Abstract Interpretation Il

Semantics and Application to Program Verification

Antoine Miné

Ecole normale supérieure, Paris
year 2014-2015

Course 12
13 May 2015

Course 12 Abstract Interpretation Il Antoine Miné p.1/50

Overview

@ Last week: non-relational abstract domains (intervals)

abstract each variable independently from the others
can express important properties (e.g., absence of overflow)
unable to represent relations between variables

@ This week: relational abstract domains

more precise, but more costly
o the need for relational domains

o linear equality domain (X iVi = 8i)
o polyhedra domain (Vi > Bi)

e practical exercises: relational analysis with the Apron library

@ Next week: selected advanced topics on abstract domains

Course 12 Abstract Interpretation Il Antoine Miné p.-2 /50

Motivation

Motivation

Relational assignments and tests

X «+ rand(0,10); Y <« rand(0, 10);
if X > Y then X < Y else skip;
D+ Y —-X;

assert D >0

Interval analysis:

@ S*[X > Y7?] is abstracted as the identity

given Rt £ [X 5 [0,10], Y > [0, 10]]

SH[if X > Y then ...] Rt = R?
@ D+« Y — X gives D € [0,10] —#[0,10] = [10, 10]
@ the assertion D > 0 fails

Course 12 Abstract Interpretation Il Antoine Miné p. 4/ 50

Motivation

Relational assignments and tests

X «+ rand(0,10); Y <« rand(0, 10);
if X > Y then X < Y else skip;
D+ Y —-X;

assert D >0

Solution: relational domain

@ represent explicitly the information X <Y

@ infer that X < Y holds after the if --- then --- else - - -
X < Y both after X < Y when X > Y, and after skip when X <Y

@ use X <Y to deduce that Y — X € [0,10]

Note:
the invariant we seek, D > 0, can be exactly represented in the interval domain
but inferring D > 0 requires a more expressive domain locally

Course 12 Abstract Interpretation Il Antoine Miné

p. 4/ 50

Motivation

Relational loop invariants

|+ 1; X« 0;
while / < 1000 do

I~ 1+1, X+ X+1,
assert X < 1000

Interval analysis:

@ after iterations with widening, we get in 2 iterations:
as loop invariant: | € [1,4+00] and X € [0, +o]
after the loop: | € [1001, +00] and X € [0, +oc] = assert fails

@ using a decreasing iteration after widening, we get:
as loop invariant: / € [1,1001] and X € [0, +o0]
after the loop: / = 1001 and X € [0, +00] = assert fails
(the test I < 1000 only refines /, but gives no information on X)

@ without widening, we get / = 1001 and X = 1000 = assert passes
but we need 1000 iterations! (=~ concrete fixpoint computation)

Course 12 Abstract Interpretation Il Antoine Miné p. 5/ 50

Motivation

Relational loop invariants

|+ 1; X« 0;
while / < 1000 do

I~ 1+1, X+ X+1,
assert X < 1000

Solution: relational domain

@ infer a relational loop invariant: /| =X +1A1</ <1001
I = X + 1 holds before entering the loopas 1 =0+1
I = X + 1 is invariant by the loop body [< I +1; X <~ X + 1

(can be inferred in 2 iterations with widening in the polyhedra domain)

@ propagate the loop exit condition / > 1000 to get:

| = 1001
X =1—1=1000 = assert passes

Note:

the invariant we seek after the loop exit has an interval form: X < 1000
but we need to infer a more expressive loop invariant to deduce it

Course 12 Abstract Interpretation Il Antoine Miné

p. 5/ 50

Affine Equalities

Affine Equalities Affine equalities

The affine equality domain

We look for invariants of the form:

N (i @ijVi = B)), iy, B € Q

where all the aj; and 3; are inferred automatically

We use a domain of affine spaces proposed by Karr in 1976
& ~ { affine subspaces of V — R}

(with a suitable machine representation)

/

Course 12 Abstract Interpretation Il Antoine Miné

p. 7 /50

Affine Equalities Affine equalities

Affine equality representation

Machine representation:

U, {MC)MeQm™n CeQmlu{l}

@ either the constant L

@ or a pair (M, C) where
e M e Qm™"isamx nmatrix, n=|V| and m < n,
e C € QM is a row-vector with m rows

(M, (_f> represents an equation system, with solutions:
(M, C)) € {VeR" MxV=C}

M should be in row echelon form: example:
o Vi < m:3ki: My, =1 and 1 0 0 5 0
VC<k;:M;C:0,V/7éI':M/kI.:0, 01 0 6 0
0 0 1 7 O
@ if i < i’ then ki < kj (leading index) 0 0 0 0 1
Remarks:
the representation is unique
as m < n = |V|, the memory cost is in O(n?) at worst
T is represented as the empty equation system: m =0
Course 12 Abstract Interpretation |1 Antoine Miné

p. 8 /50

Affine Equalities Affine equalities

Galois connection

Galois connection: (actually, a Galois insertion)

between arbitrary subsets and affine subsets
(PR)), €) == (AF(RV)),)

def

e y(X) =X (identity)
o a(X) £ smallest affine subset containing X

Aff(RIV) is closed under arbitrary intersections, so we have:
aX)=n{YecAFRVH| X C Y}

Aff(RIV) contains every point in RIVI

we can also construct «(X) by (abstract) union:
a(X) = U {{x}|x € X}

Notes:
@ we have assimilated V — R to RIVI

@ we have used Aff(RM) instead of the matrix representation £ for simplicity;
a Galois connection also exists between P(RIY!) and &f

Course 12 Abstract Interpretation |1 Antoine Miné p.- 9 /50

Affine Equalities Affine equalities

Normalisation and emptiness testing

Let M x V = C be a system, not necessarily in normal form
The Gaussian reduction tells in O(n®) time:

@ whether the system is satisfiable, and in that case

@ gives an equivalent system in normal form

i.e.: it returns an element in &*

Example:
2X + Y + Z = 19
2X + Y - Z = 9
3Z = 15
U
X + 0.5Y =7
Z =5
Course 12 Abstract Interpretation |1 Antoine Miné

p. 10 / 50

Affine Equalities Affine equalities

Normalisation and emptiness testing (cont.)

Gaussian reduction algorithm: Gauss((M, C))

r<0 (rankr)
for c from1ton (column c)
if 30 > r: My, 75 0 (pivot £)

r<—r+1

swap (Mg, G) and (M, C,)

divide (M;, C;) by My

for j from 1lton, j#r

replace <I\7J, Gj) with (Mj, G) — MjC<M,, C)

if 30: (M, C) = (0,...,0,¢),c#0
then return L

remove all rows (M, C;) that equal (0,...,0,0)

Course 12 Abstract Interpretation |1 Antoine Miné p. 11 / 50

Affine Equalities Affine equalities

Affine equality operators

Abstract operators:

If X%, Y% £ 1, we define:

M C
v ([0][1))
auss M, &,

)(ﬁ = ﬁyﬁ é qu Myu and Cxu = éyu

Xt ctyt &L xtnt vyt —t xt

sﬁ[[Z a;V; = 7] X = & Gauss (<[Mx:

Stlema e?] X! & Xt for other tests

Remark:

Q1 Qg

1)

ctf, =% nf, = and Sﬁ[[zj a;V;— f=07] are exact:
(XECHYE = 4(XF) Cy(YH), A(XFNEYE) =~(XE) na(YH),...)

Course 12 Abstract Interpretation |1

Antoine Miné

(join equations)

(uniqueness)

(add equation)

p. 12 / 50

Affine Equalities Affine equalities

Affine equality assignment

Non-deterministic assignment: S*[V; « [—o0, +00]]

Principle: remove all the occurrences of V;

but reduce the number of equations by only one
(add a single degree of freedom)

Algorithm: assuming V; occurs in M

e Pick the row (M;, C;) such that M;; # 0 and i maximal
@ Use it to eliminate all the occurrences of V; in lines before /

(i maximal = M stays in row echelon form)

@ Remove the row <M;, G)

Example: forgetting Z

{X +Z=10

Y4z-7 = { X-Y=3

The operator is exact

Course 12 Abstract Interpretation |1 Antoine Miné p. 13 / 50

Affine Equalities Affine equalities

Affine equality assignment

Affine assignments: S*[V; « > .oV + 3]

SV, Y, aVi+ 8] Xt <
ifa; =0,(S* [V, =3, i Vi + B?] o SH[V; < [—o0, +00]]) X*
if aj # 0, (M, C) where V; is replaced with (V >z iVi—B)

(variable substitution)

Proof sketch: based on properties in the concrete
non-invertible assignment: a; =0
S[Vj < e] =S[Vj < e] oS[V, < [-o0,+00]] as the value of V is not used in e
soS[V;«+e] =S[V; =e?] oS[V; « [-o0,+q]]
invertible assignment: o # 0
S[Vj«e] CS[V,«+ e] oS[V; < [~o0,+00]] as e depends on V
pES[Vi+e]R <« 3p € Rip=p'[V; =3 cip’ (Vi) +]
< Jp' € R: p[Vj = (p(V)) = ;4 i’ (Vi) = B) /eyl = p
— oV > (o(V) — Sprcip(Vi) — 8)/as] € R

Non-affine assignments: revert to non-deterministic case

Sﬁ[[P e]]Xji o Sﬁ[[i [0 —I—OO]HXji (imprecise but sound)

Course 12 Abstract Interpretation Il Antoine Miné p. 14 / 50

Affine Equalities Affine equalities

Affine equality join

Join: (M, C) U? (N, D)

Idea: unify columns 1 to n of (M, C) and (N, D)
using row operations

Example:
Assume that we have unified columns 1 to k to get <§> arguments are in row
echelon form, and we have to unify at column k + 1: £(0 1 0) with (3 0 0)

RO M RAN R 5 M) R 5 Ny

01M |, 60/\7 =) “0/\/2

00 M 0 0 N3

Use the row (0 1 M) to create J3 in the left argument
Then remove the row (0 1 M)

The right argument is unchanged

— we have now unified columns 1 to k +1

Unifying (@ 0 0) and (0 1 0) is similar
Unifying (@ 0 0) and (3 0 0) is a bit more complicated. . .
No other case possible as we are in row echelon form

Course 12 Abstract Interpretation Il Antoine Miné p. 15 / 50

Affine Equalities Affine equalities

Analysis example

No infinite increasing chain: we can iterate without widening!

X +10; Y «< 100;

while X # 0 do
X<+ X-1;
Y+ Y+10

Abstract loop iterations: lim AX®./% U* S¥[body] (SF[X # 07] X*¥)
@ loop entry: I* = (X =10 A Y = 100)
@ after one loop body iteration: F(/*) = (X =9 A Y = 110)

o — X! & [Fi(I%) = (10X + Y = 200)
e X! is stable
at loop exit, we get SF[X = 0?7] (10X + Y =200) = (X =0 A Y = 200)

Course 12 Abstract Interpretation Il Antoine Miné p. 16 / 50

Polyhedra

The pol

We look for invariants of the form: A; (37, a;V; > ;)
We use the polyhedron domain by Cousot and Halbwachs (1978)
E¥ ~ { closed convex polyhedra of V — R}

Note: polyhedra need not be bounded (# polytopes)

Polyhedra

Double description of polyhedra

Polyhedra have dual representations (\Weyl-Minkowski Theorem)

Constraint representation

(M, C) with M € Q™" and C € Q™
represents: (M, C)) £ {V|Mx V> C}

We will also often use a constraint set notation { >, o;iVi > 3, }

Generator representation

[P, R] where
o P € QP is a set of p points: Pq,..., 13,,
@ Re Q™" is a set of r rays: ﬁl,...,ér

~v([P,R]) f {(aJPJ) + (Z}Zl djl_?}) |V}, e, B > 0: Zle aj=1}

Course 12 Abstract Interpretation |1 Antoine Miné p. 19 / 50

Dou

Generator representation examples:

V(PRI = {(fy i) + (] BR) [V g, 6 > 0: 27 oy = 1}

L

P1

P2 N

Polyhedra

Duality in polyhedra

P P
Ox+0y+1z<1 — (0,0,1)

Duality: ~ P* is the dual of P, so that:
@ the generators of P* are the constraints of P
@ the constraints of P* are the generators of P

o P =P

Course 12 Abstract Interpretation |1 Antoine Miné

p. 21 / 50

Polyhedra

Polyhedra representations

Minimal representations

@ A constraint / generator system is minimal if no constraint /
generator can be omitted without changing the concretization
@ Minimal representations are not unique

Example: three different constraint representations for a point

(2) (b) (c)
® a)y+x=>0,y—x>0,y<0,y>-5 (non mimimal)
@ (b)y+x>0,y—x>0,y<0 (minimal)
® (c)x<0,x>0,y<0,y>0 (minimal)

Course 12 Abstract Interpretation |1 Antoine Miné p. 22 / 50

Polyhedra

Polyhedra representations (cont.)

@ No bound on the size of representations (even minimal ones)

@ No best abstraction «

Example: a disc has infinitely many polyhedral over-approximations, but no best one

Course 12 Abstract Interpretation Il Antoine Miné p. 23 / 50

Polyhedra

Chernikova's algorithm

Algorithm by Chernikova (1968), improved by LeVerge (1992) to
switch from a constraint system to an equivalent generator system

Motivation: most operators are easier on one representation
@ By duality, we can use the same algorithm to switch from
generators to constraints

@ The minimal generator system can be exponential in the original
constraint system (e.g., hypercube: 2n constraints, 2" vertices)
@ Equality constraints and lines (pairs of opposed rays) may be

handled separately and more efficiently

@ Chernikova's algorithm minimizes the representation on-the-fly

(not presented here)

Algorithm: incrementally add constraints one by one

 (Py={(0.....0)} (origin)
Start with: { Ro={%, -%|1<i<n} (axes)

Course 12 Abstract Interpretation |1 Antoine Miné p. 24 / 50

Polyhedra

Chernikova's algorithm (cont.)

Update [Pkfl, kal] to [PJ“ Rli] .
by adding one constraint M, -V > C, € (M, C):
start with P, = Ry = 0,
e for any Pe Pi_1s.t. Mk P > Cg, add P to P
e for any R e Rj,_1 s.t. I\7Ik R >0, add R to Ry

e for any ﬁ,é € Py_1 s.t. Mk . :B > Ci and Mk . é < Cy, add

to Py:
7y def ckMkQP G-MP_3
0 My-P—Mj-Q My-P— Mk Q
®
P

00

Course 12 Abstract Interpretation |1 Antoine Miné p. 25 / 50

Polyhedra

Chernikova's algorithm (cont.)

o for any ﬁ,g‘e Ri_1 s.t. Mk-:’$>Oand Mk~§<0, add to

R
O < (My-S)R—(My-R)S

’ .

oforanyPEPk 1,R€Rk 1 s.t. eltheer P>Ckand
I\/Ik R<Ooer P<Ckande R>O add to Py:
_'def = Ck MkP

Course 12 Abstract Interpretation |1 Antoine Miné

p. 26 / 50

Example:

Po = {(070)} Ro = {(15 0)7 (_1’0)’ (0’ 1)’ (07 _1)}

Polyhedra

Chernikova's algorithm example

Example:
T—»
!
(0) Q)
Po = {(070)} Ro = {(170)7 (—1,0), (07 1)7 (07 _1)}
Y>1 P {(0’1)} R: {(LO)? (_1’0)5 (071)}

Course 12 Abstract Interpretation |1 Antoine Miné p. 27 / 50

Polyhedra

Chernikova's algorithm example

Example:
Ti P
!
(0) Q)
Py = {(07 O)}
Y >1 P, ={(0,1)}
X+Y>3 P,={(2,1)}

Course 12 Abstract Interpretation |1 Antoine Miné p. 27 / 50

Polyhedra

Chernikova's algorithm example

Example:

Course 12 Abstract Interpretation |1 Antoine Miné p. 27 / 50

Polyhedra

Operators on polyhedra

Abstract operators:

Given X, Y¥# £ | we define:
Xtchyt &L { VP € Pys:My: x

xt=tyt &L xtctyt and YECEXE

Xt nt vyt def <|: mxi :| , |: gXﬁ :|> (join constraint sets)
Y Yt

C*#, = and N* are exact (in P(V = R))

Course 12 Abstract Interpretation |1 Antoine Miné p. 28 / 50

Join: Xfut vyt [[Pxt Pyt], [Rxt Ryt]] (join generator sets)

Examples:

two polytopes a point and a line

U is optimal (in P(V — R)):
we get the topological closure of the convex hull of v(X#) U~(Y?)

Operators on polyhedr

Affine tests:

su[[zl.a,-v,-zﬂ?]]xngd e]’[Egub

Q1 Qg

Non-deterministic assignment:

SH[V; = [—oc, +oc] | X* £ [Pxe, [Rye % (=5%) 1]

@ these operators are exact (in P(V — R))

@ other tests can be abstracted as S[c?] X? £ Xx*
(sound but not optimal)

Course 12 Abstract Interpretation Il _ p. 30 / 50

Polyhedra

Operators on polyhedra (cont.)

Affine assignment:
SV eV 4 B XE &
if aj =0,(SF[X; Vi =V;—B7] oSH[V; ¢ [—o0, +00]]) X*
if aj # 0, (M, C) where V; is replaced with a%(\/J — i iVi—B)

similar to the assignment in the equality domain

the assignment is exact (in P(V — R))

@ assignments can also be defined on the generator system

for non-affine assignments: S![V «+ e] & S¥[V « [—o0, +o0]]

(sound but not optimal)

Course 12 Abstract Interpretation |1 Antoine Miné p. 31 / 50

Polyhedra

Polyhedra widening

E¥ has strictly increasing infinite chains => we need a widening
Definition:

Take X* and Y* in minimal constraint-set form
Xty yt € [{ceXt|vict{c}}

We suppress any unstable constraint ¢ € X*, ie., Y ¢! {c}

Example:

Course 12 Abstract Interpretation |1 Antoine Miné p. 32 / 50

Polyhedra

Polyhedra widening

E¥ has strictly increasing infinite chains => we need a widening
Definition:
Take X* and Y* in minimal constraint-set form
Xty yt € [{ceXt|vict{c}}
U {ce Y3 e Xt Xt =t (X)u{c)}
We suppress any unstable constraint ¢ € X*, ie., Y ¢! {c}

We also keep constraints ¢ € Y* equivalent to those in X¥,
i.e., when 3¢’ € Xb: X% =F (XP\ /) U {c}

Example:

Course 12 Abstract Interpretation |1 Antoine Miné p. 32 / 50

Polyhedra

Example analysis

X 2,1+ 0;

while / < 10 do
if rand(0,1) = 0 then X <— X +2else X + X —3;
I~ 1+1

Loop invariant:

increasing iterations with widening:

X! = {(X=2,1=0}

X} {X=21=0tv({X=21=0 Ul {Xe[-1,4], | =1})
{X=21=0}v{le€[0,1],2—-3I <X <2/ +2}
{I>0,2-3/<X<2/+2}

decreasing iteration: (recover | < 10)

X {X=2,1=0 U {I€[1,10], 23/ < X < 2] +2}
{I €[0,10, 2—3I < X <2/ +2}

at the loop exit, we find eventually: [=10 A X € [—28,22]

Course 12 Abstract Interpretation Il Antoine Miné p. 33 / 50

Polyhedra

Partial conclusion

Cost vs. precision:

Domain Invariants Memory cost | Time cost (per op.)
intervals Vel h o(|v)) o(|v))
affine equalities | >, oV = i O(|V?) O(IVP?)

polyhedra

>; Vi > B; | unbounded, exponential in practice

@ domains provide a tradeoff between precision and cost

@ relational invariants are sometimes necessary

even to prove non-relational properties

@ an abstract domain is defined by

e a choice of abstract properties and operators (semantic aspect)
e data-structures and algorithms

(algorithmic aspect)

@ an abstract domain mixes two kinds of approximations:

e static approximations

e dynamic approximations

Course 12

Abstract Interpretation |1

(choice of abstract properties)

(widening)
Antoine Miné p. 34 / 50

Polyhedra

Weakly relational domains

Principle: restrict the expressiveness of polyhedra
to be more efficient at the cost of precision

Example domains:

@ Based on constraint propagation: (closure algorithms)

e Octagons: X+ Y <c
shortest path closure: x+y <cA—-y+z<d — x+z<c+d
quadratic memory cost, cubic time cost

e Two-variables per inequality: ax+ Sy < c¢
slightly more complex closure algorithm, by Nelson

o Octahedra: > a;V; <c¢,a; € {-1,0,1}

incomplete propagation, to avoid exponential cost

e Pentagons: X —Y <0
restriction of octagons
incomplete propagation, aims at linear cost

@ Based on linear programming:
e Template polyhedra: M x V > C for a fixed M

Course 12 Abstract Interpretation |1 Antoine Miné p. 35 / 50

Polyhedra

Integers

Issue:

in relational domains we used implicitly real-valued environments V — R
our concrete semantics is based on integer-valued environments V — Z

In fact, an abstract element X* does not represent v(X*) C RIVI, but:
’yz(Xﬁ) o} ’\/(Xt) nzWVl (keep only integer points)

Soundness and exactness for vz

@ C% and = are is no longer exact
eg., Y(2X =1) # (L), but yz(2X =1) =~(L) =0

@ N! and affine tests are still exact

@ affine and non-deterministic assignments are no longer exact
eg., Rt = (Y =2X), S}[X + [~oo0, +o0] [RE =TT,
but S[X « [—o0, +00]] (vz(R¥)) = Z x (22)

@ all the operators are still sound
ZIV C RV, so VX yz(XE) C y(XF)

(in general, soundness, exactness, optimality depend on the definition of ~)

Course 12 Abstract Interpretation |1 Antoine Miné p. 36 / 50

Polyhedra

Integers (cont.)

Possible solutions:

@ enrich the domain (add exact representations for operation results)
e congruence equalities: A; ZJ- a; Vi = Bi [vil (Granger 1991)
e Pressburger arithmetic (first order logic with 0, 1, +)

decidable, but with very costly algorithms

@ design optimal (non-exact) operators
also based on costly algorithms, e.g.:

e normalization: integer hull
smallest polyhedra containing vz (X*)

e emptiness testing: integer programming
NP-hard, while linear programming is P
@ pragmatic solution (efficient, non-optimal)
use regular operators for RIVI, then tighten each constraint
to remove as many non-integer points as possible
eg: 2X+6Y >3 X+3Y >2

Note: we abstract integers as reals!

Course 12 Abstract Interpretation |1 Antoine Miné p. 37 / 50

Using the Apron Library

Using the Apron Library

Course 12 Abstract Interpretation Il Antoine Miné p. 38 / 50

Using the Apron Library

Apron library

Underlying libraries & abstract domains

box

intervals

octagons

O

octagons

NewPolka
convex polyhedra

e

linear equalities

PPL + Wrapper

o

convex polyhedra

2

linear congruences

1 J

Abstraction toolbox
— scalar & interval arithmetic
— linearization of expressions
— fall-back implementations

IDeveIoper interfacel

Data-types

Coefficients
Expressions

Constraints
Generators
Abs. values

Semantics: A > (Z™ x R™)
dimensions and space dimensionality

Variables and Environments
Semantics: A 2 (V — Z W R)

http://apron.cri.ensmp.fr/library

Course 12

Abstract Interpretation |1

| User interfacel

| OCaml binding || C++ binding |

Antoine Miné

p. 39 / 50

http://apron.cri.ensmp.fr/library

Using the Apron Library

Apron modules

The Apron module contains sub-modules:

Course 12

Abstractl
abstract elements

Manager
abstract domains (arguments to all Abstractl operations)

Polka

creates a manager for polyhedra abstract elements

Var
integer or real program variables (denoted as a string)

Environment
sets of integer and real program variables

Texprl

arithmetic expression trees

Tcons1
arithmetic constraints (based on Texpr1)

Coeff

numeric coefficients (appear in Texprl, Tcons1)

Abstract Interpretation |1 Antoine Miné

p. 40 / 50

Using the Apron Library

Variables and environments

Variables: type var.t
variables are denoted by their name, as a string:

(assumes implicitly that no two program variables have the same name)

@ Var.of _string: string -> Var.t

Environments: type Environment.t

an abstract element abstracts a set of mappings in V — R
V is the environment; it contains integer-valued and real-valued variables
@ Environment.make: Var.t array -> Var.t array -> t
make ivars rvars creates an environment with ivars integer variables and

rvars real variables;
make [|1] [I1] is the empty environment

@ Environment.add: Environment.t -> Var.t array -> Var.t array -> t
add env ivars rvars adds some integer or real variables to env

@ Environment.remove: t -> Var.t array -> t

internally, an abstract element abstracts a set of points in R”;
the environment maintains the mapping from variable names to dimensions in [1, n]

Course 12 Abstract Interpretation |1 Antoine Miné p. 41 / 50

Using the Apron Library

Expressions

Concrete expression trees: type Texpril.expr

type expr = | Cst of Coeff.t (constants)
| Var of Var.t (variables)
| Unop of unop * expr * typ * round (unary op.)
| Binop of binop * expr * expr * typ * round (binary op.)

@ unary operators
type Texprl.unop = Neg |

@ binary operators
type Texprl.binop = Add | Sub | Mul | Div |
@ numeric type:
(we only use integers, but reals and floats are also possible)
type Texprl.typ = Int |
@ rounding direction:

(only useful for the division on integers; we use rounding to zero, i.e., truncation)
type Texprl.round = Zero |

Course 12 Abstract Interpretation |1 Antoine Miné p. 42 / 50

Using the Apron Library

Expressions (cont.)

Internal expression form: type Texpri.t

concrete expression trees must be converted to an internal form
to be used in abstract operations

@ Texprl.of_expr: Environment.t -> Texprl.expr -> Texprl.t
(the environment is used to convert variable names to dimensions in R")
Coefficients: type Coeff.t
can be either a scalar {c} or an interval [a, b]

we can use the Mpgf module to convert from strings to arbitrary precision
integers, before converting them into Coeff.t:

@ for scalars {c}:
Coeff.s_of_mpqf (Mpqf.of_string c)

@ for intervals [a, b]:
Coeff.i_of_mpqf (Mpqf.of_string a) (Mpqf.of_string b)

Course 12 Abstract Interpretation |1 Antoine Miné p. 43 / 50

Using the Apron Library

Constraints

Constraints: type Tconst.t
constructor expr < 0:

@ Tconsl.make: Texprl.t -> TConsl.typ -> Tcomnsl.t

where:

type Tconsl.typ = SUPEQ | SUP | EQ | DISEQ |
> > = #+

Note: avoid using DISEQ directly, which is not very precise;
but use a disjunction of two SUP constraints instead

Constraint arrays: type Tconsi.earray

abstract operators do not use constraints, but constraint arrays instead

Example: constructing an array ar containing a single constraint:

let ¢ = Tconsl.make texprl typ in
let ar = Tconsl.array_make env 1 in
Tconsl.array_set ar 0 c

Course 12 Abstract Interpretation |1 Antoine Miné p. 44 / 50

Using the Apron Library

Abstract operators

Abstract elements: type Abstracti.t

Course 12

Abstractl.top: Manager.t -> Environment.t -> t
create an abstract element where variables have any value

Abstractl.env: t -> Environment.t
recover the environment on which the abstract element is defined

Abstractl.change_environment: Manager.t -> t ->
Environment.t -> bool -> t

set the new environment, adding or removing variables if necessary

the bool argument should be set to false: variables are not initialized

Abstractl.assign_texpr: Manager.t -> t -> Var.t -> Texprl.t ->
t option -> t
abstract assignment; the option argument should be set to None

Abstractl.forget_array: Manager.t -> t -> Var.t array -> bool -> t
non-deterministic assignment: forget the value of variables (when bool is false)

Abstractl.meet_tcons_array: Manager.t -> t -> Tconsl.earray -> t
abstract test: add one or several constraint(s)

Abstract Interpretation Il Antoine Miné p. 45 / 50

Using the Apron Library

Abstract operators (cont.)

@ Abstractl.join: Manager.t ->t ->t -> t
abstract union U
@ Abstractl.meet: Manager.t ->t ->t ->t
abstract intersection Nf
@ Abstractl.widen: Manager.t -> t >t >t
widening Vv
@ Abstractl.is_leq: Manager.t -> t -> t -> bool
CF: return true if the first argument is included in the second
@ Abstractl.is_bottom: Manager.t -> t -> t bool
whether the abstract element represents ()
@ Abstractl.print: Format.formatter -> t -> unit
print the abstract element
Contract:
@ operators return a new, immutable abstract element (functional style)
@ operators return over-approximations
(not always optimal; e.g.: for non-linear expressions)
@ predicates return true (definitely true) or false (don't know)
Course 12 Abstract Interpretation |1 Antoine Miné

p. 46 / 50

Using the Apron Library

Managers

Managers: type Manager.t

The manager denotes a choice of abstract domain
To use the polyhedra domain, construct the manager with:

let manager = Polka.manager_alloc_loose ()

the same manager variable is passed to all Abstractl function

to choose another domain, you only need to change the line defining manager

Otbher libraries:

Course 12

Polka.manager_alloc_equalities
Polka.manager_alloc_strict
Box.manager_alloc
Oct.manager_alloc
Ppl.manager_alloc_grid

PolkaGrid.manager_alloc

Abstract Interpretation |1

(affine equalities)

(> and > affine inequalities over R)
(intervals)

(octagons)

(affine congruences)

(affine inequalities and congruences)

Antoine Miné p. 47 / 50

Using the Apron Library

Errors

Argument compatibility: ensure that:

@ the same manager is used when creating
and using an abstract element

the type system checks for the compatibility
between ’a Manager.t and ’a Abstractl.t

@ expressions and abstract elements have the same environment
@ assigned variables exist in the environment of the abstract element

@ both abstract elements of binary operators (U, N, v, C)
are defined on the same environment

Failure to ensure this results in a Manager.Error exception

Course 12 Abstract Interpretation |1 Antoine Miné p. 48 / 50

Using the Apron Library

Abstract domain skeleton using Apron

open Apron
module RelationalDomain = (struct

(* manager *)
type man = Polka.loose Polka.t
let manager = Polka.manager_alloc_loose ()

(* abstract elements *)
type t = man Abstractl.t

(* utilities *)
val expr_to_texpr: expr -> Texprl.expr

(* implementation *)

end: ENVIRONMENT_DOMAIN)

To compile: add to the Makefile:

OCAMLINC = .- -I +zarith -I +apron -I +gmp
CMA = bigarray.cma gmp.cma apron.cma polkaMPQ.cma

Course 12 Abstract Interpretation |1

Antoine Miné

p. 49 / 50

Using the Apron Library

Fall-back assignments and tests

let rec expr_to_texpr = function
| AST_binary (op, el, e2) ->
match op with
| AST_PLUS -> Texpril.Binop ---
[

| _ => raise Top

let assign env var expr =
try
let e = expr_to_texpr expr in
Abstractl.assign_texpr ---
with Top -> Abstractl.forget_array ---
let compare abs el e2 =
try

Abstractl.meet_tcons_array ---
with Top -> abs

Idea:

raise Top to abort a computation
catch it to fall-back to sound coarse assignments and tests

Course 12 Abstract Interpretation |1 Antoine Miné

p. 50 / 50

	Motivation
	Affine Equalities
	Affine equalities

	Polyhedra
	Using the Apron Library

