
Traces Properties
Semantics and applications to verification

Xavier Rival

École Normale Supérieure

Xavier Rival Traces Properties 1 / 1

Program of this lecture

Today’s lecture: we look back at program’s properties
families of properties:
what properties can be considered “similar” ? in what sense ?
proof techniques:
how can those kinds of properties be established ?
specification of properties:
are there languages to describe properties ?

Xavier Rival Traces Properties 2 / 1

A high level overview

In this lecture we look at trace properties
A property is a set of traces, defining the admissible executions

Safety properties:
something (e.g., bad) will never happen
proof by invariance

Liveness properties:
something (e.g., good) will eventually happen
proof by variance

Some interesting program properties do not fit this classification

Xavier Rival Traces Properties 3 / 1

State properties

As usual, we consider S = (S,→,SI)

First approach: properties as sets of states
a property P is a set of states P ⊆ S
P is satisfied if and only if all reachable states belong to P, i.e.,
JSKR ⊆ P where JSKR = {sn ∈ S | ∃〈s0, . . . , sn〉 ∈ JSKR, s0 ∈ SI}

Examples:
absence of runtime errors:

P = S \ {Ω} where Ω is the error state

non termination (e.g., for an operating system):

P = {s ∈ S | ∃s ′ ∈ S, s → s ′}

Xavier Rival Traces Properties 4 / 1

Trace properties

Second approach: properties as sets of traces
a property T is a set of traces T ⊆ S∝

T is satisfied if and only if all traces belong to T , i.e., JSK∝ ⊆ T

Examples:
obviously, state properties are trace properties
functional properties
e.g., “program P takes one integer input x and returns its absolute
value”
termination: T = S? (i.e., the system should have no infinite
execution)

Xavier Rival Traces Properties 5 / 1

Monotonicity

Property
Let P0,P1 ⊆ S be two state properties, such that P0 ⊆ P1.
Then P0 is stronger than P1, i.e. if program S satisfies P0, then it also
satisfies P1.

Let T0, T1 ⊆ S be two trace properties, such that T0 ⊆ T1.
Then T0 is stronger than T1, i.e. if program S satisfies T0, then it also
satisfies T1.

Proof: straightforward application of the definition of state (resp., trace)
properties

Xavier Rival Traces Properties 6 / 1

Safety properties Informal and formal definitions

Outline

Xavier Rival Traces Properties 7 / 1

Safety properties Informal and formal definitions

Safety properties

Informal definition: safety properties
A safety property is a property which specifies that some (bad) behavior
will never occur

absence of runtime errors is a safety property (“bad thing”: error)
state properties is a safety property (“bad thing”: reaching S \ P)
non termination is a safety property (“bad thing”: reaching a
blocking state)
“not reaching state b after visiting state a” is a safety property
(and not a state property)
termination is not a safety property

Xavier Rival Traces Properties 8 / 1

Safety properties Informal and formal definitions

Towards a formal definition

We intend to provide a formal definition of safety.
How to refutate a safety property ?

we assume S does not satisfy safety property P
thus, there exists a counter-example trace
σ = 〈s0, . . . , sn, . . .〉 ∈ JSK \ P;
it may be finite or infinite...
the intuitive definition says this trace eventually exhibits some bad
behavior
thus, there exists a rank i ∈ N, such that the bad behavior has been
observed before reaching si
therefore, trace σ′ = 〈s0, . . . , si 〉 violates P, i.e. σ′ 6∈ P
we remark σ′ is finite

A safety property that does not hold can always be refuted with a
finite counter-example

Xavier Rival Traces Properties 9 / 1

Safety properties Informal and formal definitions

Limit

Definition: upper closure operator (uco)
Function φ : S → S is an upper closure operator iff:

monotone
extensive: ∀x ∈ S, x v φ(x)

idempotent: ∀x ∈ S, φ(φ(x)) = φ(x)

Definition: limit
The limit operator is defined by:

Lim : P(S∝) −→ P(S∝)
X 7−→ X ∪ {σ ∈ S∝ | ∀i ∈ N, σdi ∈ X}

Operator Lim is an upper-closure operator

Proof: exercise!
Xavier Rival Traces Properties 10 / 1

Safety properties Informal and formal definitions

Prefix closure

We write σdi for the prefix of length i of trace σ:

〈s0, . . . , sn〉d0 = ε

〈s0, . . . , sn〉di+1 =

{
〈s0, . . . , si 〉 if i < n
〈s0, . . . , sn〉 otherwise

〈s0, . . .〉di+1 = 〈s0, . . . , si 〉

If σ is finite, of length n, |σ|i = min(n, i); if σ is infinite, |σ|i = i .

Definition: prefix closure
The prefix closure operator is defined by:

PCl : P(S∝) −→ P(S?)
X 7−→ {σdi | σ ∈ X , i ∈ N}

Properties:
PCl is monotone
PCl is idempotent, i.e., PCl ◦ PCl(X) = PCl(X)

Xavier Rival Traces Properties 11 / 1

Safety properties Informal and formal definitions

Safety properties: formal definition

An upper closure operator
Operator Safe is defined by Safe = Lim ◦ PCl.
It is an upper closure operator over P(S∝)

Proof:
Safe is monotone as Lim and PCl are
Safe is extensive; indeed if X ⊆ S∝ and σ ∈ X , we can show that
σ ∈ Safe(X):

I if σ is a finite trace, it is one of its prefixes, so
σ ∈ PCl(X) ⊆ Lim(PCl(X))

I if σ is an infinite trace, all its prefixes belong to PCl(X), so
σ ∈ Lim(PCl(X))

Xavier Rival Traces Properties 12 / 1

Safety properties Informal and formal definitions

Safety properties: formal definition

Proof (continued):
Safe is idempotent:

I as Safe is extensive and monotone Safe ⊆ Safe ◦ Safe, so we simply
need to show that Safe ◦ Safe ⊆ Safe

I let X ⊆ S∝, σ ∈ Safe(Safe(X)); then:

σ ∈ Safe(Safe(X))
⇒ ∀i , σdi ∈ PCl ◦ Safe(X) by def. of Lim
⇒ ∀i , ∃σ′, j , σdi = σ′

dj ∧ σ′ ∈ Safe(X) by def. of PCl
⇒ ∀i , ∃σ′, j , σdi = σ′

dj ∧ ∀k, σ′
dk ∈ PCl(X) by def. of Lim

⇒ ∀i , ∃σ′, j , σdi = σ′
dj ∧ σ′

di ∈ PCl(X) with i = j

F if σ is finite, we let i = |σ|, thus j has to be equal to n as well and
σ = σ′

di ∈ PCl(X), thus σ ∈ Lim(PCl(X))
F if σ is infinte, |σdi | = i and we may let i = k so

∀i , σdi = σ′
di ∈ PCl(X)

thus σ ∈ Lim(PCl(X))

Xavier Rival Traces Properties 13 / 1

Safety properties Informal and formal definitions

Safety properties: formal definition

Safety: definition
A trace property T is a safety property if and only if Safe(T) = T

Theorem
If T is a trace property, then Safe(T) is a safety property

Proof: straightforward, by idempotence of Safe

Xavier Rival Traces Properties 14 / 1

Safety properties Informal and formal definitions

Example

We assume that:
S = {a, b}
T states that a should not be visited after state b is visited;
elements of T are of the general form

〈a, a, a, . . . , a, b, b, b, b, . . .〉 or 〈a, a, a, . . . , a, a, . . .〉
Then:

PCl(T) elements are all finite traces which are of the above form (i.e.,
made of n occurrences of a followed by m occurrences of b, where
n,m are positive integers)
Lim(PCl(T)) adds to this set the trace made made of infinitely many
occurrences of a and the infinite traces made of n occurrences of a
followed by infinitely many occurrneces of b
thus, Safe(T) = Lim(PCl(T)) = T

Therefore T is indeed formally a safety property.
Xavier Rival Traces Properties 15 / 1

Safety properties Informal and formal definitions

State properties are safety properties

Theorem
Any state property is also a safety property.

Proof: Let us consider state property P.
It is equivalent to trace property T = P∝:

Safe(T) = Lim(PCl(P∝))
= Lim(P?)
= P? ∪ Pω

= P∝
= T

Therefore T is indeed a safety property.

Xavier Rival Traces Properties 16 / 1

Safety properties Informal and formal definitions

Intuition of the formal definition

Operator Safe saturates a set of traces S with
prefixes
infinite traces all finite prefixes of which can be observed in S

Thus, if Safe(S) = S and σ is a trace, to establish that σ is not in S , it is
sufficient to discover a finite prefix of σ that cannot be observed in S .

Alternatively, if all finite prefixes of σ belong to S or can observed as a
prefix of another trace in S , by definition of the limit operator, σ belongs
to S (even if it is infinite).

Thus, our definition indeed captures properties that can be disproved
with a counter-example.

Xavier Rival Traces Properties 17 / 1

Safety properties Proof method

Outline

Xavier Rival Traces Properties 18 / 1

Safety properties Proof method

Proof by invariance

We consider transition system S = (S,→,SI), and safety property T .
Finite traces semantics is the least fixpoint of F?.
We seek a way of verifying that S satisfies T , i.e., that JSK∝ ⊆ T

Principle of invariance proofs
Let I be a set of finite traces; it is said to be an invariant if and only if:

∀s ∈ SI , 〈s〉 ∈ I
F?(I) ⊆ I

It is stronger than T if and only if I ⊆ T .

The “by invariance” proof method is based on finding an invariant that is
stronger than T .

Xavier Rival Traces Properties 19 / 1

Safety properties Proof method

Soundness

Theorem: soundness
The invariance proof method is sound: if we can find an invariant for S,
that is stronger than T , then S satisfies T .

Proof:
We assume that I is an invariant of S and that it is stronger than T , and
we show that S satisfies T :

by induction over n, we can prove that F n
? ({〈s〉 | s ∈ S}) ⊆ F n

? (I) ⊆ I
therefore JSK? ⊆ I
thus, Safe(JSK?) ⊆ Safe(I) ⊆ Safe(T) since Safe is monotone
we remark that JSK∝ = Safe(JSK?)

T is a safety property so Safe(T) = T
we conclude JSK∝ ⊆ T , i.e., S satisfies property T

Xavier Rival Traces Properties 20 / 1

Safety properties Proof method

Completeness

Theorem: completeness
The invariance proof method is complete: if S satisfies T , then we can
find an invariant I for S, that is stronger than T .

Proof:
We assume that JSK∝ satisfies T , and show that we can exhibit an
invariant.
Then, I = JSK∝ is an invariant of S by definition of J.K∝, and it is stronger
than T .

Caveat:
JSK∝ is most likely not a very easy to express invariant
it is just a convenient completeness argument
so, completeness does not mean the proof is easy !

Xavier Rival Traces Properties 21 / 1

Safety properties Proof method

Example

We consider the proof that the program below computes the sum of the
elements of an array, i.e., when the exit is reached, s =

∑n−1
k=0 t[k]:

i, s integer variables
t integer array of length n

l0 : LtrueM
s = 0;

l1 : Ls = 0M
i = 0;

l2 : Li = 0 ∧ s = 0M
while(i < n){

l3 : L0 ≤ i < n ∧ s =
∑i−1

k=0 t[k]M
s = s + t[i];

l4 : L0 ≤ i < n ∧ s =
∑i

k=0 t[k]M
i = i + 1;

l5 : L1 ≤ i ≤ n ∧ s =
∑i−1

k=0 t[k]M
}

l6 : Li = n ∧ s =
∑n−1

k=0 t[k]M

Principle of the proof:
for each program point l , we
have a local invariant Il
(denoted by a logical formula
instead of a set of states in the
figure)
the global invariant I is
defined by:
I = {〈(l0,m0), . . . , (ln,mn) |

∀n, mn ∈ Iln}

Xavier Rival Traces Properties 22 / 1

Liveness properties Informal and formal definitions

Outline

Xavier Rival Traces Properties 23 / 1

Liveness properties Informal and formal definitions

Liveness properties

Informal definition: liveness properties
A liveness property is a property which specifies that some (good) behavior
will eventually occur.

termination is a liveness property
“good behavior”: reaching a blocking state (no more transition
available)
“state a will eventually be reached by all execution” is a liveness
property
“good behavior”: reaching state a

the absence of runtime errors is not a liveness property

Xavier Rival Traces Properties 24 / 1

Liveness properties Informal and formal definitions

Intuition towards a formal definition

We intend to provide a formal definition of liveness.
How to refutate a liveness property ?

we consider liveness property T (think T is termination)
we assume S does not satisfy liveness property T
thus, there exists a counter-example trace σ ∈ JSK \ T ;
let us assume σ is actually finite...
the definition of liveness says some (good) behavior should eventually
occur:

I how do we know that σ cannot be extended into a trace σ · σ′ that will
satisfy this behavior ?

I maybe that after a few more computation steps, σ will reach a
blocking state...

Xavier Rival Traces Properties 25 / 1

Liveness properties Informal and formal definitions

Intuition towards a formal definition

To refutate a liveness property, we need to look at infinite traces.

Example: if we run a program, and do not see it return...
should we do Ctrl+C and conclude it does not terminate ?
should we just wait a few more seconds minutes, hours, years ?

Towards a formal definition: we expect any finite trace be the prefix
of a trace in T
as finite executions cannot be used to disprove T

Formal definition (incomplete)
PCl(T) = S?

Xavier Rival Traces Properties 26 / 1

Liveness properties Informal and formal definitions

Definition

Formal definition
Operator Live is defined by Live(T) = T ∪ (S∝ \ Safe(T)). Given
property T , the following three statements are equivalent:
(i) Live(T) = T
(ii) PCl(T) = S?

(iii) Lim ◦ PCl(T) = S∝

When they are satisfied, T is said to be a liveness property

Example: termination
the property is T = S?
(i.e., there should be no infinite execution)
clearly, it satisfies (ii): PCl(T) = S?
thus termination indeed satisfies this definition

Xavier Rival Traces Properties 27 / 1

Liveness properties Informal and formal definitions

Proof of equivalence

Proof of equivalence:
(i) implies (ii):
we assume that Live(T) = T , i.e., T ∪ (S∝ \ Safe(T)) = T
therefore, S∝ \ Safe(T) ⊆ T ;
let σ ∈ S?, and let us show that σ ∈ PCl(T); clearly, σ ∈ S∝, thus:

I either σ ∈ Safe(T) = Lim(PCl(T)), so all its prefixes are in PCl(T)
and σ ∈ PCl(T)

I or σ ∈ T , which implies that σ ∈ PCl(T)

(ii) implies (iii):
if PCl(T) = S?, then Lim ◦ PCl(T) = S∝

(iii) implies (i):
if Lim ◦ PCl(T) = S∝, then
Live(T) = T ∪ (S∝ \ (T ∪ Lim ◦ PCl(T))) = T ∪ (S∝ \ S∝) = T

Xavier Rival Traces Properties 28 / 1

Liveness properties Informal and formal definitions

Example

We assume that:
S = {a, b, c}
T states that b should eventually be visited, after a has been
visited; elements of T can be described by

T = S? · a · S? · b · S∝

Then T is a liveness property:
let σ ∈ S?; then σ · a · b ∈ T , so σ ∈ PCl(T)

thus, PCl(T) = S?

Xavier Rival Traces Properties 29 / 1

Liveness properties Informal and formal definitions

A property of Live

Theorem
If T is a trace property, then Live(T) is a liveness property (i.e.,
operator Live is idempotent).

Proof: we show that PCl ◦ Live(T) = S?, by considering σ ∈ S? and
proving that σ ∈ PCl ◦ Live(T); we first note that:

PCl ◦ Live(T) = PCl(T) ∪ PCl(Sω \ Safe(T))
= PCl(T) ∪ PCl(Sω \ Lim ◦ PCl(T))

if σ ∈ PCl(T), this is obvious.
if σ 6∈ PCl(T), then:

I σ 6∈ Lim ◦ PCl(T) by definition of the limit
I thus, σ ∈ Sω \ Lim ◦ PCl(T)
I σ ∈ PCl(Sω \ Lim ◦ PCl(T)) as PCl is extensive, which proves the

above result
Xavier Rival Traces Properties 30 / 1

Liveness properties Proof method

Outline

Xavier Rival Traces Properties 31 / 1

Liveness properties Proof method

Termination proof with ranking function

We consider only termination
We consider transition system S = (S,→, SI), and liveness property T
We seek a way of verifying that S satisfies termination, i.e., that
JSK∝ ⊆ S?

Definition: ranking function
A ranking function is a function φ : S→ E where:

(E ,v) is a well-founded ordering
∀s0, s1 ∈ S, s0 → s1 =⇒ φ(s1) @ φ(s0)

Theorem
If S has a ranking function φ, it satisfies termination.

Xavier Rival Traces Properties 32 / 1

Liveness properties Proof method

Example

We consider the termination of the array sum program:

i, s integer variables
t integer array of length n

l0 : s = 0;
l1 : i = 0;
l2 : while(i < n){
l3 : s = s + t[i];
l4 : i = i + 1;
l5 : }
l6 : . . .

Ranking function:

φ : S −→ N
(l0,m) 7−→ 3 · n + 6
(l1,m) 7−→ 3 · n + 5
(l2,m) 7−→ 3 · n + 4
(l3,m) 7−→ 3 · (n − m(i)) + 3
(l4,m) 7−→ 3 · (n − m(i)) + 2
(l5,m) 7−→ 3 · (n − m(i)) + 1
(l6,m) 7−→ 0

Xavier Rival Traces Properties 33 / 1

Liveness properties Proof method

Proof by variance

We consider transition system S = (S,→,SI), and liveness property
T ; infinite traces semantics is the least fixpoint of Fω.
We seek a way of verifying that S satisfies T , i.e., that JSK∝ ⊆ T

Principle of variance proofs
Let (In)n∈N, Iω be elements of S∝; these are said to form a variance proof
of T if and only if:

S∝ ⊆ I0
for all k ∈ {1, 2, . . . , ω}, ∀s ∈ S, 〈s〉 ∈ Ik
for all k ∈ {1, 2, . . . , ω}, there exists l < k such that Fω(Il) ⊆ Ik
Iω ⊆ T

Proofs of soundness and completeness: exercise
Xavier Rival Traces Properties 34 / 1

Decomposition of trace properties

Outline

Xavier Rival Traces Properties 35 / 1

Decomposition of trace properties

The decomposition theorem

Theorem
Let T ⊆ S∝; it can be decomposed into the conjunction of safety
property Safe(T) and liveness property Live(T):

T = Safe(T) ∩ Live(T)

Reading:
Recognizing Safety and Liveness.
Bowen Alpern and Fred B. Schneider.
In Distributed Computing, Springer, 1987.
Consequence of this result:
the proof of any trace property can be decomposed into

I a proof of safety
I a proof of liveness

Xavier Rival Traces Properties 36 / 1

Decomposition of trace properties

Proof

safety part:
Safe is idempotent, so Safe(T) is a safety property.

liveness part:
Live is idempotent, so Live(T) is a liveness property.

decomposition:

Safe(T) ∩ Live(T) = (S∝ \ Safe(T) ∪ T) ∩ Safe(T)
= (S∝ \ Safe(T) ∩ Safe(T)) ∪ (T ∩ Safe(T))
= T

Xavier Rival Traces Properties 37 / 1

Decomposition of trace properties

Example: verification of total correctness

i, s integer variables
t integer array of length n

l0 : s = 0;
l1 : i = 0;
l2 : while(i < n){
l3 : s = s + t[i];
l4 : i = i + 1;
l5 : }
l6 : . . .

Property to prove:
total correctness
1 the program terminates
2 and it computes the sum of

the elements in the array

Application of the decomposition principle
Conjunction of two proofs:

1 proved with a ranking function
2 proved with local invariants

Xavier Rival Traces Properties 38 / 1

Decomposition of trace properties

Safety and Liveness Decomposition Example

We consider a very simple greatest common divider code function:
l0 : int f(int a, int b){
l1 : while(a > 0){
l2 : int d = b/a;
l3 : int r = b − a ∗ d ;
l4 : b = a;
l5 : a = r;
l6 : }
l7 : return b;
l8 : }

Specification
When applied to positive
integers, function f should
always return their GCD.

Xavier Rival Traces Properties 39 / 1

Decomposition of trace properties

Safety and Liveness Decomposition Example

We consider a very simple greatest common divider code function:
l0 : int f(int a, int b){
l1 : while(a > 0){
l2 : int d = b/a;
l3 : int r = b − a ∗ d ;
l4 : b = a;
l5 : a = r;
l6 : }
l7 : return b;
l8 : }

Specification
When applied to positive
integers, function f should
always return their GCD.

Safety part
For all trace starting with positive inputs, a
conjunction of two properties:

no runtime errors
the value of b is the GCD

Liveness part
Termination, on all
traces starting with
positive inputs

Xavier Rival Traces Properties 39 / 1

Decomposition of trace properties

The Zoo of semantic properties: current status

Trace properties
total correctness

Safety properties
never reach s0 before s1

Liveness properties
termination

State properties
absence or runtime errors
partial correctness

Safety: if wrong, can be refuted with a finite trace
proof done by invariance
Liveness: if wrong, has to be refuted with an infinite trace
proof done by variance

Xavier Rival Traces Properties 40 / 1

A Specification Language: Temporal logic

Outline

Xavier Rival Traces Properties 41 / 1

A Specification Language: Temporal logic

Notion of specification language

Ultimately, we would like to verify or compute properties
So far, we simply describe properties with sets of executions
or worse, with English / French / . . . statements
Ideally, we would prefer to use a mathematical language for that

I to gain in concision, avoid ambiguity
I to define sets of properties to consider, fix the form of inputs for
verification tools...

Definition: specification language
A specification language is a set of terms L with an interpretation
function (or semantics)

J.K : L −→ P(S∝) (resp., P(S))

We are now going to consider specification languages for states, for
traces...

Xavier Rival Traces Properties 42 / 1

A Specification Language: Temporal logic

A State specification language

A first example of a (simple) specification language:

A state specification language
Syntax: we let terms of LS be defined by:

p ∈ LS ::= @l | x < x′ | x < n | ¬p′ | p′ ∧ p′′ | Ω

Semantics: JpK ⊆ SΩ is defined by

J@l K = {l } ×M
Jx ≤ x′K = {(l ,m) ∈ S | m(x) ≤ m(x′)}
Jx ≤ nK = {(l ,m) ∈ S | m(x) ≤ n}

J¬pK = SΩ \ JpK
Jp ∧ p′K = JpK ∩ Jp′K

JΩK = {Ω}

Exercise: add =, ∨, =⇒...
Xavier Rival Traces Properties 43 / 1

A Specification Language: Temporal logic

State properties: examples

Unreachability of control state l0:
specification: Ω ∨ ¬@l0
property: JΩ ∨ ¬@l0K = SΩ \ {(l0,m) | m ∈M}

Absence of runtime errors:
specification: ¬Ω
property: J¬ΩK = SΩ \ {Ω} = S

Intermittent invariant:
principle: attach a local invariant to each control state
example:

l0 : if(x ≥ 0){
l1 : y = x;
l2 : }else{
l3 : y = −x;
l4 : }
l5 : . . .

@l1 =⇒ x ≥ 0
∧ @l2 =⇒ x ≥ 0 ∧ y ≥ 0
∧ @l3 =⇒ x < 0
∧ @l4 =⇒ x < 0 ∧ y > 0
∧ @l5 =⇒ y ≥ 0

Xavier Rival Traces Properties 44 / 1

A Specification Language: Temporal logic

Propositional temporal logic: syntax

We now consider the specification of trace properties
temporal logic: specification of properties in terms of events that
occur at distinct times in the execution (hence, the name “temporal”)
there are many instances of temporal logic
we study a simple one: Pnueli’s Propositional Temporal Logic

Definition: syntax of PTL (Propositional Temporal Logic)
Properties over traces are defined as terms of the form

t(∈ LPTL) ::= p state property, i.e., p ∈ LS
| t ′ ∨ t ′′ disjunction
| ¬t ′ negation
| © t ′ "next"
| t ′ U t ′′ "until", i.e., t ′ until t ′′

Xavier Rival Traces Properties 45 / 1

A Specification Language: Temporal logic

Propositional temporal logic: semantics

Some operators on traces:
|σ| denotes the length of trace σ (either an integer or ∞)
“tail” operator .ie:

σie = ε if |σ| < i
(〈s0, . . . , si 〉 · σ)ie ::= σ otherwise

Semantics of Propositional Temporal Logic formulae

JpK = {s · σ | s ∈ JpK ∧ σ ∈ S∝}
Jt0 ∨ t1K = Jt0K ∪ Jt1K

J¬t0K = S∝ \ Jt0K
J© t0K = {s · σ | s ∈ S ∧ σ ∈ Jt0K}

Jt0 U t1K = {σ ∈ S∝ | ∃n ∈ N, ∀i < n, σie ∈ Jt0K ∧ σne ∈ Jt1K}

Xavier Rival Traces Properties 46 / 1

A Specification Language: Temporal logic

Temporal logic operators as syntactic sugar

Many useful operators can be added:
Boolean constants:

true ::= (x < 0) ∨ ¬(x < 0)
false ::= ¬true

Sometime:
♦ t ::= trueU t

intuition: there exists a rank n at which t holds

Always:
� t ::= ¬(♦(¬t))

intuition: there is no rank at which the negation of t holds

Exercise: what do ♦� t and �♦ t mean ?

Xavier Rival Traces Properties 47 / 1

A Specification Language: Temporal logic

Propositional temporal logic: examples

We consider the program below:

l0 : int x = input();
l1 : if(x < 8){
l2 : x = 0;
l3 : } else {
l4 : x = 1;
l5 : }
l6 : . . .

Examples of properties:
“when l4 is reached, x is positive”

�(@l4 =⇒ x ≥ 0)

“if the value read at point l0 is negative, and when l6 is reached, x is
equal to 0”

(@l1 ∧ x < 0) =⇒ �(@l6 =⇒ x = 0)

Xavier Rival Traces Properties 48 / 1

Beyond safety and liveness

Outline

Xavier Rival Traces Properties 49 / 1

Beyond safety and liveness

Security properties

We now consider other interesting properties of programs, and show that
they do not all reduce to trace properties

Security
collects many kinds of properties
so we consider just one:

an unauthorized observer should not be able to guess anything
about private information by looking at public information

example: another user should not be able to guess the content of an
email sent to you
we need to formalize this property

Xavier Rival Traces Properties 50 / 1

Beyond safety and liveness

A few definitions

Assumptions:
we let S = (S,→,SI) be a transition system
states are of the form (l ,m) ∈ L×M
memory states are of the form X→ V
we let l , l ′ ∈ L (program entry and exit)
and x, x′ ∈ X (private and public variables)

Security property we are looking at
Observing the value of x′ at l ′ gives no information on the value of x at l .

We consider the transformer Φ defined by:

Φ : M −→ P(M)
m 7−→ {m ′ ∈M | ∃σ = 〈(l ,m), . . . , (l ′,m ′)〉 ∈ JSK}

Xavier Rival Traces Properties 51 / 1

Beyond safety and liveness

Non-interference

Definition: non-interference
There is no interference between (l , x) and (l ′, x′) and we write
(l ′, x ′) 6 (l , x) if and only if the following property holds:

∀m ∈M, ∀v0, v1 ∈ V,
{m ′(x′) | m ′ ∈ Φ(m[x← v0])} = {m ′(x′) | m ′ ∈ Φ(m[x← v1])}

Intuition:
if two observations at point l differ only in the value of x, there is no
difference in observation of x′ at l ′

in other words, observing x′ at l ′ (even on many executions) gives no
information about the value of x at point l ...

Xavier Rival Traces Properties 52 / 1

Beyond safety and liveness

Non-interference is not a trace property

we assume V = {0, 1} and X = {x, x′} (store m is defined by the pair
(m(x),m(x′)), and denoted by it)
we assume L = {l , l ′} and consider two systems such that all
transitions are of the form (l ,m)→ (l ′,m ′)
(i.e., system S is isomorphic to its tranfsormer Φ[S])

Φ[S0] : (0, 0) 7−→ M
(0, 1) 7−→ M
(1, 0) 7−→ M
(1, 1) 7−→ M

Φ[S1] : (0, 0) 7−→ M
(0, 1) 7−→ M
(1, 0) 7−→ {(1, 1)}
(1, 1) 7−→ {(1, 1)}

S1 has fewer behaviors than S0: JS1K? ⊂ JS0K?

S0 has the non-interference property, but S1 does not
if non interference was a trace property, S1 should have it (monotony)

Thus, the non interference property is not a trace property

Xavier Rival Traces Properties 53 / 1

Beyond safety and liveness

Dependence properties

Dependence property
many notions of dependences
so we consider just one:

what inputs may have an impact on the observation of a given
output

Applications:
I reverse engineering: understand how an input gets computed
I slicing: extract the fragment of a program that is relevant to a result

This corresponds to the negation of non-interference

Xavier Rival Traces Properties 54 / 1

Beyond safety and liveness

Interference

Definition: interference
There is interference between (l , x) and (l ′, x′) and we write
(l ′, x ′) (l , x) if and only if the following property holds:

∃m ∈M, ∃v0, v1 ∈ V,
{m ′(x′) | m ′ ∈ Φ(m[x← v0])} 6= {m ′(x′) | m ′ ∈ Φ(m[x← v1])}

This expresses that there is at least one case, where the value of x at
l has an impact on that of x′ at l ′

It may not hold even if the computation of x′ reads x:

l : x′ = 0 ? x;
l ′ : . . .

Xavier Rival Traces Properties 55 / 1

Beyond safety and liveness

Interference is not a trace property

we assume V = {0, 1} and X = {x, x′} (store m is defined by the pair
(m(x),m(x′)), and denoted by it)
we assume L = {l , l ′} and consider two systems such that all
transitions are of the form (l ,m)→ (l ′,m ′)
(i.e., system S is isomorphic to its tranfsormer Φ[S])

Φ[S0] : (0, 0) 7−→ M
(0, 1) 7−→ M
(1, 0) 7−→ {(1, 1)}
(1, 1) 7−→ {(1, 1)}

Φ[S1] : (0, 0) 7−→ {(1, 1)}
(0, 1) 7−→ {(1, 1)}
(1, 0) 7−→ {(1, 1)}
(1, 1) 7−→ {(1, 1)}

S1 has fewer behavior than S0: JS1K? ⊂ JS0K?

S0 has the interference property, but S1 does not
if interference was a trace property, S1 should have it (monotony)

Thus, the interference property is not a trace property

Xavier Rival Traces Properties 56 / 1

Conclusion

Outline

Xavier Rival Traces Properties 57 / 1

Conclusion

The Zoo of semantic properties

Sets of sets of executions
non-interference, dependency

Trace properties
total correctness

Safety properties
never reach s0 before s1

Liveness properties
termination

State properties
absence or runtime errors
partial correctness

Xavier Rival Traces Properties 58 / 1

Conclusion

Summary

To sum-up:
trace properties allow to express a large range of program properties
safety = absence of bad behaviors
liveness = existence of good behaviors
trace properties can be decomposed as conjunctions of safety and
liveness properties, with dedicated proof methods
some interesting properties are not trace properties
security properties are sets of sets of executions
notion of specification languages to describe program properties

Xavier Rival Traces Properties 59 / 1

