.t

an abstract element abstracts a set of mappings in V→ R
V is the environment; it contains integer-valued and real-valued variables

Environment.make: Var.t array -> Var.t array -> t

make ivars rvars creates an environment with ivars integer variables and
rvars real variables;
make [||] [||] is the empty environment

Environment.add: Environment.t -> Var.t array -> Var.t array -> t

add env ivars rvars adds some integer or real variables to env

Environment.remove: t -> Var.t array -> t

internally, an abstract element abstracts a set of points in Rn;
the environment maintains the mapping from variable names to dimensions in [1, n]
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Using the Apron Library

Expressions

Concrete expression trees: type Texpr1.expr

type expr = | Cst of Coeff.t (constants)

| Var of Var.t (variables)

| Unop of unop * expr * typ * round (unary op.)

| Binop of binop * expr * expr * typ * round (binary op.)

unary operators
type Texpr1.unop = Neg | · · ·

binary operators
type Texpr1.binop = Add | Sub | Mul | Div | · · ·

numeric type:
(we only use integers, but reals and floats are also possible)

type Texpr1.typ = Int | · · ·

rounding direction:
(only useful for the division on integers; we use rounding to zero, i.e., truncation)

type Texpr1.round = Zero | · · ·
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Using the Apron Library

Expressions (cont.)

Internal expression form: type Texpr1.t

concrete expression trees must be converted to an internal form
to be used in abstract operations

Texpr1.of_expr: Environment.t -> Texpr1.expr -> Texpr1.t

(the environment is used to convert variable names to dimensions in Rn)

Coefficients: type Coeff.t

can be either a scalar {c} or an interval [a, b]

we can use the Mpqf module to convert from strings to arbitrary precision
integers, before converting them into Coeff.t:

for scalars {c}:
Coeff.s_of_mpqf (Mpqf.of_string c)

for intervals [a, b]:
Coeff.i_of_mpqf (Mpqf.of_string a) (Mpqf.of_string b)
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Using the Apron Library

Constraints

Constraints: type Tcons1.t

constructor expr ./ 0:

Tcons1.make: Texpr1.t -> TCons1.typ -> Tcons1.t

where:
type Tcons1.typ = SUPEQ | SUP | EQ | DISEQ | · · ·

≥ > = 6=

Note: avoid using DISEQ directly, which is not very precise;
but use a disjunction of two SUP constraints instead

Constraint arrays: type Tcons1.earray

abstract operators do not use constraints, but constraint arrays instead

Example: constructing an array ar containing a single constraint:
let c = Tcons1.make texpr1 typ in

let ar = Tcons1.array_make env 1 in

Tcons1.array_set ar 0 c
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Using the Apron Library

Abstract operators

Abstract elements: type Abstract1.t

Abstract1.top: Manager.t -> Environment.t -> t

create an abstract element where variables have any value

Abstract1.env: t -> Environment.t

recover the environment on which the abstract element is defined

Abstract1.change_environment: Manager.t -> t ->

Environment.t -> bool -> t

set the new environment, adding or removing variables if necessary
the bool argument should be set to false: variables are not initialized

Abstract1.assign_texpr: Manager.t -> t -> Var.t -> Texpr1.t ->

t option -> t

abstract assignment; the option argument should be set to None

Abstract1.forget_array: Manager.t -> t -> Var.t array -> bool -> t

non-deterministic assignment: forget the value of variables (when bool is false)

Abstract1.meet_tcons_array: Manager.t -> t -> Tcons1.earray -> t

abstract test: add one or several constraint(s)
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Using the Apron Library

Abstract operators (cont.)

Abstract1.join: Manager.t -> t -> t -> t

abstract union ∪]

Abstract1.meet: Manager.t -> t -> t -> t

abstract intersection ∩]

Abstract1.widen: Manager.t -> t -> t -> t

widening O

Abstract1.is_leq: Manager.t -> t -> t -> bool

⊆]: return true if the first argument is included in the second

Abstract1.is_bottom: Manager.t -> t -> t bool

whether the abstract element represents ∅

Abstract1.print: Format.formatter -> t -> unit

print the abstract element

Contract:

operators return a new, immutable abstract element (functional style)

operators return over-approximations
(not always optimal; e.g.: for non-linear expressions)

predicates return true (definitely true) or false (don’t know)
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Using the Apron Library

Managers

Managers: type Manager.t

The manager denotes a choice of abstract domain
To use the polyhedra domain, construct the manager with:

let manager = Polka.manager_alloc_loose ()

the same manager variable is passed to all Abstract1 function

to choose another domain, you only need to change the line defining manager

Other libraries:

Polka.manager_alloc_equalities (affine equalities)

Polka.manager_alloc_strict (≥ and > affine inequalities over R)

Box.manager_alloc (intervals)

Oct.manager_alloc (octagons)

Ppl.manager_alloc_grid (affine congruences)

PolkaGrid.manager_alloc (affine inequalities and congruences)
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Using the Apron Library

Errors

Argument compatibility: ensure that:

the same manager is used when creating
and using an abstract element

the type system checks for the compatibility
between ’a Manager.t and ’a Abstract1.t

expressions and abstract elements have the same environment

assigned variables exist in the environment of the abstract element

both abstract elements of binary operators (∪, ∩, O, ⊆)
are defined on the same environment

Failure to ensure this results in a Manager.Error exception
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Using the Apron Library

Abstract domain skeleton using Apron

open Apron

module RelationalDomain = (struct

(* manager *)

type man = Polka.loose Polka.t

let manager = Polka.manager_alloc_loose ()

(* abstract elements *)

type t = man Abstract1.t

(* utilities *)

val expr_to_texpr: expr -> Texpr1.expr

(* implementation *)

· · ·
end: ENVIRONMENT_DOMAIN)

To compile: add to the Makefile:

OCAMLINC = · · · -I +zarith -I +apron -I +gmp

CMA = bigarray.cma gmp.cma apron.cma polkaMPQ.cma
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Using the Apron Library

Fall-back assignments and tests

let rec expr_to_texpr = function

| AST_binary (op, e1, e2) ->

match op with

| AST_PLUS -> Texpr1.Binop · · ·
| · · ·
| _ -> raise Top

let assign env var expr =

try

let e = expr_to_texpr expr in

Abstract1.assign_texpr · · ·
with Top -> Abstract1.forget_array · · ·

let compare abs e1 e2 =

try

· · ·
Abstract1.meet_tcons_array · · ·

with Top -> abs

Idea:

raise Top to abort a computation
catch it to fall-back to sound coarse assignments and tests
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