Axiomatic semantics

Semantics and Application to Program Verification

Antoine Miné

École normale supérieure, Paris
year 2014-2015
Course 7
25 March 2015

Introduction

Operational semantics

Models precisely program execution as low-level transitions between internal states
(transition systems, execution traces, big-step semantics)

Denotational semantics

Maps programs into objects in a mathematical domain (higher level, compositional, domain oriented)

Aximoatic semantics (today)

Prove properties about programs

- programs are annotated with logical assertions
- a rule-system defines the validity of assertions (logical proofs)
- clearly separates programs from specifications (specification \simeq user-provided abstraction of the behavior, it is not unique)
- enables the use of logic tools (partial automation, increased confidence)

Overview

- Specifications (informal examples)
- Floyd-Hoare logic
- Dijkstra's predicate transformers
(weakest precondition, strongest postcondition)
- Verification conditions
(partially automated program verification)
- Advanced topics
- Total correctness (termination)

Specifications

Example: function specification

```
example in C + ACSL
int mod(int A, int B) {
    int Q = 0;
    int R = A;
    while (R >= B) {
        R = R - B;
            Q = Q + 1;
    }
    return R;
}
```


Example: function specification

example in $\mathrm{C}+\mathrm{ACSL}$

```
//@ ensures \result == A mod B;
int mod(int A, int B) {
        int Q = 0;
        int R = A;
        while (R >= B) {
            R = R - B;
            Q = Q + 1;
        }
    return R;
}
```

- express the intended behavior of the function
(returned value)

Example: function specification

```
example in \(\mathrm{C}+\mathrm{ACSL}\)
    //@ requires \(A>=0\) \&\& \(B>=0\);
//@ ensures \result == A mod B;
int \(\bmod (i n t A, i n t B)\) \{
    int \(Q=0\);
    int \(R=A\);
    while ( \(\mathrm{R}>=\mathrm{B}\) ) \{
            \(R=R-B ;\)
            \(Q=Q+1 ;\)
        \}
    return R;
\}
```

- express the intended behavior of the function
- add requirements for the function to actually behave as intended (a requires/ensures pair is a function contract)

Example: function specification

```
example in \(\mathrm{C}+\mathrm{ACSL}\)
    //@ requires \(A>=0\) \&\& \(B>0\);
//@ ensures \result == A mod B;
int \(\bmod (i n t A, i n t B)\) \{
    int \(Q=0\);
    int \(R=A\);
    while ( \(\mathrm{R}>=\mathrm{B}\) ) \{
    \(R=R-B ;\)
    \(Q=Q+1 ;\)
    \}
    return R;
\}
```

- express the intended behavior of the function
- add requirements for the function to actually behave as intended (a requires/ensures pair is a function contract)
- strengthen the requirements to ensure termination

Example: program annotations

example with full assertions

```
//@ requires A>=0 && B>0;
//@ ensures \result == A mod B;
int mod(int A, int B) {
    int Q = 0;
    int R = A;
    //@ assert A>=0 && B>0 && Q=0 && R==A;
    while (R >= B) {
        //@ assert A>=0 && B>O && R>=B && A==Q*B+R;
        R = R - B;
        Q = Q + 1;
    }
    //@ assert A>=0 && B>0 && R>=0 && R<B && A==Q*B+R;
    return R;
}
```

Assertions give detail about the internal computations why and how contracts are fulfilled
(Note: $r=a \bmod b$ means $\exists q: a=q b+r \wedge 0 \leq r<b$)

Example: ghost variables

example with ghost variables

```
//@ requires A>=0 && B>0;
//@ ensures \result == A mod B;
int mod(int A, int B) {
    int R = A;
    while (R >= B) {
            R = R - B;
    }
    // \existsQ:A=QB+R and 0\leqR<B
    return R;
}
```

The annotations can be more complex than the program itself

Example: ghost variables

example with ghost variables

```
//@ requires A>=0 && B>0;
//@ ensures \result == A mod B;
int mod(int A, int B) {
    //@ ghost int q = 0;
    int R = A;
    //@ assert A>=0 && B>0 && q=O && R==A;
    while (R >= B) {
        //@ assert A>=0 && B>0 && R>=B && A==q*B+R;
        R = R - B;
        //@ ghost q = q + 1;
    }
    //@ assert A>=0 && B>0 && R>=0 && R<B && A==q*B+R;
    return R;
}
```

The annotations can be more complex than the program itself and require reasoning on enriched states (ghost variables)

Example: class invariants

```
example in ESC/Java
public class OrderedArray {
    int a[];
    int nb;
    //@invariant nb >= 0 && nb <= 20
    //@invariant (\forall int i; (i >= 0 && i < nb-1) ==> a[i] <= a[i+1])
    public OrderedArray() { a = new int[20]; nb = 0; }
    public void add(int v) {
        if (nb >= 20) return;
        int i; for (i=nb; i > 0 && a[i-1] > v; i--) a[i] = a[i-1];
        a[i] = v; nb++;
    }
}
```

class invariant: property of the fields true outside all methods
it can be temporarily broken within a method
but it must be restored before exiting the method

Language support

Contracts (and class invariants):

- built in few languages
- available as a library / external tool

```
(C, Java, C#, etc.)
```

Contracts can be:

- checked dynamically
- checked statically
- inferred statically

In this course:
deductive methods (logic) to check (prove) statically (at compile-time) partially automatically (with user help) that contracts hold

Floyd-Hoare logic

Hoare triples

Hoare triple: $\quad\{P\}$ prog $\{Q\}$

- prog is a program fragment
- P and Q are logical assertions over program variables

$$
\text { (e.g. } P \stackrel{\text { def }}{=}(X \geq 0 \wedge Y \geq 0) \vee(X<0 \wedge Y<0))
$$

A triple means:

- if P holds before prog is executed
- then Q holds after the execution of prog
- unless prog does not terminate or encounters an error
P is the precondition, $\quad Q$ is the postcondition
$\{P\} \operatorname{prog}\{Q\}$ expresses partial correctness
(does not rule out errors and non-termination)
Hoare triples serve as judgements in a proof system
(introduced in [Hoare69])

Language

at : $:=$	$X \leftarrow$ expr	(assignment)
	skip	(do nothing)
	fail	(error)
	stat; stat	(sequence)
	if expr then stat else stat	(conditional)
	while expr do stat	(loop)

- $X \in \mathbb{V}$: integer-valued variables
- expr: integer arithmetic expressions we assume that:
- expressions are deterministic (for now)
- expression evaluation does not cause error for instance, to avoid division by zero, we can: either define $1 / 0$ to be a valid value, such as 0 or systematically guard divisions (e.g.: if $X=0$ then fail else $\cdots / X \cdots$)

Hoare rules: axioms

Axioms:
$\overline{\{P\} \text { skip }\{P\}} \quad \overline{\{P\}}$ fail $\{Q\}$

- any property true before skip is true afterwards
- any property is true after fail

Hoare rules: axioms

Assignment axiom:

$$
\overline{\{P[e / X]\} X \leftarrow e\{P\}}
$$

for P over X to be true after $X \leftarrow e$
P must be true over e before the assignment
$P[e / X]$ is P where free occurrences of X are replaced with e e must be deterministic
the rule is "backwards"
(P appears as a postcondition)
examples: $\{$ true $\} \in 5\{X=5\}$

$$
\begin{aligned}
& \{Y=5\} X \leftarrow Y\{X=5\} \\
& \{X+1 \geq 0\} X \leftarrow X+1\{X \geq 0\} \\
& \{\text { false }\} \in Y+3\{Y=0 \wedge X=12\} \\
& \{Y \in[0,10]\} X \leftarrow Y+3\{X=Y+3 \wedge Y \in[0,10]\}
\end{aligned}
$$

Hoare rules: consequence

Rule of consequence:

$$
\frac{P \Rightarrow P^{\prime} \quad Q^{\prime} \Rightarrow Q \quad\left\{P^{\prime}\right\} \subset\left\{Q^{\prime}\right\}}{\{P\} \subset\{Q\}}
$$

we can weaken a Hoare triple by: weakening its postcondition $Q \Leftarrow Q^{\prime}$ strengthening its precondition $P \Rightarrow P^{\prime}$
we assume a logic system to be available to prove formulas on assertions, such as $P \Rightarrow P^{\prime}$ (e.g., arithmetic, set theory, etc.)
examples:

- the axiom for fail can be replaced with

```
                                    {true} fail {false}
```

 (as \(P \Rightarrow\) true and false \(\Rightarrow Q\) always hold)
 - $\{X=99 \wedge Y \in[1,10]\} X \leftarrow Y+10\{X=Y+10 \wedge Y \in[1,10]\}$
(as $\{Y \in[1,10]\} X \leftarrow Y+10\{X=Y+10 \wedge Y \in[1,10]\}$ and $X=99 \wedge Y \in[1,10] \Rightarrow Y \in[1,10])$

Hoare rules: tests

$$
\text { Tests: } \quad \frac{\{P \wedge e\} s\{Q\} \quad\{P \wedge \neg e\} t\{Q\}}{\{P\} \text { if } e \text { then } s \text { else } t\{Q\}}
$$

to prove that Q holds after the test we prove that it holds after each branch (s, t) under the assumption that it is executed $(e, \neg e)$
example:

$$
\frac{\frac{\overline{\{X<0\} X \leftarrow-X\{X>0\}}}{\{(X \neq 0) \wedge(X<0)\} X \leftarrow-X\{X>0\}}}{\left\{\frac{\overline{\{X>0\} \text { skip }\{X>0\}}}{\{(X \neq 0) \wedge(X \geq 0)\} \text { skip }\{X>0\}}\right.}
$$

Hoare rules: sequences

Sequences: $\quad \frac{\{P\} s\{R\} \quad\{R\} t\{Q\}}{\{P\} s ; t\{Q\}}$
to prove a sequence $s ; t$
we must invent an intermediate assertion R implied by P after s, and implying Q after t (often denoted $\{P\} s\{R\} t\{Q\}$)
example:
$\{X=1 \wedge Y=1\} X \leftarrow X+1\{X=2 \wedge Y=1\} Y \leftarrow Y-1\{X=2 \wedge Y=0\}$

Hoare rules: loops

Loops:

$$
\frac{\{P \wedge e\} s\{P\}}{\{P\} \text { while } e \text { do } s\{P \wedge \neg e\}}
$$

P is a loop invariant
P holds before each loop iteration, before even testing e

Practical use:

actually, we would rather prove the triple: $\{P\}$ while e do $s\{Q\}$ it is sufficient to invent an assertion / that:
holds when the loop start: $P \Rightarrow I$ is invariant by the body $s:\{I \wedge e\} s\{I\}$ implies the assertion when the loop stops: $(I \wedge \neg e) \Rightarrow Q$
we can derive the rule: $\frac{P \Rightarrow I \quad I \wedge \neg e \Rightarrow Q \quad \frac{\{I \wedge e\} s\{I\}}{\{I\} \text { while } e \text { do } s\{I \wedge \neg e\}}}{\{P\} \text { while } e \text { do } s\{Q\}}$

Hoare rules: logical part

Hoare logic is parameterized by the choice of logical theory of assertions the logical theory is used to:

- prove properties of the form $P \Rightarrow Q$
(rule of consequence)
- simplify formulas (replace a formula with a simpler one, equivalent in a logical sens: \Leftrightarrow)

Examples: (generally first order theories)

- booleans ($\mathbb{B}, \neg, \wedge, \vee$)
- bit-vectors ($\mathbb{B}^{n}, \neg, \wedge, \vee$)
- Presburger arithmetic $(\mathbb{N},+)$
- Peano arithmetic ($\mathbb{N},+, \times$)
- linear arithmetic on \mathbb{R}
- Zermelo-Fraenkel set theory $(\in,\{ \})$
- theory of arrays (lookup, update)
theories have different expressiveness, decidability and complexity results this is an important factor when trying to automate program verification

Hoare rules: summary

$$
\begin{gathered}
\overline{\{P\} \text { skip }\{P\}} \overline{\{\text { true }\} \text { fail }\{\text { false }\}} \overline{\{P[e / X]\} X \leftarrow e\{P\}} \\
\frac{\{P\} s\{R\} \quad\{R\} t\{Q\}}{\{P\} s ; t\{Q\}} \quad \frac{\{P \wedge e\} s\{Q\} \quad\{P \wedge \neg e\} t\{Q\}}{\{P\} \text { if } e \text { then } s \text { else } t\{Q\}} \\
\frac{\{P \wedge e\} s\{P\}}{\{P\} \text { while } e \text { do } s\{P \wedge \neg e\}} \\
\frac{P \Rightarrow P^{\prime} \quad Q^{\prime} \Rightarrow Q \quad\left\{P^{\prime}\right\} \subset\left\{Q^{\prime}\right\}}{\{P\} \subset\{Q\}}
\end{gathered}
$$

Proof tree example

$s \stackrel{\text { def }}{=}$ while $I<N$ do $(X \leftarrow 2 X ; I \leftarrow I+1)$

A \quad| $\frac{C \overline{\left\{P_{3}\right\} X \leftarrow 2 X\left\{P_{2}\right\}} \quad \overline{\left\{P_{2}\right\} I \leftarrow I+1\left\{P_{1}\right\}}}{\left\{P_{1} \wedge I<N\right\} X \leftarrow 2 X ; I \leftarrow I+1\left\{P_{1}\right\}}$ |
| :--- |
| $\{X=1 \wedge I=0 \wedge N \geq 0\} s\left\{X=2^{N} \wedge N=I \wedge N \geq 0\right\}$ |

$$
\begin{aligned}
& P_{1} \stackrel{\text { def }}{=} X=2^{\prime} \wedge I \leq N \wedge N \geq 0 \\
& P_{2} \stackrel{\text { def }}{=} X=2^{I+1} \wedge I+1 \leq N \wedge N \geq 0 \\
& P_{3} \stackrel{\text { def }}{=} 2 X=2^{I+1} \wedge I+1 \leq N \wedge N \geq 0 \quad \equiv X=2^{\prime} \wedge I<N \wedge N \geq 0 \\
& A:(X=1 \wedge I=0 \wedge N \geq 0) \Rightarrow P_{1} \\
& B:\left(P_{1} \wedge I \geq N\right) \Rightarrow\left(X=2^{N} \wedge N=I \wedge N \geq 0\right) \\
& C: P_{3} \Longleftrightarrow\left(P_{1} \wedge I<N\right)
\end{aligned}
$$

Proof tree example

$s \stackrel{\text { def }}{=}$ while $I \neq 0$ do $I \leftarrow I-1$

$$
\begin{aligned}
& \overline{\overline{\{\text { true }\}} I \leftarrow I-1\{\text { true }\}} \\
& \text { \{true } \text { while } I \neq 0 \text { do } I \leftarrow I-1\{\text { true } \wedge \neg(I \neq 0)\} \\
& \{\text { true }\} \text { while } I \neq 0 \text { do } I \leftarrow I-1\{I=0\}
\end{aligned}
$$

- in some cases, the program does not terminate (if the program starts with $1<0$)
- the same proof holds for: $\{$ true $\}$ while $I \neq 0$ do $J \leftarrow J-1\{I=0\}$
- anything can be proven of a program that never terminates:

$$
\frac{\overline{\{I=1 \wedge I \neq 0\} J \leftarrow J-1\{I=1\}}}{\frac{\{I=1\} \text { while } I \neq 0 \text { do } J \leftarrow J-1\{I=1 \wedge I=0\}}{\{I=1\} \text { while } I \neq 0 \text { do } J \leftarrow J-1\{\text { false }\}}}
$$

Invariants and inductive invariants

Example: we wish to prove:
$\{X=Y=0\}$ while $X<10$ do $(X \leftarrow X+1 ; Y \leftarrow Y+1)\{X=Y=10\}$
we need to find an invariant assertion P for the while rule
Incorrect invariant: $\quad P \stackrel{\text { def }}{=} X, Y \in[0,10]$

- P indeed holds at each loop iteration (P is an invariant)
- but $\{P \wedge(X<10)\} X \leftarrow X+1 ; Y \leftarrow Y+1\{P\}$ does not hold
$P \wedge X<10$ does not prevent $Y=10$
after $Y \leftarrow Y+1, P$ does not hold anymore

Invariants and inductive invariants

Example: we wish to prove:

$$
\{X=Y=0\} \text { while } X<10 \text { do }(X \leftarrow X+1 ; Y \leftarrow Y+1)\{X=Y=10\}
$$

we need to find an invariant assertion P for the while rule
Correct invariant: $\quad P^{\prime} \stackrel{\text { def }}{=} X \in[0,10] \wedge X=Y$

- P^{\prime} also holds at each loop iteration (P^{\prime} is an invariant)
- $\left\{P^{\prime} \wedge(X<10)\right\} X \leftarrow X+1 ; Y \leftarrow Y+1\left\{P^{\prime}\right\}$ can be proven
- P^{\prime} is an inductive invariant (passes to the induction, stable by a loop iteration)
\qquad
to prove a loop invariant
it is often necessary to find a stronger inductive loop invariant

Soundness and completeness

Validity:
$\{P\} \subset\{Q\}$ is valid $\stackrel{\text { def }}{\Longleftrightarrow}$
executions starting in a state satisfying P and terminating end in a state satisfying Q
(it is an operational notion)

- soundness
a proof tree exists for $\{P\} \subset\{Q\} \Longrightarrow\{P\} \subset\{Q\}$ is valid
- completeness
$\{P\} \subset\{Q\}$ is valid \Longrightarrow a proof tree exists for $\{P\} \subset\{Q\}$ (technically, by Gödel's incompleteness theorem, $P \Rightarrow Q$ is not always provable for strong theories; hence, Hoare logic is incomplete; we consider relative completeness by adding all valid properties $P \Rightarrow Q$ on assertions as axioms)

Theorem (Cook 1974)

Hoare logic is sound (and relatively complete)
Completeness no longer holds for more complex languages (Clarke 1976)

Link with denotational semantics

Reminder: $\quad \mathrm{S} \llbracket$ stat $\rrbracket: \mathcal{P}(\mathcal{E}) \rightarrow \mathcal{P}(\mathcal{E})$ where $\mathcal{E} \stackrel{\text { def }}{=} \vee \mapsto \mathbb{0}$
$\mathrm{S} \llbracket \mathbf{s k i p} \rrbracket R \stackrel{\text { def }}{=} R$
$\mathrm{S} \llbracket$ fail $\rrbracket R \stackrel{\text { def }}{=} \emptyset$
$S \llbracket s_{1} ; s_{2} \rrbracket \stackrel{\text { def }}{=} \mathrm{S} \llbracket s_{2} \rrbracket \circ S \llbracket s_{1} \rrbracket$
$\mathrm{S} \llbracket X \leftarrow e \rrbracket R \stackrel{\text { def }}{=}\{\rho[X \mapsto v] \mid \rho \in R, v \in \mathrm{E} \llbracket e \rrbracket \rho\}$
$\mathrm{S} \llbracket$ if e then s_{1} else $s_{2} \rrbracket R \stackrel{\text { def }}{=} \mathrm{S} \llbracket s_{1} \rrbracket\{\rho \in R \mid$ true $\in \mathrm{E} \llbracket e \rrbracket \rho\} \cup$ $\mathrm{S} \llbracket s_{2} \rrbracket\{\rho \in R \mid$ false $\in \mathrm{E} \llbracket e \rrbracket \rho\}$
$\mathrm{S} \llbracket$ while e do $s \rrbracket R \stackrel{\text { def }}{=}\{\rho \in \operatorname{lfp} F \mid$ false $\in \mathrm{E} \llbracket e \rrbracket \rho\}$ where $F(X) \stackrel{\text { def }}{=} R \cup \mathrm{~S} \llbracket s \rrbracket\{\rho \in X \mid$ true $\in \mathrm{E} \llbracket e \rrbracket \rho\}$

Theorem

$$
\{P\} c\{Q\} \stackrel{\text { def }}{\Longleftrightarrow} \forall R \subseteq \mathcal{E}: R \models P \Longrightarrow \mathrm{~S} \llbracket c \rrbracket R \models Q
$$

($A \models P$ means $\forall \rho \in A$, the formula P is true on the variable assignment ρ)

Link with denotational semantics

- Hoare logic reasons on formulas
- denotational semantics reasons on state sets
we can assimilate assertion formulas and state sets (logical abuse: we assimilate formulas and models)
let $[R]$ be any formula representing the set R, then:
- $\{[R]\} \subset\{[\mathrm{S} \llbracket \subset \rrbracket R]\}$ is always valid
- $\{[R]\} \subset\left\{\left[R^{\prime}\right]\right\} \Rightarrow \mathrm{S} \llbracket c \rrbracket R \subseteq R^{\prime}$
$\Longrightarrow[\mathrm{S} \llbracket c \rrbracket R]$ provides the best valid postcondition

Link with denotational semantics

Loop invariants

- Hoare:
to prove $\{P\}$ while e do $s\{P \wedge \neg e\}$ we must prove $\{P \wedge e\} s\{P\}$ i.e., P is an inductive invariant
- Denotational semantics:
we must find Ifp F where $F(X) \stackrel{\text { def }}{=} R \cup S \llbracket s \rrbracket\{\rho \in X \mid \rho \models e\}$
- Ifp $F=\cap\{X \mid F(X) \subseteq X\}$
(Tarski's theorem)
- $F(X) \subseteq X \Longleftrightarrow([R] \Rightarrow[X]) \wedge\{[X \wedge e]\} s\{[X]\}$

$$
\begin{aligned}
& R \subseteq X \text { means }[R] \Rightarrow[X], \\
& \mathrm{S} \llbracket s \rrbracket\{\rho \in X \mid \rho \models e\} \subseteq X \text { means }\{[X \wedge e]\} s\{[X]\}
\end{aligned}
$$

As a consequence:

- any X such that $F(X) \subseteq X$ gives an inductive invariant $[X]$
- Ifp F gives the best inductive invariant
- any X such that Ifp $F \subseteq X$ gives an invariant (not necessarily inductive)
(see [Cousot02])

Predicate transformers

Dijkstra's weakest liberal preconditions

Principle:

- calculus to derive preconditions from postconditions
- order and mechanize the search for intermediate assertions (easier to go backwards, mainly due to assignments)

Weakest liberal precondition $w / p:($ prog \times Prop $) \rightarrow$ Prop
$w l p(c, P)$ is the weakest, i.e. most general, precondition ensuring that $\{w / p(c, P)\} \subset\{P\}$ is a Hoare triple (greatest state set that ensures that the computation ends up in P)
formally: $\quad\{P\} \subset\{Q\} \Longleftrightarrow(P \Rightarrow w / p(c, Q))$
"liberal" means that we do not care about termination and errors

Examples:

$$
\begin{aligned}
& w \operatorname{lp}(X \leftarrow X+1, X=1)= \\
& w / p(\text { while } X<0 X \leftarrow X+1, X \geq 0)= \\
& \operatorname{wlp}(\text { while } X \neq 0 X \leftarrow X+1, X \geq 0)=
\end{aligned}
$$

Dijkstra's weakest liberal preconditions

Principle:

- calculus to derive preconditions from postconditions
- order and mechanize the search for intermediate assertions (easier to go backwards, mainly due to assignments)

Weakest liberal precondition $w / p:($ prog \times Prop $) \rightarrow$ Prop
$w l p(c, P)$ is the weakest, i.e. most general, precondition ensuring that $\{w / p(c, P)\} \subset\{P\}$ is a Hoare triple (greatest state set that ensures that the computation ends up in P)
formally: $\quad\{P\} \subset\{Q\} \Longleftrightarrow(P \Rightarrow w / p(c, Q))$
"liberal" means that we do not care about termination and errors

Examples:

$$
\begin{aligned}
& w / p(X \leftarrow X+1, X=1)=(X=0) \\
& w / p(\text { while } X<0 X \leftarrow X+1, X \geq 0)=\text { true } \\
& w / p(\text { while } X \neq 0 X \leftarrow X+1, X \geq 0)=\text { true }
\end{aligned}
$$

A calculus for wlp

w / p is defined by induction on the syntax of programs:
$w / p(\mathbf{s k i p}, P) \stackrel{\text { def }}{=} P$
$w l p($ fail,$P) \stackrel{\text { def }}{=}$ true
$w / p(X \leftarrow e, P) \stackrel{\text { def }}{=} P[e / X]$
$w / p(s ; t, P) \stackrel{\text { def }}{=} w / p(s, w / p(t, P))$
$w / p($ if e then s else $t, P) \stackrel{\text { def }}{=}(e \Rightarrow w / p(s, P)) \wedge(\neg e \Rightarrow w / p(t, P))$
$w l p($ while e do $s, P) \stackrel{\text { def }}{=} I \wedge((e \wedge I) \Rightarrow w l p(s, l)) \wedge((\neg e \wedge I) \Rightarrow P)$

- $e \Rightarrow Q$ is equivalent to $Q \vee \neg e$ weakest property that matches Q when e holds but says nothing when e does not hold
- while loops require providing an invariant predicate I
intuitively, wlp checks that I is an inductive invariant implying P if so, it returns I; otherwise, it returns false
wlp is the weakest precondition only if I is well-chosen...

Alternate form for loops

Unrolling of the loop while e do s :

- $L_{0} \xlongequal{\text { def }}$ fail
- $L_{i+1} \stackrel{\text { def }}{=}$ if e then $\left(s ; L_{i}\right)$ else skip
- L_{i} runs the loop and fails after i iterations
we have: $\left\{\begin{array}{l}w / p\left(L_{0}, P\right)=\text { true } \\ w / p\left(L_{i+1}, P\right)=\left(e \Rightarrow w / p\left(s, w / p\left(L_{i}, P\right)\right)\right) \wedge(\neg e \Rightarrow P)\end{array}\right.$
Alternate w/p for loops: $\quad w / p($ while e do $s, P) \stackrel{\text { def }}{=} \forall i: X_{i}$
where $X_{0} \stackrel{\text { def }}{=}$ true

$$
X_{i+1} \stackrel{\text { def }}{=}\left(e \Rightarrow w l p\left(s, X_{i}\right)\right) \wedge(\neg e \Rightarrow P)
$$

$X_{i} \Leftarrow X_{i+1}$: sequence of assertions of increasing strength
($\left.\forall i: X_{i}\right)$ is the limit, with an arbitrary number of iterations
($\forall i: X_{i}$) is a closed form guaranteed to be the weakest precondition
(no need for a user-specified invariant)
($\forall i: X_{i}$) is the fixpoint of a second-order formula
\Longrightarrow very difficult to handle

Wlp computation example

$$
\begin{aligned}
& \text { w/p(if } X<0 \text { then } Y \leftarrow-X \text { else } Y \leftarrow X, Y \geq 10)= \\
& \qquad(X<0 \Rightarrow w \operatorname{lp}(Y \leftarrow-X, Y \geq 10)) \wedge(X \geq 0 \Rightarrow w \ln (Y \leftarrow X, Y \geq 10)) \\
& \quad(X<0 \Rightarrow-X \geq 10) \wedge(X \geq 0 \Rightarrow X \geq 10)= \\
& \quad(X \geq 0 \vee-X \geq 10) \wedge(X<0 \vee X \geq 10)= \\
& \quad X \geq 10 \vee X \leq-10
\end{aligned}
$$

w/p generates complex formulas
it is important to simplify them from time to time

Properties of wlp

- $w / p(c$, false $) \equiv$ false
(excluded miracle)
- $w / p(c, P) \wedge w / p(d, Q) \equiv w / p(c, P \wedge Q)$ (distributivity)
- $w / p(c, P) \vee w / p(d, Q) \equiv w / p(c, P \vee Q)$
(distributivity)
(\Rightarrow always true, \Leftarrow only true for deterministic, error-free programs)
- if $P \Rightarrow Q$, then $w / p(c, P) \Rightarrow w / p(c, Q)$
(monotonicity)
$A \equiv B$ means that the formulas A and B are equivalent
i.e., $\forall \rho: \rho \models A \Longleftrightarrow \rho \models B$
(stronger that syntactic equality)

Strongest liberal postconditions

we can define slp : $($ Prop \times prog $) \rightarrow$ Prop

- $\{P\} \subset\{s / p(P, c)\}$
(postcondition)
- $\{P\} \subset\{Q\} \Longleftrightarrow(\operatorname{slp}(P, c) \Rightarrow Q)$
(corresponds to the smallest state set)
- $s l p(P, c)$ does not care about non-termination
- allows forward reasoning
we have a duality:

$$
(P \Rightarrow w / p(c, Q)) \Longleftrightarrow(s / p(P, c) \Rightarrow Q)
$$

proof: $(P \Rightarrow w / p(c, Q)) \Longleftrightarrow\{P\} \subset\{Q\} \Longleftrightarrow(s / p(P, c) \Rightarrow Q)$

Calculus for slp

$\operatorname{slp}(P, \mathbf{s k i p}) \stackrel{\text { def }}{=} P$
$\operatorname{slp}(P$, fail $) \stackrel{\text { def }}{=}$ false
$\operatorname{slp}(P, X \leftarrow e) \stackrel{\text { def }}{=} \exists v: P[v / X] \wedge X=e[v / X]$
$\operatorname{slp}(P, s ; t) \stackrel{\text { def }}{=} \operatorname{slp}(s / p(P, s), t)$
$s \ln (P$, if e then s else $t) \stackrel{\text { def }}{=} \operatorname{slp}(P \wedge e, s) \vee \operatorname{slp}(P \wedge \neg e, t)$
$\operatorname{slp}(P$, while e do $s) \stackrel{\text { def }}{=}(P \Rightarrow I) \wedge(s l p(I \wedge e, s) \Rightarrow I) \wedge(\neg e \wedge I)$
(the rule for $X \leftarrow e$ makes s/p much less attractive than w/p)

Verification conditions

Verification condition approch to program verification

How can we automate program verification using logic?

- Hoare logic: deductive system
can only automate the checking of proofs
- predicate transformers: w/p, s/p calculus
construct (big) formulas mechanically
invention is still needed for loops
- verification condition generation
take as input a program with annotations
(at least contracts and loop invariants)
generate mechanically logic formulas ensuring the correctness (reduction to a mathematical problem, no longer any reference to a program)
use an automatic SAT/SMT solver to prove (discharge) the formulas or an interactive theorem prover
(the idea of logic-based automated verification appears as early as [King69])

Language

$$
\begin{array}{rll}
\text { stat }: & := & X \leftarrow \text { expr } \\
& & \text { skip } \\
& \text { stat; stat } \\
& \text { if expr then stat else stat } \\
& \text { while }\{\text { Prop }\} \text { expr do stat } \\
& \text { assert expr } \\
\text { prog }::= & \text { \{Prop }\} \text { stat }\{\text { Prop }\}
\end{array}
$$

- loops are annotated with loop invariants
- optional assertions at any point
- programs are annotated with a contract (precondition and postcondition)

Verification condition generation algorithm

by induction on the syntax of statements

$$
\begin{aligned}
& \frac{\operatorname{vcg}_{p}: \operatorname{prog} \rightarrow \mathcal{P}(\text { Prop })}{} \\
& \operatorname{vcg}_{p}(\{P\} \subset\{Q\}) \stackrel{\text { def }}{=} \\
& \quad \text { let }(R, C)=\operatorname{vcg}_{s}(c, Q) \text { in } C \cup\{P \Rightarrow R\} \\
& \operatorname{vcg}_{s}:(s t a t \times \operatorname{Prop}) \rightarrow(\operatorname{Prop} \times \mathcal{P}(\text { Prop })) \\
& \operatorname{vcg}_{s}(\text { skip }, Q) \stackrel{\text { def }}{=}(Q, \emptyset) \\
& \operatorname{vcg}_{s}(X \leftarrow e, Q) \stackrel{\text { def }}{=}(Q[e / X], \emptyset) \\
& \operatorname{vcg}_{s}(s ; t, Q) \stackrel{\text { def }}{=} \\
& \quad \text { let }(R, C)=\operatorname{vcg}_{s}(t, Q) \text { in let }(P, D)=\operatorname{vcg}_{s}(s, R) \text { in }(P, C \cup D) \\
& \operatorname{vcg}_{s}(\text { if } e \text { then } s \text { else } t, Q) \stackrel{\text { def }}{=} \\
& \quad \text { let }(S, C)=\operatorname{vcg}_{s}(s, Q) \text { in let }(T, D)=\operatorname{vcg}_{s}(t, Q) \text { in }((e \Rightarrow S) \wedge(\neg e \Rightarrow T), C \cup D) \\
& \operatorname{vcg}_{s}(\text { while }\{I\} \text { do } s, Q) \stackrel{\text { def }}{=} \\
& \quad \text { let }(R, C)=\operatorname{vcg}_{s}(s, I) \text { in }(I, C \cup\{(I \wedge e) \Rightarrow R,(I \wedge \neg e) \Rightarrow Q\}) \\
& \operatorname{vcg}_{s}(\text { assert } e, Q) \stackrel{\text { def }}{=}(e \Rightarrow Q, \emptyset)
\end{aligned}
$$

- we use w/p to infer assertions automatically when possible
- $\operatorname{vcg}_{s}(c, P)=\left(P^{\prime}, C\right)$ propagates postconditions backwards $\left(P\right.$ into $\left.P^{\prime}\right)$ and accumulates into C verification conditions (from loops)
- we could do the same using s / p instead of w / p

Verification condition generation example

Consider the program:

$$
\begin{array}{ll}
\{N \geq 0\} & X \leftarrow 1 ; I \leftarrow 0 ; \\
& \text { while }\left\{X=2^{\prime} \wedge 0 \leq I \leq N\right\} I<N \text { do } \\
& (X \leftarrow 2 X ; I \leftarrow I+1) \\
\left\{X=2^{N}\right\} &
\end{array}
$$

we get three verification conditions:

$$
\begin{aligned}
C_{1} & \stackrel{\text { def }}{=}\left(X=2^{\prime} \wedge 0 \leq I \leq N\right) \wedge I \geq N \Rightarrow X=2^{N} \\
C_{2} & \stackrel{\text { def }}{=}\left(X=2^{\prime} \wedge 0 \leq I \leq N\right) \wedge I<N \Rightarrow 2 X=2^{I+1} \wedge 0 \leq I+1 \leq N \\
& \quad\left(\text { from }\left(X=2^{\prime} \wedge 0 \leq I \leq N\right)[I+1 / I, 2 X / X]\right) \\
C_{3} & \stackrel{\text { def }}{=} N \geq 0 \Rightarrow 1=2^{0} \wedge 0 \leq 0 \leq N \\
& \quad\left(\text { from }\left(X=2^{\prime} \wedge 0 \leq I \leq N\right)[0 / I, 1 / X]\right)
\end{aligned}
$$

which can be checked independently

What about real languages?

In a real language such as C, the rules are not so simple

Example: the assignment rule $\overline{\{P[e / X]\} X \leftarrow e\{P\}}$ requires that

- e has no effect
(memory write, function calls)
- there is no pointer aliasing
- e has no run-time error
moreover, the operators in the program and in the logic may not match:
- integers: logic models \mathbb{Z}, computers use $\mathbb{Z} / 2^{n} \mathbb{Z}$
- continuous:
logic models \mathbb{Q} or \mathbb{R}, programs use floating-point numbers (rounding error)
- a logic for pointers and dynamic allocation is also required (separation logic)
(see for instance the tool Why, to see how some problems can be circumvented)

Conclusion

Conclusion

- logic allows us to reason about program correctness
- verification can be reduced to proofs of simple logic statements

Issue: automation

- annotations are required (loop invariants, contracts)
- verification conditions must be proven
to scale up to realistic programs, we need to automate as much as possible
Some solutions:
- automatic logic solvers to discharge proof obligations SAT / SMT solvers
- abstract interpretation to approximate the semantics
- fully automatic
- able to infer invariants

Bibliography

[Apt81] K. Apt. Ten Years of Hoare's logic: A survey In ACM TOPLAS, 3(4):431-483, 1981.
[Cousot02] P. Cousot. Constructive design of a hierarchy of semantics of a transition system by abstract interpretation. In TCS, 277(1-2):47-103, 2002.
[Dijkstra76] E.W. Dijkstra. Guarded commands, nondeterminacy and formal derivation of program In Comm. ACM, 18(8):453-457, 1975.
[Floyd67] R. Floyd. Assigning meanings to programs In In Proc. Sympos. Appl. Math., Vol. XIX, pages 19-32, 1967.
[Hoare69] C.A.R. Hoare. An axiomatic basis for computer programming In Commun. ACM 12(10), 1969.
[King69] J.C. King. A program verifier In PhD thesis, Dept. of Computer Science, Carnegie-Mellon University, 1969.
[Owicki76] S. Owicki \& D. Gries. An axiomatic proof technique for parallel programs I In Acta Informatica, 6(4):319-340, 1976.

Extensions

Total correctness

Hoare triple: $\quad[P]$ prog $[Q]$

- if P holds before prog is executed
- then prog always terminates
- and Q holds after the execution of prog

Rules: we only need to change the rule for while

$$
\frac{\forall t \in W:[P \wedge e \wedge u=t] s[P \wedge u \prec t]}{[P] \text { while } e \text { do } s[P \wedge \neg e]}
$$

- (W, \prec) well-founded $\stackrel{\text { def }}{\Longleftrightarrow}$ every $V \subseteq W, V \neq \emptyset$ has a minimal element for \prec ensures that we cannot decrease infinitely by \prec in W generally, we simply use ($\mathbb{N},<$) (also useful: lexicographic orders, ordinals)
- in addition to the loop invariant P we invent an expression u that strictly decreases by s
u is called a "ranking function"
often $\neg e \Longrightarrow u=0: u$ counts the number of steps until termination

Total correctness

To simplify, we can decompose a proof of total correctness into:

- a proof of partial correctness $\{P\} \subset\{Q\}$ ignoring termination
- a proof of termination $[P]$ c [true]
ignoring the specification
(we must still include the precondition P
as the program may not terminate for all inputs)
indeed, we have:

$$
\frac{\{P\} \subset\{Q\} \quad[P] \subset[\text { true }]}{[P] \subset[Q]}
$$

Total correctness example

We use a simpler rule for integer ranking functions $((W, \prec) \xlongequal{\text { def }}(\mathbb{N}, \leq))$ using an integer expression r over program variables:

$$
\frac{\forall n:[P \wedge e \wedge(r=n)] s[P \wedge(r<n)] \quad(P \wedge e) \Rightarrow(r \geq 0)}{[P] \text { while } e \text { do } s[P \wedge \neg e]}
$$

Example: $\quad p \stackrel{\text { def }}{=}$ while $I<N$ do $I \leftarrow I+1 ; X \leftarrow 2 X$ done
we use $r \stackrel{\text { def }}{=} N-I$ and $P \stackrel{\text { def }}{=}$ true
$\forall n:[I<N \wedge N-I=n] I \leftarrow I+1 ; X \leftarrow 2 X[N-I=n-1]$

$$
\begin{gathered}
I<N \Rightarrow N-I \geq 0 \\
{[\text { true] } p[I \geq N]}
\end{gathered}
$$

Weakest precondition

Weakest precondition wp(prog, Prop) : Prop

- similar to $w p$, but also additionally imposes termination
- $[P] c[Q] \Longleftrightarrow(P \Rightarrow w p(c, Q))$

As before, only the definition for while needs to be modified:
$w p($ while e do $s, P) \stackrel{\text { def }}{=} I \wedge$

$$
\begin{aligned}
& (I \Rightarrow v \geq 0) \wedge \\
& \forall n:((e \wedge I \wedge v=n) \Rightarrow w p(s, I \wedge v<n)) \wedge \\
& ((\neg e \wedge I) \Rightarrow P)
\end{aligned}
$$

the invariant predicate $/$ is combined with a variant expression v
v is positive (this is an invariant: $I \Rightarrow v \geq 0$)
v decreases at each loop iteration
(and similarly for strongest postconditions)

