Traces Properties Semantics and applications to verification

Xavier Rival

École Normale Supérieure

Today's lecture: we look back at program's properties

• families of properties:

what properties can be considered "similar" ? in what sense ?

• proof techniques:

how can those kinds of properties be established ?

• specification of properties:

are there languages to describe properties ?

- In this lecture we look at trace properties
- A property is a set of traces, defining the admissible executions

Safety properties:

- something (e.g., bad) will never happen
- proof by invariance

Liveness properties:

- something (e.g., good) will eventually happen
- proof by variance

Some interesting program properties do not fit this classification

State properties

As usual, we consider $\mathcal{S} = (\mathbb{S},
ightarrow, \mathbb{S}_\mathcal{I})$

First approach: properties as sets of states

- a property \mathcal{P} is a set of states $\mathcal{P} \subseteq \mathbb{S}$
- \mathcal{P} is satisfied if and only if all reachable states belong to \mathcal{P} , i.e., $[\![\mathcal{S}]\!]_{\mathcal{R}} \subseteq \mathcal{P}$ where $[\![\mathcal{S}]\!]_{\mathcal{R}} = \{s_n \in \mathbb{S} \mid \exists \langle s_0, \dots, s_n \rangle \in [\![\mathcal{S}]\!]_{\mathcal{R}}, s_0 \in \mathbb{S}_{\mathcal{I}}\}$

Examples:

• absence of runtime errors:

 $\mathcal{P} = \mathbb{S} \setminus \{\Omega\} \quad \text{where } \Omega \text{ is the error state}$

• non termination (e.g., for an operating system):

$$\mathcal{P} = \{ s \in \mathbb{S} \mid \exists s' \in \mathbb{S}, s \rightarrow s' \}$$

Second approach: properties as sets of traces

- a property \mathcal{T} is a set of traces $\mathcal{T} \subseteq \mathbb{S}^{\infty}$
- \mathcal{T} is satisfied if and only if all traces belong to \mathcal{T} , i.e., $[\![S]\!]^{\propto} \subseteq \mathcal{T}$

Examples:

- obviously, state properties are trace properties
- functional properties

e.g., "program ${\it P}$ takes one integer input ${\it x}$ and returns its absolute value"

• termination: $\mathcal{T} = \mathbb{S}^*$ (i.e., the system should have no infinite execution)

Property

Let $\mathcal{P}_0, \mathcal{P}_1 \subseteq \mathbb{S}$ be two state properties, such that $\mathcal{P}_0 \subseteq \mathcal{P}_1$. Then \mathcal{P}_0 is stronger than \mathcal{P}_1 , i.e. if program \mathcal{S} satisfies \mathcal{P}_0 , then it also satisfies \mathcal{P}_1 .

Let $\mathcal{T}_0, \mathcal{T}_1 \subseteq \mathbb{S}$ be two trace properties, such that $\mathcal{T}_0 \subseteq \mathcal{T}_1$. Then \mathcal{T}_0 is stronger than \mathcal{T}_1 , i.e. if program S satisfies \mathcal{T}_0 , then it also satisfies \mathcal{T}_1 .

Proof: straightforward application of the definition of state (resp., trace) properties

Outline

Safety properties

Informal definition: safety properties

A safety property is a property which specifies that some (bad) behavior will never occur

- absence of runtime errors is a safety property ("bad thing": error)
- state properties is a safety property ("bad thing": reaching $\mathbb{S} \setminus \mathcal{P}$)
- non termination is a safety property ("bad thing": reaching a blocking state)
- "not reaching state *b* after visiting state *a*" is a safety property (and **not** a state property)
- termination is not a safety property

Towards a formal definition

We intend to provide a formal definition of safety.

How to refutate a safety property ?

- \bullet we assume ${\cal S}$ does not satisfy safety property ${\cal P}$
- thus, there exists a counter-example trace

$$\sigma = \langle s_0, \ldots, s_n, \ldots \rangle \in \llbracket S \rrbracket \setminus \mathcal{P};$$

it may be finite or infinite...

- the intuitive definition says this trace eventually exhibits some bad behavior
- thus, there exists a rank $i \in \mathbb{N}$, such that the bad behavior has been observed before reaching s_i
- therefore, trace $\sigma' = \langle s_0, \dots, s_i \rangle$ violates \mathcal{P} , i.e. $\sigma' \not\in \mathcal{P}$
- we remark σ' is finite

A safety property that does not hold can always be refuted with a finite counter-example

Limit

Definition: upper closure operator (uco)

Function $\phi : S \to S$ is an **upper closure operator** iff:

• monotone

• extensive:
$$\forall x \in S, x \sqsubseteq \phi(x)$$

• idempotent: $\forall x \in S, \ \phi(\phi(x)) = \phi(x)$

Definition: limit

The limit operator is defined by:

$$\begin{array}{rcl} \mathsf{Lim}: & \mathcal{P}(\mathbb{S}^{\infty}) & \longrightarrow & \mathcal{P}(\mathbb{S}^{\infty}) \\ & X & \longmapsto & X \cup \{\sigma \in \mathbb{S}^{\infty} \mid \forall i \in \mathbb{N}, \ \sigma_{\lceil i} \in X\} \end{array}$$

Operator Lim is an upper-closure operator

Proof: exercise!

Xavier Rival

Prefix closure

We write $\sigma_{\lceil i}$ for the prefix of length *i* of trace σ :

$$\langle s_0, \dots, s_n \rangle_{\lceil 0} = \epsilon \langle s_0, \dots, s_n \rangle_{\lceil i+1} = \begin{cases} \langle s_0, \dots, s_i \rangle & \text{if } i < n \\ \langle s_0, \dots, s_n \rangle & \text{otherwise} \\ \langle s_0, \dots, \rangle_{\lceil i+1} = \langle s_0, \dots, s_i \rangle \end{cases}$$

If σ is finite, of length n, $|\sigma|i = \min(n, i)$; if σ is infinite, $|\sigma|i = i$.

Definition: prefix closure

The prefix closure operator is defined by:

$$\begin{array}{rccc} \mathsf{PCI}: & \mathcal{P}(\mathbb{S}^{\infty}) & \longrightarrow & \mathcal{P}(\mathbb{S}^{\star}) \\ & X & \longmapsto & \{\sigma_{\lceil i} \mid \sigma \in X, \, i \in \mathbb{N}\} \end{array}$$

Properties:

- PCI is monotone
- PCI is idempotent, i.e., $PCI \circ PCI(X) = PCI(X)$

Xavier Rival

Safety properties: formal definition

An upper closure operator

Operator Safe is defined by Safe = Lim \circ PCI. It is an upper closure operator over $\mathcal{P}(\mathbb{S}^{\infty})$

Proof:

- Safe is monotone as Lim and PCI are
- Safe is extensive; indeed if $X \subseteq \mathbb{S}^{\infty}$ and $\sigma \in X$, we can show that $\sigma \in \text{Safe}(X)$:
 - if σ is a finite trace, it is one of its prefixes, so $\sigma \in \mathbf{PCI}(X) \subseteq \mathbf{Lim}(\mathbf{PCI}(X))$
 - if σ is an infinite trace, all its prefixes belong to PCI(X), so $\sigma \in Lim(PCI(X))$

Safety properties: formal definition

Proof (continued):

• Safe is idempotent:

- ► as Safe is extensive and monotone Safe ⊆ Safe ∘ Safe, so we simply need to show that Safe ∘ Safe ⊆ Safe
- let $X \subseteq \mathbb{S}^{\infty}, \sigma \in \mathbf{Safe}(\mathbf{Safe}(X))$; then:

$$\begin{array}{ll} \sigma \in \mathsf{Safe}(\mathsf{Safe}(X)) \\ \Rightarrow & \forall i, \ \sigma_{\lceil i} \in \mathsf{PCI} \circ \mathsf{Safe}(X) \\ \Rightarrow & \forall i, \ \exists \sigma', j, \ \sigma_{\lceil i} = \sigma'_{\lceil j} \land \sigma' \in \mathsf{Safe}(X) \\ \Rightarrow & \forall i, \ \exists \sigma', j, \ \sigma_{\lceil i} = \sigma'_{\lceil j} \land \forall k, \ \sigma'_{\lceil k} \in \mathsf{PCI}(X) \\ \Rightarrow & \forall i, \ \exists \sigma', j, \ \sigma_{\lceil i} = \sigma'_{\lceil j} \land \sigma'_{\lceil i} \in \mathsf{PCI}(X) \\ \Rightarrow & \forall i, \ \exists \sigma', j, \ \sigma_{\lceil i} = \sigma'_{\lceil j} \land \sigma'_{\lceil i} \in \mathsf{PCI}(X) \end{array} \qquad \begin{array}{ll} \mathsf{by \ def. \ of \ Lim} \\ \mathsf{by \ def. \ of \ Lim} \\ \mathsf{with} \ i = j \end{array}$$

★ if σ is finite, we let $i = |\sigma|$, thus j has to be equal to n as well and $\sigma = \sigma'_{\lceil i \rceil} \in \mathbf{PCI}(X)$, thus $\sigma \in \mathbf{Lim}(\mathbf{PCI}(X))$

* if σ is infinte, $|\sigma_{\lceil i}| = i$ and we may let i = k so

$$\forall i, \ \sigma_{\lceil i} = \sigma'_{\lceil i} \in \mathsf{PCl}(X)$$

thus $\sigma \in \text{Lim}(\text{PCI}(X))$

Safety properties: formal definition

Safety: definition

A trace property \mathcal{T} is a safety property if and only if $Safe(\mathcal{T}) = \mathcal{T}$

Theorem

If \mathcal{T} is a trace property, then $Safe(\mathcal{T})$ is a safety property

Proof: straightforward, by idempotence of Safe

Example

We assume that:

- $\mathbb{S} = \{a, b\}$
- T states that a should not be visited after state b is visited; elements of T are of the general form

 $\langle a, a, a, \ldots, a, b, b, b, b, \ldots \rangle$ or $\langle a, a, a, \ldots, a, a, \ldots \rangle$

Then:

- **PCI**(*T*) elements are all finite traces which are of the above form (i.e., made of *n* occurrences of *a* followed by *m* occurrences of *b*, where *n*, *m* are positive integers)
- Lim(PCI(T)) adds to this set the trace made made of infinitely many occurrences of a and the infinite traces made of n occurrences of a followed by infinitely many occurrences of b
- thus, $\text{Safe}(\mathcal{T}) = \text{Lim}(\text{PCI}(\mathcal{T})) = \mathcal{T}$

Therefore \mathcal{T} is indeed formally a safety property.

State properties are safety properties

Theorem

Any state property is also a safety property.

Proof: Let us consider state property \mathcal{P} . It is equivalent to trace property $\mathcal{T} = \mathcal{P}^{\alpha}$:

$$\begin{aligned} \mathsf{Safe}(\mathcal{T}) &= \mathsf{Lim}(\mathsf{PCI}(\mathcal{P}^{\infty})) \\ &= \mathsf{Lim}(\mathcal{P}^{\star}) \\ &= \mathcal{P}^{\star} \cup \mathcal{P}^{\omega} \\ &= \mathcal{P}^{\infty} \\ &= \mathcal{T} \end{aligned}$$

Therefore \mathcal{T} is indeed a safety property.

Intuition of the formal definition

Operator Safe saturates a set of traces S with

- prefixes
- infinite traces all finite prefixes of which can be observed in S

Thus, if **Safe**(S) = S and σ is a trace, to establish that σ is not in S, it is sufficient to discover a **finite prefix of** σ that cannot be observed in S.

Alternatively, if all finite prefixes of σ belong to S or can observed as a prefix of another trace in S, by definition of the limit operator, σ belongs to S (even if it is infinite).

Thus, our definition indeed captures properties that can be disproved with a counter-example.

Outline

Proof by invariance

- We consider transition system $S = (S, \rightarrow, S_{\mathcal{I}})$, and safety property \mathcal{T} . Finite traces semantics is the least fixpoint of F_{\star} .
- We seek a way of verifying that S satisfies T, i.e., that $[\![S]\!]^{\propto} \subseteq T$

Principle of invariance proofs

Let \mathbb{I} be a set of finite traces; it is said to be an **invariant** if and only if:

•
$$\forall s \in \mathbb{S}_{\mathcal{I}}, \langle s \rangle \in \mathbb{I}$$

•
$$F_{\star}(\mathbb{I}) \subseteq \mathbb{I}$$

It is stronger than \mathcal{T} if and only if $\mathbb{I} \subseteq \mathcal{T}$.

The "by invariance" proof method is based on finding an invariant that is stronger than \mathcal{T} .

Soundness

Theorem: soundness

The invariance proof method is **sound**: if we can find an invariant for S, that is stronger than T, then S satisfies T.

Proof:

We assume that $\mathbb I$ is an invariant of $\mathcal S$ and that it is stronger than $\mathcal T$, and we show that $\mathcal S$ satisfies $\mathcal T$:

- by induction over *n*, we can prove that $F^n_{\star}(\{\langle s \rangle \mid s \in \mathbb{S}\}) \subseteq F^n_{\star}(\mathbb{I}) \subseteq \mathbb{I}$
- therefore $\llbracket \mathcal{S} \rrbracket^\star \subseteq \mathbb{I}$
- thus, $\text{Safe}([\![\mathcal{S}]\!]^\star)\subseteq\text{Safe}(\mathbb{I})\subseteq\text{Safe}(\mathcal{T})$ since Safe is monotone
- we remark that $[\![\mathcal{S}]\!]^{\propto} = \textbf{Safe}([\![\mathcal{S}]\!]^{\star})$
- \mathcal{T} is a safety property so $\mathsf{Safe}(\mathcal{T}) = \mathcal{T}$
- \bullet we conclude $[\![\mathcal{S}]\!]^{\propto}\subseteq\mathcal{T}$, i.e., \mathcal{S} satisfies property \mathcal{T}

Completeness

Theorem: completeness

The invariance proof method is **complete**: if S satisfies T, then we can find an invariant I for S, that is stronger than T.

Proof:

We assume that $[\![\mathcal{S}]\!]^{\propto}$ satisfies $\mathcal{T},$ and show that we can exhibit an invariant.

Then, $\mathbb{I} = [\![S]\!]^{\propto}$ is an invariant of S by definition of $[\![.]\!]^{\propto}$, and it is stronger than \mathcal{T} .

Caveat:

- $[\![\mathcal{S}]\!]^{\propto}$ is most likely not a very easy to express invariant
- it is just a convenient completeness argument
- so, completeness does not mean the proof is easy !

Example

We consider the proof that the program below computes the sum of the elements of an array, i.e., when the exit is reached, $s = \sum_{k=0}^{n-1} t[k]$:

Principle of the proof:

- for each program point l, we have a local invariant Il
 (denoted by a logical formula instead of a set of states in the figure)
- the global invariant I is defined by:

$$\mathbb{I} = \{ \langle (\ell_0, m_0), \dots, (\ell_n, m_n) \mid \\ \forall n, m_n \in \mathbb{I}_{\ell_n} \}$$

Outline

Liveness properties

Informal definition: liveness properties

A liveness property is a property which specifies that some (good) behavior will eventually occur.

termination is a liveness property "good behavior": reaching a blocking state (no more transition available)

- "state a will eventually be reached by all execution" is a liveness property
 "good behavior": reaching state a
- the absence of runtime errors is not a liveness property

Intuition towards a formal definition

We intend to provide a formal definition of liveness.

How to refutate a liveness property ?

- we consider liveness property \mathcal{T} (think \mathcal{T} is termination)
- \bullet we assume ${\cal S}$ does not satisfy liveness property ${\cal T}$
- thus, there exists a counter-example trace $\sigma \in [S] \setminus T$;
- let us assume σ is actually finite... the definition of liveness says some (good) behavior should eventually occur:
 - ▶ how do we know that σ cannot be extended into a trace $\sigma \cdot \sigma'$ that will satisfy this behavior ?
 - maybe that after a few more computation steps, σ will reach a blocking state...

Intuition towards a formal definition

To refutate a liveness property, we need to look at infinite traces.

Example: if we run a program, and do not see it return...

- should we do Ctrl+C and conclude it does not terminate ?
- should we just wait a few more seconds minutes, hours, years ?

Towards a formal definition: we expect any finite trace be the prefix of a trace in $\ensuremath{\mathcal{T}}$

as finite executions cannot be used to disprove ${\mathcal T}$

Formal definition (incomplete)

 $\mathsf{PCI}(\mathcal{T}) = \mathbb{S}^{\star}$

Definition

Formal definition

Operator Live is defined by $\text{Live}(\mathcal{T}) = \mathcal{T} \cup (\mathbb{S}^{\infty} \setminus \text{Safe}(\mathcal{T}))$. Given property \mathcal{T} , the following three statements are equivalent:

(*i*) Live(
$$\mathcal{T}$$
) = \mathcal{T}

(*ii*)
$$\mathsf{PCI}(\mathcal{T}) = \mathbb{S}^{n}$$

(iii)
$$\mathsf{Lim} \circ \mathsf{PCI}(\mathcal{T}) = \mathbb{S}^{\infty}$$

When they are satisfied, \mathcal{T} is said to be a liveness property

Example: termination

- the property is \$\mathcal{T} = \mathcal{S}^*\$
 (i.e., there should be no infinite execution)
- clearly, it satisfies (*ii*): PCI(T) = S* thus termination indeed satisfies this definition

Proof of equivalence

Proof of equivalence:

• (i) implies (ii):

we assume that $\text{Live}(\mathcal{T}) = \mathcal{T}$, i.e., $\mathcal{T} \cup (\mathbb{S}^{\infty} \setminus \text{Safe}(\mathcal{T})) = \mathcal{T}$ therefore, $\mathbb{S}^{\infty} \setminus \text{Safe}(\mathcal{T}) \subseteq \mathcal{T}$; let $\sigma \in \mathbb{S}^*$, and let us show that $\sigma \in \text{PCI}(\mathcal{T})$; clearly, $\sigma \in \mathbb{S}^{\infty}$, thus:

- either $\sigma \in \text{Safe}(\mathcal{T}) = \text{Lim}(\text{PCI}(\mathcal{T}))$, so all its prefixes are in $\text{PCI}(\mathcal{T})$ and $\sigma \in \text{PCI}(\mathcal{T})$
- or $\sigma \in \mathcal{T}$, which implies that $\sigma \in \mathsf{PCI}(\mathcal{T})$
- (*ii*) implies (*iii*): if $PCI(\mathcal{T}) = \mathbb{S}^*$, then $Lim \circ PCI(\mathcal{T}) = \mathbb{S}^{\infty}$
- (*iii*) implies (*i*): if Lim \circ PCl(\mathcal{T}) = \mathbb{S}^{∞} , then Live(\mathcal{T}) = $\mathcal{T} \cup (\mathbb{S}^{\infty} \setminus (\mathcal{T} \cup \text{Lim} \circ \text{PCl}(\mathcal{T}))) = \mathcal{T} \cup (\mathbb{S}^{\infty} \setminus \mathbb{S}^{\infty}) = \mathcal{T}$

Example

We assume that:

- $\mathbb{S} = \{a, b, c\}$
- T states that *b* should eventually be visited, after *a* has been visited; elements of T can be described by

 $\mathcal{T} = \mathbb{S}^{\star} \cdot \mathbf{a} \cdot \mathbb{S}^{\star} \cdot \mathbf{b} \cdot \mathbb{S}^{\infty}$

Then T is a liveness property:

- let $\sigma \in \mathbb{S}^*$; then $\sigma \cdot a \cdot b \in \mathcal{T}$, so $\sigma \in \mathsf{PCI}(\mathcal{T})$
- thus, $\mathsf{PCI}(\mathcal{T}) = \mathbb{S}^{\star}$

A property of **Live**

Theorem

If \mathcal{T} is a trace property, then $Live(\mathcal{T})$ is a liveness property (i.e., operator Live is idempotent).

Proof: we show that $PCI \circ Live(\mathcal{T}) = \mathbb{S}^*$, by considering $\sigma \in \mathbb{S}^*$ and proving that $\sigma \in PCI \circ Live(\mathcal{T})$; we first note that:

$$\begin{array}{lll} \mathsf{PCI} \circ \mathsf{Live}(\mathcal{T}) &=& \mathsf{PCI}(\mathcal{T}) \cup \mathsf{PCI}(\mathbb{S}^{\omega} \setminus \mathsf{Safe}(\mathcal{T})) \\ &=& \mathsf{PCI}(\mathcal{T}) \cup \mathsf{PCI}(\mathbb{S}^{\omega} \setminus \mathsf{Lim} \circ \mathsf{PCI}(\mathcal{T})) \end{array}$$

• if $\sigma \in \mathsf{PCI}(\mathcal{T})$, this is obvious.

• if $\sigma \notin \mathbf{PCI}(\mathcal{T})$, then:

- $\sigma \notin \operatorname{Lim} \circ \operatorname{PCI}(\mathcal{T})$ by definition of the limit
- thus, $\sigma \in \mathbb{S}^{\omega} \setminus \operatorname{\mathsf{Lim}} \circ \operatorname{\mathsf{PCl}}(\mathcal{T})$
- $\sigma \in \mathbf{PCI}(\mathbb{S}^{\omega} \setminus \mathbf{Lim} \circ \mathbf{PCI}(\mathcal{T}))$ as **PCI** is extensive, which proves the above result

Outline

Termination proof with ranking function

- We consider only termination
- We consider transition system $\mathcal{S}=(\mathbb{S},
 ightarrow, \mathbb{S}_\mathcal{I})$, and liveness property \mathcal{T}
- We seek a way of verifying that S satisfies termination, i.e., that $[S]^{\infty} \subseteq S^{\star}$

Definition: ranking function

A ranking function is a function $\phi : \mathbb{S} \to E$ where:

- (E, \sqsubseteq) is a well-founded ordering
- $\forall s_0, s_1 \in \mathbb{S}, \ s_0 \to s_1 \Longrightarrow \phi(s_1) \sqsubset \phi(s_0)$

Theorem

If \mathcal{S} has a ranking function ϕ , it satisfies termination.

Example

We consider the termination of the array sum program:

i, s integer variables
t integer array of length
$$n$$

 l_0 : $s = 0;$
 l_1 : $i = 0;$
 l_2 : while($i < n$){
 l_3 : $s = s + t[i];$
 l_4 : $i = i + 1;$
 l_5 : }
 l_6 : ...

Ranking function:

Proof by variance

- We consider transition system $S = (S, \rightarrow, S_I)$, and liveness property T; infinite traces semantics is the least fixpoint of F_{ω} .
- We seek a way of verifying that S satisfies T, i.e., that $[\![S]\!]^{\propto} \subseteq T$

Principle of variance proofs

Let $(\mathbb{I}_n)_{n\in\mathbb{N}}$, \mathbb{I}_{ω} be elements of \mathbb{S}^{∞} ; these are said to form a variance proof of \mathcal{T} if and only if:

•
$$\mathbb{S}^{\propto} \subseteq \mathbb{I}_0$$

- for all $k \in \{1, 2, \dots, \omega\}$, $\forall s \in \mathbb{S}, \ \langle s \rangle \in \mathbb{I}_k$
- for all $k \in \{1, 2, ..., \omega\}$, there exists l < k such that $F_{\omega}(\mathbb{I}_l) \subseteq \mathbb{I}_k$ • $\mathbb{L}_{\omega} \subset \mathcal{T}$

Proofs of soundness and completeness: exercise

Outline

Decomposition of trace properties

The decomposition theorem

Theorem

Let $\mathcal{T} \subseteq \mathbb{S}^{\alpha}$; it can be decomposed into the conjunction of safety property Safe(\mathcal{T}) and liveness property Live(\mathcal{T}):

 $\mathcal{T} = \text{Safe}(\mathcal{T}) \cap \text{Live}(\mathcal{T})$

• Reading:

Recognizing Safety and Liveness. Bowen Alpern and Fred B. Schneider.

In Distributed Computing, Springer, 1987.

• Consequence of this result:

the proof of any trace property can be decomposed into

- a proof of safety
- a proof of liveness

Proof

- safety part:
 Safe is idempotent, so Safe(T) is a safety property.
- liveness part:

Live is idempotent, so $Live(\mathcal{T})$ is a liveness property.

• decomposition:

$$\begin{array}{lll} \mathsf{Safe}(\mathcal{T}) \cap \mathsf{Live}(\mathcal{T}) &=& (\mathbb{S}^{\propto} \setminus \mathsf{Safe}(\mathcal{T}) \cup \mathcal{T}) \cap \mathsf{Safe}(\mathcal{T}) \\ &=& (\mathbb{S}^{\propto} \setminus \mathsf{Safe}(\mathcal{T}) \cap \mathsf{Safe}(\mathcal{T})) \cup (\mathcal{T} \cap \mathsf{Safe}(\mathcal{T})) \\ &=& \mathcal{T} \end{array}$$

Decomposition of trace properties

Example: verification of total correctness

- i, s integer variables t integer array of length n l_0 : s = 0; l_1 : i = 0; l_2 : while(i < n){ l_3 : s = s + t[i]; l_4 : i = i + 1; l_5 : } l_6 :
- Property to prove: total correctness
 - the program terminates
 - and it computes the sum of the elements in the array

Application of the decomposition principle

Conjunction of two proofs:

- proved with a ranking function
- Proved with local invariants

Safety and Liveness Decomposition Example

We consider a very simple greatest common divider code function:

Specification

When applied to positive integers, function f should always return their GCD.

Safety and Liveness Decomposition Example

We consider a very simple greatest common divider code function:

Specification

When applied to positive integers, function f should always return their GCD.

Safety part

For all trace starting with positive inputs, a **conjunction of two properties**:

- no runtime errors
- the value of b is the GCD

Liveness part

Termination, on all traces starting with positive inputs

The Zoo of semantic properties: current status

- Safety: if wrong, can be refuted with a finite trace proof done by invariance
- Liveness: if wrong, has to be refuted with an infinite trace proof done by variance

Xavier Rival

Outline

Notion of specification language

- Ultimately, we would like to verify or compute properties
- So far, we simply describe properties with sets of executions or worse, with English / French / ... statements
- Ideally, we would prefer to use a mathematical language for that
 - to gain in concision, avoid ambiguity
 - to define sets of properties to consider, fix the form of inputs for verification tools...

Definition: specification language

A specification language is a set of terms \mathbb{L} with an interpretation function (or semantics)

$$\llbracket . \rrbracket : \mathbb{L} \longrightarrow \mathcal{P}(\mathbb{S}^{\infty})$$
 (resp., $\mathcal{P}(\mathbb{S})$)

 We are now going to consider specification languages for states, for traces...

Xavier Rival

A State specification language

A first example of a (simple) specification language:

A state specification language

 \bullet Syntax: we let terms of $\mathbb{L}_{\mathbb{S}}$ be defined by:

$$p \in \mathbb{L}_{\mathbb{S}} ::= \mathbb{Q}l \mid \mathbf{x} < \mathbf{x}' \mid \mathbf{x} < n \mid \neg p' \mid p' \land p'' \mid \Omega$$

• Semantics: $\llbracket p \rrbracket \subseteq \mathbb{S}_{\Omega}$ is defined by

Exercise: add =,
$$\lor$$
, \Longrightarrow ...

Xavier Rival

State properties: examples

Unreachability of control state l_0 :

• specification: $\Omega \vee \neg @l_0$

• property:
$$\llbracket \Omega \lor \neg @l_0 \rrbracket = \mathbb{S}_{\Omega} \setminus \{(l_0, m) \mid m \in \mathbb{M}\}$$

Absence of runtime errors:

specification: ¬Ω

• property:
$$\llbracket \neg \Omega \rrbracket = \mathbb{S}_{\Omega} \setminus \{\Omega\} = \mathbb{S}$$

Intermittent invariant:

principle: attach a local invariant to each control state

• example:

$$\begin{array}{lll} \ell_0: & \text{if}(x \geq 0) \{ \\ \ell_1: & y = x; & \mathbb{C}\ell_1 \Longrightarrow x \geq 0 \\ \ell_2: & \} \text{else} \{ & \land & \mathbb{C}\ell_2 \Longrightarrow x \geq 0 \land y \geq 0 \\ \ell_3: & y = -x; & \land & \mathbb{C}\ell_3 \Longrightarrow x < 0 \\ \ell_4: & \} & \land & \mathbb{C}\ell_4 \Longrightarrow x < 0 \land y > 0 \\ \ell_5: & \dots & \land & \mathbb{C}\ell_5 \Longrightarrow y \geq 0 \end{array}$$

Propositional temporal logic: syntax

We now consider the specification of trace properties

- temporal logic: specification of properties in terms of events that occur at distinct times in the execution (hence, the name "temporal")
- there are many instances of temporal logic
- we study a simple one: Pnueli's Propositional Temporal Logic

Definition: syntax of PTL (Propositional Temporal Logic)

Properties over traces are defined as terms of the form

Propositional temporal logic: semantics

Some operators on traces:

- $|\sigma|$ denotes the length of trace σ (either an integer or ∞)
- "tail" operator ._{i]}:

$$\sigma_{i\rceil} = \epsilon \quad \text{if } |\sigma| < i$$

 $(\langle s_0, \dots, s_i \rangle \cdot \sigma)_{i\rceil} \quad ::= \sigma \quad \text{otherwise}$

Semantics of Propositional Temporal Logic formulae

$$\begin{split} \llbracket p \rrbracket &= \{ s \cdot \sigma \mid s \in \llbracket p \rrbracket \land \sigma \in \mathbb{S}^{\infty} \} \\ \llbracket t_0 \lor t_1 \rrbracket &= \llbracket t_0 \rrbracket \cup \llbracket t_1 \rrbracket \\ \llbracket \neg t_0 \rrbracket &= \mathbb{S}^{\infty} \setminus \llbracket t_0 \rrbracket \\ \llbracket \bigcirc t_0 \rrbracket &= \{ s \cdot \sigma \mid s \in \mathbb{S} \land \sigma \in \llbracket t_0 \rrbracket \} \\ \llbracket t_0 \mathfrak{U} t_1 \rrbracket &= \{ \sigma \in \mathbb{S}^{\infty} \mid \exists n \in \mathbb{N}, \forall i < n, \sigma_i \rceil \in \llbracket t_0 \rrbracket \land \sigma_n \rceil \in \llbracket t_1 \rrbracket \} \end{split}$$

Temporal logic operators as syntactic sugar

Many useful operators can be added:

• Boolean constants:

true ::=
$$(x < 0) \lor \neg(x < 0)$$

false ::= \neg true

• Sometime:

 $\Diamond t ::= \operatorname{true} \mathfrak{U} t$

intuition: there exists a rank n at which t holds

• Always:

$$\Box t ::= \neg(\Diamond(\neg t))$$

intuition: there is no rank at which the negation of t holds

Exercise: what do $\Diamond \Box t$ and $\Box \Diamond t$ mean ?

Propositional temporal logic: examples

We consider the program below:

Examples of properties:

• "when l_4 is reached, x is positive"

$$\Box$$
($@l_4 \Longrightarrow x \ge 0$)

• "if the value read at point l_0 is negative, and when l_6 is reached, x is equal to 0"

$$(\mathfrak{Ol}_1 \wedge \mathtt{x} < 0) \Longrightarrow \Box(\mathfrak{Ol}_6 \Longrightarrow \mathtt{x} = 0)$$

Beyond safety and liveness

Outline

Security properties

We now consider other interesting properties of programs, and show that they do not all reduce to trace properties

Security

- collects many kinds of properties
- so we consider just one:

an unauthorized observer should not be able to guess anything about private information by looking at public information

- example: another user should not be able to guess the content of an email sent to you
- we need to formalize this property

A few definitions

Assumptions:

- \bullet we let $\mathcal{S}=(\mathbb{S},\rightarrow,\mathbb{S}_\mathcal{I})$ be a transition system
- states are of the form $(l,m) \in \mathbb{L} imes \mathbb{M}$
- $\bullet\,$ memory states are of the form $\mathbb{X}\to\mathbb{V}$
- we let $\ell, \ell' \in \mathbb{L}$ (program entry and exit) and $x, x' \in \mathbb{X}$ (private and public variables)

Security property we are looking at

Observing the value of x' at ℓ' gives no information on the value of x at $\ell.$

We consider the **transformer** Φ defined by:

$$\begin{array}{rcl} \Phi: & \mathbb{M} & \longrightarrow & \mathcal{P}(\mathbb{M}) \\ & m & \longmapsto & \{m' \in \mathbb{M} \mid \exists \sigma = \langle (\ell, m), \dots, (\ell', m') \rangle \in \llbracket \mathcal{S} \rrbracket \} \end{array}$$

Non-interference

Definition: non-interference

There is **no interference** between (l, \mathbf{x}) and (l', \mathbf{x}') and we write $(l', \mathbf{x}') \not \rightarrow (l, \mathbf{x})$ if and only if the following property holds:

$$\begin{array}{l} \forall m \in \mathbb{M}, \forall v_0, v_1 \in \mathbb{V}, \\ \{m'(\mathbf{x}') \mid m' \in \Phi(m[\mathbf{x} \leftarrow v_0])\} = \{m'(\mathbf{x}') \mid m' \in \Phi(m[\mathbf{x} \leftarrow v_1])\} \end{array}$$

Intuition:

- if two observations at point ℓ differ only in the value of x, there is no difference in observation of x' at ℓ'
- in other words, observing x' at ℓ' (even on many executions) gives no information about the value of x at point ℓ ...

Non-interference is not a trace property

- we assume $\mathbb{V} = \{0, 1\}$ and $\mathbb{X} = \{x, x'\}$ (store *m* is defined by the pair (m(x), m(x')), and denoted by it)
- we assume L = {l, l'} and consider two systems such that all transitions are of the form (l, m) → (l', m') (i.e., system S is isomorphic to its transformer Φ[S])

$\Phi[\mathcal{S}_0]$:	(0,0)	\mapsto	\mathbb{M}	$\Phi[\mathcal{S}_1]$:	(0,0)	\mapsto	\mathbb{M}
	(0, 1)	\mapsto	\mathbb{M}		(0, 1)	\mapsto	\mathbb{M}
	(1, 0)	\mapsto	\mathbb{M}		(1, 0)	\mapsto	$\{(1,1)\}$
	(1, 1)	\mapsto	\mathbb{M}		(1, 1)	\mapsto	$\{(1,1)\}$

- \mathcal{S}_1 has fewer behaviors than $\mathcal{S}_0 \text{: } [\![\mathcal{S}_1]\!]^\star \subset [\![\mathcal{S}_0]\!]^\star$
- $\bullet \ \mathcal{S}_0$ has the non-interference property, but \mathcal{S}_1 does not
- if non interference was a trace property, \mathcal{S}_1 should have it (monotony)

Thus, the non interference property is not a trace property

Dependence properties

Dependence property

- many notions of dependences
- so we consider just one:

what inputs may have an impact on the observation of a given output

• Applications:

- reverse engineering: understand how an input gets computed
- slicing: extract the fragment of a program that is relevant to a result
- This corresponds to the negation of non-interference

Interference

Definition: interference

There is **interference** between (l, \mathbf{x}) and (l', \mathbf{x}') and we write $(l', \mathbf{x}') \rightsquigarrow (l, \mathbf{x})$ if and only if the following property holds:

$$\exists m \in \mathbb{M}, \exists v_0, v_1 \in \mathbb{V}, \\ \{m'(\mathbf{x}') \mid m' \in \Phi(m[\mathbf{x} \leftarrow v_0])\} \neq \{m'(\mathbf{x}') \mid m' \in \Phi(m[\mathbf{x} \leftarrow v_1])\}$$

- This expresses that there is at least one case, where the value of x at ℓ has an impact on that of x' at ℓ'
- It may not hold even if the computation of x' reads x:

$$\begin{aligned} l &: \quad \mathbf{x}' = \mathbf{0} \star \mathbf{x}; \\ l' &: \quad \dots \end{aligned}$$

Interference is not a trace property

- we assume $\mathbb{V} = \{0, 1\}$ and $\mathbb{X} = \{x, x'\}$ (store *m* is defined by the pair (m(x), m(x')), and denoted by it)
- we assume L = {l, l'} and consider two systems such that all transitions are of the form (l, m) → (l', m') (i.e., system S is isomorphic to its transformer Φ[S])
- \mathcal{S}_1 has fewer behavior than \mathcal{S}_0 : $[\![\mathcal{S}_1]\!]^\star \subset [\![\mathcal{S}_0]\!]^\star$
- $\bullet \ \mathcal{S}_0$ has the interference property, but \mathcal{S}_1 does not
- if interference was a trace property, S_1 should have it (monotony)

Thus, the interference property is not a trace property

Conclusion

Outline

The Zoo of semantic properties

Sets of sets of executions non-interference, dependency	
Trace properties total correctness	
Safety properties never reach s_0 before s_1	Liveness properties termination
State properties absence or runtime errors partial correctness	

Summary

To sum-up:

- trace properties allow to express a large range of program properties
- safety = absence of bad behaviors
- liveness = existence of good behaviors
- trace properties can be **decomposed** as conjunctions of safety and liveness properties, with **dedicated proof methods**
- some interesting properties are not trace properties security properties are sets of sets of executions
- notion of specification languages to describe program properties