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The aim of static analysis is to infer invariants about programs that are precise enough to establish

semantic properties, such as the absence of run-time errors. Broadly speaking, there are two major

branches of static analysis for imperative programs. Pointer and shape analyses focus on inferring

properties of pointers, dynamically-allocated memory, and recursive data structures, while numeric

analyses seek to derive invariants on numeric values. Although simultaneous inference of shape-

numeric invariants is often needed, this case is especially challenging and is not particularly well

explored. Notably, simultaneous shape-numeric inference raises complex issues in the design of the

static analyzer itself.

In this paper, we study the construction of such shape-numeric, static analyzers. We set up an

abstract interpretation framework that allows us to reason about simultaneous shape-numeric proper-

ties by combining shape and numeric abstractions into a modular, expressive abstract domain. Such

a modular structure is highly desirable to make its formalization and implementation easier to do

and get correct. To achieve this, we choose a concrete semantics that can be abstracted step-by-step,

while preserving a high level of expressiveness. The structure of abstract operations (i.e., transfer,

join, and comparison) follows the structure of this semantics. The advantage of this construction is

to divide the analyzer in modules and functors that implement abstractions of distinct features.

1 Introduction

The static analysis of programs written in real-world imperative languages like C or Java are challenging

because of the mix of programming features that the analyzer must handle effectively. On one hand, there

are pointer values (i.e., memory addresses) that can be used to create dynamically-allocated recursive

data structures. On the other hand, there are numeric data values (e.g., integer and floating-point values)

that are integral to the behavior of the program. While it is desirable to use distinct abstract domains to

handle such different families of properties, precise analyses require these abstract domains to exchange

information because the pointer and numeric values are often interdependent. Setting up the structure of

the implementation of such a shape-numeric analyzer can be quite difficult. While maintaining separate

modules with clearly defined interfaces is a cornerstone of software engineering, such boundaries also

impede the easy exchange of semantic information.

In this manuscript, we contribute a modular construction of an abstract domain [10] that layers a

numeric abstraction on a shape abstraction of memory. The construction that we present is parametric

in the numeric abstraction, as well as the shape abstraction. For example, the numeric abstraction may

be instantiated with an abstract domain such such as polyhedra [12] or octagons [27], while the shape

abstraction may be instantiated with domains such as Xisa [5,7] or TVLA [31]. Note that the focus of this

paper is on describing the formalization and construction of the abstract domain. Empirical evaluation

of implementations based on this construction are given elsewhere [5, 7, 8, 22, 29, 36, 37].

We describe our construction in four steps:

1. We define a concrete program semantics for a generic imperative programming language focusing

on the concrete model of mutable memory (Section 2).

http://creativecommons.org
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typedef struct s {
struct s ⋆ a; int b; int c;
} t;

void f() {
t y;
t ⋆ x = &y;
y · a = malloc(sizeof(t));
y · b = 24; y · c = 178;
y · a -> a = NULL;
y · a -> b = 70;
y · a -> c = 89;
}

(a)

&x = 0x...a0

&y = &(y · a) = 0x...b0
&(y · b) = 0x...b4
&(y · c) = 0x...b8

&(y · a -> a) = 0x...c0
&(y · a -> b) = 0x...c4
&(y · a -> c) = 0x...c8 89

70
0x0

178
24

0x...c0

0x...b0

(b)

E : X −→ A

x 7−→ 0x...a0
y 7−→ 0x...b0

σ : A −→ V

0x...a0 7−→ 0x...b0
0x...b0 7−→ 0x...c0
0x...b4 7−→ 24
0x...b8 7−→ 178
0x...c0 7−→ 0x0
0x...c4 7−→ 70
0x...c8 7−→ 89

(c)

Figure 1: A concrete memory state consists of an environment E and a store σ shown in (c). This

example state corresponds to the informal box diagram shown in (b) and a state at the return point of the

C-procedure f in (a).

2. We describe a step-by-step abstraction of program states as a cofibered construction of a numeric

abstraction layer on top of a shape abstraction layer (Section 3). In particular, we characterize a

shape abstraction as a combination of an exact abstraction of memory cells along with a summa-

rization operation. Then, we describe how a value abstraction can be applied both globally on

materialized memory locations and locally within summarized regions.

3. We detail the abstract operators necessary to implement an abstract program semantics in terms of

interfaces that a shape abstraction and a value abstraction must implement (Section 4).

4. We overview a modular construction of a shape-numeric static analyzer based on our abstract

operators (Section 5).

2 A concrete semantics

We first define a concrete program semantics for a generic imperative programming language.

2.1 Concrete memory states

We define a “bare metal” model of machine memory. A concrete store is a partial function σ ∈ H =
A⇀fin V from addresses to values. An address a∈A is also considered a value v∈V, that is, we assume

that A ⊆ V. For simplicity, we assume that all cells of any store σ have the same size (i.e., word-sized)

and that all addresses are aligned (i.e., word-aligned). For example, we can imagine a standard 32-bit

architecture where all values are 4-bytes and all addresses are 4-byte–aligned. We write for dom(σ) the

set of addresses at which σ is defined, and we let σ [a← v] denote the heap obtained after updating the

cell at address a with value v. A concrete environment E ∈ E= X→ A maps program variables to their

addresses. That is, we consider all program variables as mutable cells in the concrete store—the concrete

environment E indicates where each variable is allocated. A concrete memory state m simply pairs a

concrete environment and a concrete store: (E,σ). Thus, the set of memory states M = E×H is the

product of the set of concrete environments and the set of concrete stores.
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Figure 1(c) shows an example concrete memory state at the return point of the procedure f in (a).

The environment E has two bindings for the variables x and y that are in scope. For concreteness, we

show the concrete store for this example laid out using 32-bit addresses and a C-style layout for struct s.

The figure shown in (b) shows the concrete store as an informal box diagram.

Related work and discussion. Observe that we do not make the distinction between stack and heap

space in a concrete store σ (as in a C-style model), nor have we partitioned a heap on field names (as

in Java-style model). We have intentionally chosen this rather low-level definition of concrete memory

states—essentially an assembly-level model of memory—and leave any abstraction to the definition of

abstract memory states. An advantage of this approach is the ability to use a common concrete model

for combining abstractions that make different choices about the details they wish to expose or hide [22].

For example, Laviron et al. [22] defines an abstract domain that treats precisely C-style aggregates: both

structs and unions with sized-fields and pointer arithmetic. Another abstract domain [36] abstracts

nested structures using a hierarchical abstraction. Rival and Chang [29] defines an abstraction that si-

multaneously summarizes the stack of activation records and the heap data structures (with a slightly

extended notion of concrete environments), which is useful for analyzing recursive procedures.

2.2 Concrete program semantics

For the most part, we can be agnostic about the particulars of the imperative programming language

of interest. To separate concerns between abstracting memory and control points on which abstract

interpretation collects, all we assume is that a concrete execution state consists of a control state and a

concrete memory state. A shape-numeric abstract domain as we define in Section 3 abstracts the concrete

memory state component.

Definition 1 (Execution states). An execution state s ∈ S consists of a triple (ℓ,E,σ) where ℓ ∈ L is a

control state, E ∈ E is an concrete environment, and σ ∈H is a concrete store. The memory component

of an execution state is the pair (E,σ) ∈M.

Thus, the set of execution states S = L×E×H ≡ L×M. A program execution is described by a finite

trace, that is, a finite sequence of states 〈s0, . . . ,sn〉. We let T= S
⋆ denote the set of finite traces over S.

To make our examples more concrete, we consider a C-like programming language whose syntax is

shown in Figure 2. A location expression loc names a memory cell, which can be a program variable x,

a field offset from another memory location loc1 · f, or the memory location named by a pointer value

⋆exp. We write f ∈ F for a field name and implicitly read any field as an offset, that is, we write a+ f for

the address a′ ∈ A obtained by offsetting an address a with field f. To emphasize that we mean C-style

field offset as opposed to Java-style field dereference, we write x · f for what is normally written as x.f

in C. As in C, we write exp -> f for Java-style field dereference, which is a shorthand for (⋆exp) · f. An

expression exp can be a memory location expression loc, an address of a memory location &loc, or any

value literal v, some other n-ary operator ⊕(exp). Like in C, a memory location expression loc used as

an expression (i.e., “r-value”) refers to the contents of the named memory cell, while the &loc converts

the location’s address (i.e., “l-value”) into a pointer “r-value.” We leave the value literals v (e.g., 1) and

expression operators ⊕ (e.g., !, +, ==) unspecified.

An operational semantics: Given a program p, we assume its execution is described by a transition

relation →p⊆ S×S. This relation defines a small-step operational semantics, which can be defined as

a structured operational semantics judgment s→p s′. Such a definition is completely standard for our

language, so we do not detail it here.
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loc (∈LX) ::= x (x ∈ X)
| loc1 · f (loc1 ∈LX; f ∈ F)
| ⋆exp (exp ∈ EX)

exp (∈ EX) ::= loc (loc ∈LX)
| &loc (loc ∈LX)
| v (v ∈ V)
| ⊕(exp) (exp ∈ EX)

⊕ ::= · · ·

p (∈PX) ::= loc = exp (loc ∈LX;exp ∈ EX) assignment

| loc = malloc({f1, . . . , fn}) (loc ∈LX; [f1, . . . , fn] ∈ F
∗) memory allocation

| free(loc) (loc ∈LX) memory deallocation

| p1; p2 (p1, p2 ∈PX) sequence

| if (exp) p1 else p1 (exp ∈ EX; p1, p2 ∈PX) condition test

| while (exp) p1 (exp ∈ EX; p1 ∈PX) loop

Figure 2: Abstract syntax for a C-like imperative programming language. A program p consists of

assignment, dynamic memory allocation and deallocation, sequences, condition tests, and loops. An

assignment is specified by a location expression loc that names a memory cell to update and an expression

exp that is evaluated to yield the new contents for the cell. For simplicity, we specify allocation with a

list of field names (i.e., malloc({f1, . . . , fn})).

DOASSIGNMENT

(ℓpre,E,σ)→loc=exp (ℓpost,E,σ [LJlocK(E,σ)← EJexpK(E,σ)])

LJxK(E,σ)
def
= E(x) LJ⋆expK

def
= EJexpK

EJlocK(E,σ)
def
= σ ◦LJlocK(E,σ) EJ&locK

def
= LJlocK

LJloc · fK(E,σ)
def
= LJlocK(E,σ)+ f

Figure 3: A small-step operational semantics for programs.

As an example rule, consider the

case for an assignment loc = exp

where ℓpre and ℓpost are the control

points before and after the assign-

ment, respectively. We assume that

the semantics of a location expres-

sion LJlocK is a function from mem-

ory states to addresses M→ A and

that the semantics of an expression

EJexpK is a function from memory states to values M→ V. Then, the transition relation for assignment

simply updates the input store σ at the address given by loc with the value given by exp as shown in

Figure 3. The evaluation of locations loc and expressions exp, that is, LJlocK(E,σ) and EJexpK(E,σ),
respectively, can be defined by induction on their structure. The environment E is used to lookup the

allocated address for program variables in LJxK. The value for a memory location EJlocK is obtained by

looking up the contents in the store σ . Dereference ⋆exp and &loc mediate between address and value

evaluation, while field offset loc · f is simply an address computation. The evaluation of the remaining

expression forms is completely standard.

Example 1 (Evaluating an assignment). Using the concrete memory state (E,σ) shown in Figure 1,

the evaluation of the assignment x -> a -> b = y · c proceeds as follows. First, the right-hand side gets

evaluated by noting that E(y) = 0x...b0 and following

EJy · cK(E,σ) = σ(LJy · cK(E,σ)) = σ(LJyK(E,σ)+ c) = σ(E(y)+ c) = σ(0x...b8) = 178 .

Second, the left-hand side gets evaluated by noting that E(x) = 0x...a0 and then following the location

evaluation LJx->a->bK(E,σ) = σ(σ(0x...a0)+ a)+b) = σ(0x...b0+ a)+b = 0x...c0+b = 0x...c4.

Finally, the store is updated at address 0x...c4 with the value 178 with σ [0x...c4← 178].
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Concrete program semantical definitions: Several notions of program semantics can be used as a

basis for static analysis, which each depend on the desired properties and the kinds of invariants needed

to establish them. A semantical definition expressed as the least fixed-point of a continuous function

F over a concrete, complete lattice is particularly well-suited to the design of abstract interpreters [10].

Following this analysis design methodology, an abstract interpretation consists of (1) choosing an ab-

straction of the concrete lattice (Section 3), (2) designing abstract operators that over-approximate the

effect of the transition relation→p and concrete joins ∪ (Section 4), and (3) applying abstract operators

to over-approximate F using widening (Section 5).

Definition 2 (A concrete domain). Let us fix a form for our concrete domains D to be the powerset of

some set of concrete objects O, that is, let D = P(O). Domain D form a complete lattice with subset

containment ⊆ as the partial order. Hence, concrete joins are simply set union ∪.

For a program p, let ℓpre be its entry point (i.e., its initial control state). A standard definition of

interest is the set of reachable states, which is sufficient for reasoning about safety properties.

Example 2 (Reachable states). We write JpKr for the set of reachable states of program p, that is,

JpKr
def
= {s | (ℓpre,E,σ)→⋆

p s for some E ∈ E and σ ∈H}

where→⋆
p is the reflexive-transitive closure of the single-step transition relation →. Alternatively, JpKr

can be defined as lfp Fr, the least-fixed point of Fr, where Fr : P(S)→P(S) is as follows:

Fr(S)
def
= {(ℓpre,E,σ) | E ∈ E and σ ∈H}∪{s′ | s ∈ S and s→p s′ for some s′ ∈ S} .

Note that we have let the concrete objects O be the execution states S in this example.

We can also describe the reachable states denotationally [34]—JpKd(E,σ)
def
= {s | (ℓpre,E,σ)→⋆

p s}—
that enables a compositional way to reason about programs. Here, we let the set of concrete objects be

functions from memory states to sets of states (i.e., M→P(S)).

Related work and discussion. For additional precision or for richer properties, it may be critical to

retain some information about the history of program executions (i.e., how a state can be reached) [30].

In this case, we might choose a trace semantics as a concrete semantics where the concrete objects O are

chosen to be traces T. For instance, the finite prefix traces semantics is defined by JpKt
def
= {〈s0, . . . ,sn〉 |

s0 : (ℓpre,E0,σ0) and si→p si+1 for some E0 ∈ E,σ0 ∈H and for all 0≤ i < n}. Or we may to choose to

define a trace semantics denotationally JpKdh : M→P(T) that maps input memory states into traces

starting from them.

In this section, we have left the definition of a control state essentially abstract. A control state is

simply a member of a set of labels on which an interpreter visits. In the intraprocedural setting, the

control state is usually a point in the program text corresponding to a program counter. Since the set

of program points is finite, the control state can be left unabstracted yielding a flow-sensitive analysis.

Meanwhile, richer notions of control states are often needed for interprocedural analysis [26, 35].

3 Abstraction of memory states

In this section, we discuss the abstraction of memory states, including environments and stores, as well

as the values stored in them. A shape abstraction typically abstracts entire stores but only the pointer

values (i.e., addresses) in them. In contrast, a numeric abstraction is typically applied only to the data
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values stored in program variables (i.e., the part of the store containing the global and local variables).

We defer the abstraction of program executions to Section 5.

Following the abstract interpretation framework [10], an abstraction or abstract domain is a set of

abstract properties D♯ together with a concretization function and sound abstract operators.

Definition 3 (Concretization). A concretization function γ : D♯→ D defines the meaning of D♯ in terms

of a concrete domain D = P(O) for some set of concrete objects O. An abstract inclusion d
♯
1 ⊑ d

♯
2 for

abstract elements d
♯
1,d

♯
2 ∈ D

♯ should be sound with respect to concrete inclusion: γ(d♯
1) ⊆ γ(d♯

2), and

γ should be monotone. For each concrete operation f , we expect a sound abstract counterpart f ♯; for

example, an abstract operation f ♯ : D♯→ D
♯ is sound with respect to a concrete operation f : D→ D if

and only if γ ◦ f (d♯)⊆ γ ◦ f ♯(d♯) for all d♯ ∈ D
♯.

In this section, we focus on the abstract domains and concretization functions, while the construction

of abstract operations are detailed in Section 4.

3.1 An exact store abstraction based on separating shape graphs

An abstract heap σ ♯ ∈H♯ should over-approximate a set of concrete heaps with a compact representation.

This set of abstract heaps H
♯ form the domain of abstract heaps (or the shape abstract domain). For

simplicity, we first consider an exact abstraction of heaps with no unbounded dynamic data structures.

That is, such an abstraction explicitly enumerates a finite number of memory cells and performs no

summarization. Summarization is considered in Section 3.3.

A heap can be viewed as a set of disjoint cells (cf., Figure 1). At the abstract level, it is convenient

to make disjointness explicit and describe disjoint cells independently. Thus, we write σ ♯
0 ∗ σ ♯

1 for the

abstract heap element that denotes all that can be partitioned into a sub-heap satisfying σ ♯
0 and another

disjoint sub-heap satisfying σ ♯
1. This observation about disjointness underlies separation logic [28] and

thus we borrow the separating conjunction operator ∗ from there. An individual cell is described by an

exact points-to predicate of the form α · f 7→ β where α ,β are symbolic variables (or, abstract values)

drawn from a set V♯. The symbolic variable α denotes an address, while β represents the contents at the

memory cell with address α · f (i.e., α offset by a field f). An exact heap abstraction is thus a separating

conjunction of a set of exact points-to predicates.

αx αy βa

βb

βc

δa

δb

δc

a a

b

c

b

c

Figure 4: separating shape graph abstrac-

tion of σ in Figure 1. Symbolics αx and αy

denote the address of x and y, respectively.

Such abstract heap predicates can be represented using

separating shape graphs [8,22] where nodes are symbolic

variables and edges represent heap predicates. An exact

points-to predicate α · f 7→ β is denoted by an edge from

node α to node β with a label for the field offset f. For

example, βa denotes the value corresponding to the C ex-

pression y · a.

The concretization γH of a separating shape graph

must account for symbolic variables that denote some con-

crete values, so it also must yield an instantiation or a

valuation ν : V♯→ V. Thus, this concretization has type

γH : H♯→P(H× (V♯→ V)) and is defined as follows (by induction on the structure σ ♯):

γH(α · f 7→ β )
def
= {([ν(α)+ f 7→ ν(β )],ν) | ν ∈ V

♯→ V}

γH(σ
♯
0 ∗ σ ♯

1)
def
= {(σ0⊎σ1,ν) | (σ0,ν) ∈ γH(σ

♯
0) and (σ1,ν) ∈ γH(σ

♯
1) and dom(σ0)∩dom(σ1) = /0} .

That is, an exact points-to predicate corresponds to a single cell concrete store under a valuation ν ,

and a separating conjunction of abstract heaps is a concrete store composed of disjoint sub-stores that
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typedef struct {
int a;
intb;
} t;

t x;

&x = 0x... 8
18

&x = 0x... 0
2

&x = 0x... 3
7

&x = 0x... 10
21

αx

βa

βb

a

b

0 ≤ βa ≤ 10 ∧ βa ≤ 2βb + 1

Figure 5: An example separating shape graph enriched with a numeric constraint (right) with four con-

crete instances (center) for the C type declaration (left).

are individually abstracted by the conjuncts under the same instantiation (as in separation logic [28]).

Symbolic variables can be viewed as existentially-quantified variables that are bound at the top-level of

the abstraction. The valuation makes this explicit and thus is a bit similar to a concrete environment E .

Related work and discussion. Separating conjunction manifests itself in separating shape graphs as

simply distinct edges. In other words, distinct edges denote disjoint heap regions. Separating shape

graphs are visually quite similar to classical shape and points-to graphs [9, 31] but are actually quite

different semantically. In classical shape and points-to graphs, the nodes represent memory cells, and

typically, a node corresponds to one-or-more concrete cells. Distinct nodes represent disjoint memory

memory regions, and edges express variants of may or must points-to relations between two sets of cells.

In contrast, it is the edges in separating shape graphs that correspond to disjoint memory cells, while

the nodes simply represent values. We have found two main advantages of this approach. First, because

there is no a priori requirement that two nodes be distinct values, we do not need to case split simply

to speak about the contents of cells (e.g., consider two pointer variables x and y and representing to

which objects they point; a classic shape graph must consider two cases where x and y are aliases or

not, while a separating shape graph does not). Limiting case splits is critical to getting good analysis

performance [5]. Second, a separating shape graph is agnostic to the type of values that nodes represent.

Nodes may represent addresses, but they can just as easily represent non-address values, such as inte-

ger, Boolean, or floating-point values. We take advantage of this observation to interface with numeric

abstract domains [7], which we discuss further next in Section 3.2.

3.2 Enriching shapes with a numeric abstraction

From Section 3.1, we have an exact heap abstraction based on a separating shape graph with a finite num-

ber of exact points-to edges. Intuitively, this abstraction is quite weak, as we have simply enumerated the

memory cells of interest. We have, however, given names to all values—both addresses and contents—of

potential interest. Here, we enrich the abstraction with information about the values contained in data

structures, not just the pointer shape. We focus on scalar numeric values, such as integers or floating-

point values, but other types of values could be handled similarly. A separating shape graph defines a

set of symbolic variables corresponding to values, so we can abstract the values those symbolic variables

represent. First, we consider a simple example, shown in Figure 5. In Figure 5, we show four concrete

stores such that 0 ≤ x · a ≤ 10 and x · a ≤ 2(x · b)+ 1. The separating shape graph on the right clearly

abstracts the shape of the four stores (i.e., two fields a and b off a struct at variable x). The symbolic

variables βa and βb represent the contents of cells x · a and x · b, respectively, so the numeric property

specified above can expressed simply by using a logical formula involving βa and βb (as shown).

In general, a separating shape graph σ ♯ is defined over a set of symbolic variables V
♯[σ ♯] where

V
♯[σ ♯] ⊆ V

♯. The properties of the values stored in heaps described by σ ♯ can be characterized by
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bC

σ
♯
0

bCσ
♯
1

bCσ
♯
2

bCσ
♯
3

bCσ
♯
4

Dnum〈σ
♯
0
〉

b

b

bb b

Dnum〈σ
♯
1
〉

b

b b

b

Dnum〈σ
♯
2
〉

b

b

b

Dnum〈σ
♯
3
〉b

b

Dnum〈σ
♯
4
〉b

Figure 6: The combined shape-numeric abstract domain is a cofibered layering of a numeric abstract

domain on a shape abstract domain.

logical formulas over V♯[σ ♯]. Such logical formulas expressing numeric properties can be represented

using a numeric abstract domain Dnum〈V
♯[σ ♯]〉 that abstracts functions from V

♯[σ ♯] to V, that is, it

comes with concretization function parametrized by a set of symbolic values V
♯[σ ♯] of the following

type: γnum〈V
♯[σ ♯]〉 : Dnum〈V

♯[σ ♯]〉 →P(V♯[σ ♯]→ V). For example, the numeric property mentioned

in Figure 5 could be expressed using the convex polyhedra abstract domain [12]. As a shape graph

concretizes into a set of pairs composed of a heap σ and a valuation ν : V♯[σ ♯]→ V, such numeric

constraints simply restrict the set of admissible valuations.

The need to combine a shape graph with a numeric constraint suggests using a product abstrac-

tion [11] of a shape abstract domain H
♯ and a numeric abstract domain Dnum〈−〉. However, note that

the numeric abstract domain that needs to be used depends on the separating shape graph, as the set of

dimensions is equal to the set of nodes in the separating shape graph. Therefore, the conventional notion

of a symmetric reduced product does not apply here. Instead, we use a different construction known as a

cofibered abstract domain [38] (in reference with the categorical notion underlying this construction).

Definition 4 (Combined shape-numeric abstract domain). Given a shape domain H
♯ and a numeric do-

main Dnum〈−〉 parametrized by a set of symbolic variables. We let N♯ denote the set of numeric abstract

values corresponding to any shape graph (i.e., N♯ def
=

⋃
{Dnum〈V 〉 |V ⊆V

♯}), and we define the combined

shape-numeric abstract domain H
♯
⇒N

♯ and its concretization γH♯⇒N♯ : (H♯
⇒N

♯)→P(H×(V♯→V))
as follows:

H
♯
⇒ N

♯ def
= {(σ ♯,ν♯) | σ ♯ ∈H

♯ and ν♯ ∈ Dnum〈V
♯[σ ♯]〉}

γH♯⇒N♯(σ ♯,ν♯)
def
= {(σ ,ν) | (σ ,ν) ∈ γH(σ

♯) and ν ∈ γnum〈V
♯[σ ♯]〉(ν♯)}

This product is clearly asymmetric, as the left member defines the abstract lattice to which the right

member belongs. We illustrate this structure in Figure 6. The left part depicts the lattice of abstract

heaps, while the right part illustrates a lattice of numeric lattices. Each element of the lattice of lattices

is an instance of the numeric abstract domain over the symbolic variables defined by the abstract heap,

that is, it is the image of the function σ ♯ 7→ Dnum〈V
♯[σ ♯]〉.

This dependence is not simply theoretical but has practical implications on both the representation

of abstract values and the design of abstract operations in the combined abstract domain. For instance,
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αx

β1

δ1

a

b

∧ β1 = δ1αx β0

a

b

Figure 7: Two abstractions drawn from the combined abstract domain H
♯
⇒ N

♯ that have equivalent

concretizations but with non-isomorphic sets of symbolic variables.

αx

β

δ

a

b
αx

β

δ

a
b−→x·b=x·a

Figure 8: Applying the transfer function for an assignment on a separating shape graph that changes the

set of “live” symbolic variables.

Figure 7 shows two separating shape graphs together with numerical invariants that represent the same set

of concrete stores even though they use two different sets of symbolic variables (even up to α-renaming).

Both of these combined shape-numeric abstract domain elements represent a store with two fields x · a
and x · b such that x · a = x · b. In the right abstract domain element, the contents of both fields are

associated with distinct nodes, and the values denoted by those nodes are constrained to be equal by the

numeric domain. In the left graph, the contents of both fields are associated to the same node, which

implies that they must be equal (without any constraint in the numeric domain).

Now, with respect to the design of abstract operations in the combined abstract domain, the set of

nodes in the shape graph will in general change during the course of the analysis. For instance, the

analysis of an assignment of the value contained into field a to field b from the abstract state shown in

the left produces the one in the right in Figure 8. After this transformation takes place, node δ becomes

“garbage” or irrelevant, as it is not linked anywhere in the shape graph, and no numeric property is

attached to it. This symbolic variable δ should thus be removed or projected from the numeric abstract

domain. Other operations can cause new symbolic variables to be added, and this issue is only magnified

with summaries (cf., Section 3.3). Thus, the combined abstract domain must take great care in ensuring

the consistency of the numeric abstract values with the shape graphs, as well as dealing with graphs

with different sets of nodes. Considering again the diagram in Figure 6, whenever two shape graphs

are ordered σ
♯
0 ⊑ σ

♯
1, there exists a symbolic variable renaming function Φ〈σ ♯

0,σ
♯
1〉 : V♯[σ ♯

1]→ V
♯[σ ♯

0]

that expresses a renaming of the symbolic variables from the weaker shape graph σ
♯
1 to the stronger

one σ ♯
0. For example, the symbolic renaming function Φ for the shape graphs shown in Figure 7 is

[αx 7→ αx,β1 7→ β0,δ1 7→ β0].

Related work and discussion. In practice, the implementation of the shape abstract domain takes the

form of a functor (in the ML programming sense) that takes as input a module implementing a numeric

domain interface (e.g., a wrapper on top of the APRON library [20]) and outputs another module that

implements the memory abstract domain interface. The construction that we have shown in this section

is general to analyses where the set of symbolic variables is dynamic during the course of the analysis

and where the inference of this set is bound to the inference of cell contents. In other words, it is well-

suited to applying shape analyses for summarizing memory cells and then reasoning about their contents

with another domain. This construction has been used not only in Xisa [7] but also in a TVLA-based

setup [25] and one based on a history of heap updates [6].

Another approach that avoids this construction by performing a sequence of analyses: first, a shape
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analysis infers the set of symbolic variables; then, a numeric static analysis relies on this set [23, 24].

While less involved, this approach prevents the exchange of information between both analyses, which is

often required to achieve a satisfactory level of precision [7]. This sequencing of heap analysis followed

by value analysis is similar to the application of a pre-pass pointer analysis followed by model checking

over a Boolean abstraction exemplified in SLAM [1] and BLAST [18]

3.3 Enhancing store abstractions with summaries

So far, we have considered very simple abstract heaps described by separating shape graphs where all

concrete memory cells are abstracted by exact points-to edges. To support abstracting a potentially

unbounded number of concrete memory cells via dynamic memory allocation, we must extend abstract

heaps with summarization, that is, a way of providing a compact abstraction for possibly unbounded,

possibly non-contiguous memory regions.

&x 0x0 &x 0x...

0x0
. . .

&x 0x...

0x...
. . .

0x0
. . .

αx

β
list

Figure 9: Summarizing linked lists with inductive predicate

edges in separating shape graphs.

As an example, consider the con-

crete stores shown in the left part of Fig-

ure 9 consisting of a series of linked lists

with 0, 1, and 2 elements. These con-

crete stores are just instances among in-

finitely many ones where x stores a ref-

erence to a list of arbitrary length. Each

of these instances consist of two re-

gions: the cell corresponding to variable

x (green) and the list elements (blue).

To abstract all of these stores in a compact and precise manner, we need to summarize the second re-

gion with a predicate. We can define such a predicate for summarizing such a region using an inductive

definition list following the structure of lists: α · list := (emp∧α = 0x0)∨ (α · a 7→ β0 ∗ α · b 7→ β1 ∗
β0 · list∧α 6= 0x0). This definition notation is slightly non-standard to match the graphical notation: the

predicate name is list and α is the formal induction parameter. A list memory region is empty if the root

pointer α of the list is null, or otherwise, there is a head list element with two fields a and b such that the

contents of cell α ·a called β0 is itself a pointer to a list. Then, in Figure 9, if variable x contains a pointer

value denoted by β , the second region can be summarized by the inductive predicate instance β · list.

Furthermore, the three concrete stores are abstracted by the abstract heap αx 7→ β ∗ β · list (drawn as a

graph to the right). The inductive predicate β · list is drawn as the bold, thick edge from node β .

Materialization: The analyzer must be able to apply transfer functions on summarized regions. How-

ever, designing precise transfer functions on arbitrary summaries is extremely difficult. An effective

approach is to define direct transfer functions only on exact predicates and then define transfer functions

on summaries indirectly via materialization [32] of exact predicates from them. In the following, we

focus on the case where summaries are derived from inductive predicates [8] and thus call the material-

ization operation unfolding. In practice, unfolding should be guided by a specification of the summarized

region where the analyzer needs to perform local reasoning on materialized cells (see Section 4.2). How-

ever, from the theoretical point of view, we can let an unfolding operator be defined as some function

that replaces one abstract (σ ♯,ν♯) with a finite set of abstract elements (σ ♯
0,ν

♯
0), . . . ,(σ

♯
n−1,ν

♯
n−1).

Definition 5 (Materialization). Let us write ⊆ (H♯
⇒N

♯)×Pfin(H
♯
⇒N

♯) for the unfolding relation.
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Then, any unfolding of an abstract element should be sound with respect to concretization:

If (σ ♯,ν♯) (σ ♯
0,ν

♯
0), . . . ,(σ

♯
n−1,ν

♯
n−1) , then γH♯⇒N♯(σ ♯,ν♯)⊆

⋃

0≤i<n

γH♯⇒N♯(σ
♯
i ,ν

♯
i ) .

As seen above, the finite set of abstract elements that results from materialization represents a disjunction

of abstract elements (i.e., materialization is a form of case analysis). For precision, we typically want

an equality instead of inclusion in the conclusion, which motivates a need to represent a disjunction of

abstract elements (cf., Section 3.4).

Example 3 (Unfolding an inductively-defined list). For instance, the abstract element from H
♯
⇒ N

♯

depicted in Figure 9 can be unfolded to two elements:

(αx 7→ β ∗ β · list,⊤) (αx 7→ β ,β = 0x0),(αx 7→ β ∗ β · a 7→ β0 ∗ β ·b 7→ β1 ∗ β0 · list,β 6= 0x0) ,

which means that the list pointer β is either a null pointer or points to a list element whose a field contains

a pointer to another list.

Related work and discussion. Historically, the idea of using compact summaries for an unbounded

number of concrete memory cells goes back to at least Jones and Muchnick [21], though the set of

abstract locations was fixed a priori before the analysis. Chase et al. [9] considered dynamic summa-

rization during analysis, while Sagiv et al. [32] introduced materialization. We make note of existing

analysis algorithms that make use of summarization-materialization. TVLA summary nodes [31] repre-

sent unbounded sets of concrete memory cells with predicates that express universal properties of all

the concrete cells they denote. The use of three-valued logic enables abstraction beyond a set of exact

points-to constraints (i.e., the separating shape graphs in Section 3.1 are akin to two-valued structures in

TVLA), and summarization is controlled by instrumentation predicates that limits the compaction done

by canonical abstraction. Fixed list segment predicates [2, 14] characterize consecutive chains of list

elements by its first and last pointers. Thus, a predicate of the form ls(α ,α ′) denotes all chains of list

elements (of any length) starting at α and ending at α ′. Then, an abstract heap consists of a separating

conjunction of points-to predicates (Section 3.1) and list segments. These predicates can be generalized

to other structure segments. Inductive predicates [7, 8] generalize the list segment predicates in several

ways. First, the abstract domain may be parametrized by a set of user-supplied inductive definitions.

Note that as parameters to the abstract domain and thus the analyzer, the inductive definitions specify

possible templates for summarization. A sound analysis can only infer a summary predicate essentially

if it exhibits an exact instance of the summary. The “correctness” of such inductive definitions are

not assumed, but rather a disconnect between the user’s intent and the meaning an inductive predicate

could lead to unexpected results. Second, inductive predicates can correspond to complete structures

(e.g., a tree that is completely summarized into a single abstract predicate), whereas segments corre-

spond to incomplete structures characterized by a missing sub-structure. Inductive predicates can be

generically lifted to unmaterializable segment summaries [8] or materializable ones [7]. Independently,

array region predicates [15] have been used to describe the contents of zones in arrays. Some analyses

on arrays and containers have used index variables into summaries instead of explicit materialization

operations [13, 16, 17].

3.4 Lifting store abstractions to disjunctive memory state abstractions

At this point, we have described an abstraction framework for concrete stores σ . To complete an ab-

straction for memory states m : (E,σ), we need two things: (1) an abstract counterpart to E and (2) a

disjunctive abstraction for when a single abstract heap σ ♯ is insufficient for precisely abstracting the set

of possible concrete stores.
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Abstract environments: Since the abstract counterpart for addresses are symbolic variables (or nodes)

in shape graphs, an abstract environment E♯ can simply be a function mapping program variables to

nodes, that is, E♯ ∈ E♯ =X→V
♯. Now, the memory abstract domain M

♯ is defined by M
♯ = E

♯× (H♯
⇒

N
♯), and its concretization γM : M♯→P(E×H) can be defined as follows:

γM(E♯,(σ ♯,ν♯))
def
= {(ν ◦E♯,σ) | (σ ,ν) ∈ γH(σ

♯) and ν ∈ γnum〈V
♯[σ ♯]〉(ν♯)} .

Note that in an abstract memory state m♯ : (E♯,σ ♯), the abstract environment E♯ simply gives the sym-

bolic address of program variables, while the abstract heap σ ♯ abstracts all memory cells—just like the

concrete model in Section 2.2.

αx

x

αy

y

βa

βb

βc

δa

δb

δc

a a

b
c

b
c

Figure 10: Depicting a memory abstraction

including the abstract heap from Figure 4

and an abstract environment.

We let the abstract environment be depicted by node

labels in the graphical representation of abstract heaps.

For instance, the concrete memory state shown in Figure 1

can be described by the diagram in Figure 10.

Disjunctive abstraction: Recall that the unfolding op-

eration from Section 3.3 generates a finite disjunction of

abstract facts—specifically, combined shape-numeric ab-

stract elements {. . . ,(σ ♯
i ,ν

♯
i ), . . .} ⊆H

♯
⇒N

♯. Thus, a dis-

junctive abstraction layer is required regardless of other

analysis reasons (e.g., path-sensitivity). We assume the

disjunctive abstraction is defined by an abstract domain M
♯
∨ and a concretization function γ∨ : M

♯
∨ →

P(M). We do not prescribe any specific disjunctive abstraction. A simple choice is to apply a disjunc-

tive completion [11], but further innovations might be possible by taking advantage of being specific to

memory.

Example 4 (Disjunctive completion). For a memory abstract domain M
♯, its disjunctive completion M

♯
∨

is defined as follows:

M
♯
∨

def
= Pfin(M

♯) γ∨(s
♯)

def
=

⋃
{γM(m♯) | m♯ ∈ s♯} .

In Figure 11, we sum up the structure of the abstract domain for abstracting memory states M as a

stack of layers, which are typically implemented as ML-style functors. Each layer corresponds to the

abstraction of a different form of concrete semantics (as shown in the diagram).

Related work and discussion. Trace partitioning [30] relies on control-flow history to manage dis-

junctions, which could be used as an alternative to disjunctive completion. However, it is a rather general

construction and can be instantiated in multiple ways with a large effect on precision and performance.

4 Static analysis operations

In this section, we describe the main abstract operations on the memory abstract domain M
♯ and demon-

strate how they are computed through the composition of abstract domains discussed in Section 3. Our

presentation describes each kind of operation (i.e., transfer functions for commands like assignment, ab-

stract comparison, and abstract join) one by one and shows how unfolding and folding operations are

triggered by their application. The end result of this discussion is a description of how these domains

implement the interfaces shown in Figure 12. For these interfaces, we let B denote the set of booleans

{true, false} and U denote an undefined value for some functions that may fail to produce a result. We

write XU for X ⊎{U} for any set X (i.e., an option type).
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shape abstract domain

γH : H♯ → P(H× (V♯ → V))
numeric abstract domain

γnum〈V
♯[σ♯]〉 : Dnum〈V

♯[σ♯]〉 → P(V♯[σ♯]→ V)

combined shape-numeric abstract domain

γH♯⇒N♯ : (H♯
⇒ N

♯)→ P(H× (V♯ → V))

memory abstract domain

γM : M♯ → P(M) M
♯ = E

♯ × (H♯
⇒ N

♯)

disjunctive abstract domain

γ∨ : M♯
∨ → P(M)

Figure 11: Layers of abstract domains to yield a disjunctive memory state abstraction. From an imple-

mentation perspective, the edges correspond to inputs for ML-style functor instantiations.

4.1 Assignment over materialized cells

First, we consider the transfer function for assignment. In this subsection, for simplicity, we focus on

the case where none of the locations that appear in either side of the assignment are summarized, and we

defer the case of transfer functions over summarized graph regions to Section 4.2. Because of this sim-

plification, the types of the abstract operators mentioned will not exactly match those given in Figure 12.

At the same time, this transfer function captures the essence of the shape-numeric combination.

Recall that loc ∈LX and exp ∈ EX are location and value expressions, respectively, in our program-

ming language (cf., Figure 2). The transfer function assignmem : LX×EX×M
♯→M

♯ should compute

a sound post-condition for the assignment command loc = exp stated as follows:

Condition 1 (Soundness of assignmem). If (E,σ) ∈ γM(m♯), then

(E,σ [LJlocK(E,σ)← EJexpK(E,σ)]) ∈ γM(assignmem(loc,exp,m♯)) .

Assignments of the form loc = loc′. Let us first assume that right hand side of the assignment is a

location expression. As an example, consider the assignment shown in Figure 13 and applying assignmem

to the pre-condition on the left to yield the post-condition on the right. The essence is that loc dictates an

edge that should be updated to point to the node specified by loc′.

To compute a post-condition in this case, assignmem should update the abstract heap, that is, the pre-

heap σ ♯ ∈H
♯. An assignmem call should eventually forward the assignment to the heap abstract domain

via the eval[l]shape operation that evaluates a location expression loc to an edge, eval[e]shape that evaluates

a value expression exp to a node, and mutateshape that swings a points-to edge.

The base of a sequence of pointer dereferences is given by a program variable, so the first step consists

of replacing the program variables in the assignment with the symbolic names corresponding to their

addresses using the abstract environment E♯. For our example, this results in the call to assigncomb(α0 ->

a · b,α0 · b,(σ
♯,ν♯)) at the combined shape-numeric layer, which should satisfy a soundness condition

similar to that of assignmem (Condition 1). The next step consists of traversing the abstract heap σ ♯
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• A shape abstract domain H
♯

eval[l]shape : LV♯ ×H
♯ −→ (V♯×F×H

♯)U
eval[e]shape : EV♯×H

♯ −→ (V♯×H
♯)U

mutateshape : V
♯×F×V

♯×H
♯ −→ H

♯
U

unfoldshape : (LV♯ ×F)×H
♯ −→ Pfin(H

♯×EV♯)

newshape : V
♯×H

♯ −→ H
♯

delete[n]shape : V
♯×H

♯ −→ H
♯

delete[e]shape : V
♯×F×H

♯ −→ H
♯

compareshape : (V♯→ V
♯)×H

♯×H
♯ −→ {false}⊎{true}× (V♯→ V

♯)

joinshape : ((V♯)2→ V
♯)×H

♯×H
♯ −→ H

♯× (V♯→ V
♯)2

widenshape : ((V♯)2→ V
♯)×H

♯×H
♯ −→ H

♯× (V♯→ V
♯)2

• A numeric abstract domain over symbolic variables N♯

assignnum : LV♯ ×EV♯×N
♯ −→ N

♯

guardnum : EV♯×N
♯ −→ N

♯

newnum : V
♯×N

♯ −→ N
♯

delete[n]num : V
♯×N

♯ −→ N
♯

renamenum : (V♯→ V
♯)×N

♯ −→ N
♯

comparenum : N
♯×N

♯ −→ B

joinnum : N
♯×N

♯ −→ N
♯

widennum : N
♯×N

♯ −→ N
♯

• A combined shape-numeric abstract domain H
♯
⇒ N

♯

assigncomb : LV♯×EV♯×H
♯
⇒ N

♯ −→ Pfin(H
♯
⇒ N

♯)U
guardcomb : EV♯× (H♯

⇒ N
♯) −→ Pfin(H

♯
⇒ N

♯)U
unfoldcomb : LV♯×H

♯
⇒ N

♯ −→ Pfin(H
♯
⇒ N

♯)U
alloccomb : LV♯×F

∗× (H♯
⇒ N

♯) −→ Pfin(H
♯
⇒ N

♯)U
freecomb : LV♯×F

∗× (H♯
⇒ N

♯) −→ Pfin(H
♯
⇒ N

♯)U
comparecomb : (V♯→ V

♯)× (H♯
⇒ N

♯)× (H♯
⇒ N

♯) −→ {false}⊎{true}× (V♯→ V
♯)

joincomb : ((V♯)2→ V
♯)× (H♯

⇒ N
♯)× (H♯

⇒ N
♯) −→ (H♯

⇒ N
♯)

widencomb : ((V♯)2→ V
♯)× (H♯

⇒ N
♯)× (H♯

⇒ N
♯) −→ (H♯

⇒ N
♯)

• A memory abstract domain M
♯

assignmem : LX×EX×M
♯ −→ Pfin(M

♯)U
guardmem : EX×M

♯ −→ Pfin(M
♯)U

allocmem : LX×F
∗×M

♯ −→ Pfin(M
♯)U

freemem : LX×F
∗×M

♯ −→ Pfin(M
♯)U

comparemem : M
♯×M

♯ −→ B

joinmem : M
♯×M

♯ −→ M
♯

widenmem : M
♯×M

♯ −→ M
♯

Figure 12: Interfaces for the abstract domain layers shown in Figure 11 (except the disjunctive abstraction

layer).
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α0y α1

α2

α3

α4

a

b

a

b

y · a -> b = y · b
α0y α1

α2

α3

α4

a

b

a

b

Figure 13: Applying assignmem to an example assignment of the form loc = loc′.

LOCADDRESS

eval[l]shape(α ,σ ♯) = (α , /0)

LOCFIELD

eval[l]shape(loc,σ ♯) = (α , f)

eval[l]shape(loc ·g,σ ♯) = (α , f+g)

VALDEREFERENCE

eval[l]shape(loc,σ ♯) = (α , f) σ ♯ = σ ♯
0 ∗ α · f 7→ β

eval[e]shape(loc,σ ♯) = β

LOCVAL

eval[e]shape(exp,σ ♯) = α

eval[l]shape(⋆exp,σ ♯) = (α , /0)

VALLOC

eval[l]shape(loc,σ ♯) = (α , /0)

eval[e]shape(&loc,σ ♯) = α

Figure 14: Evaluating dereferences in an abstract heap.

according to the location expression and the value expression of the assignment. As mentioned above,

this evaluation is performed using the location evaluation function eval[l]shape that yields an edge and the

value expression evaluation function eval[e]shape that yields a node.

Condition 2 (Soundness of eval[l]shape and eval[e]shape). Let (σ ,ν) ∈ γH(σ
♯). Then,

If eval[l]shape(loc,σ ♯) = (α , f) , then LJlocK(σ) = ν(α)+ f .

If eval[e]shape(loc,σ ♯) = β , then EJlocK(σ) = ν(β ) .

In Figure 14, we define eval[l]shape and eval[e]shape following the syntax of location and value ex-

pressions (over symbolic variables). We write /0 for a designated 0-offset field. This abstract evaluation

corresponds directly to the concrete evaluation defined in Figure 3. Note that abstract evaluation is

not necessarily defined for all expressions. For example, an points-to edge may simply not exist for

the computed address in VALDEREFERENCE. The edge may need to be materialized by unfolding (cf.,

Section 4.2) or otherwise is a potential memory error.

Returning to the example in Figure 13, we get eval[l]shape(α0 -> a · b,σ ♯) = (α1,b)—the cell being

assigned-to corresponds to the exact points-to edge α1 ·b 7→ α4—and eval[e]shape(α0 ·b) = α2—the value

to assign is abstracted by α2. The abstract post-condition returned by assigncomb should reflect the

swinging of that edge in the shape graph, which is accomplished by the mutateshape function:

mutateshape(α , f,β ,(α · f 7→ δ ) ∗ σ ♯) = (α · f 7→ β ) ∗ σ ♯ .

This function simply replaces a points-to edge named by the address α and field f with a new one for

the updated contents (and fails if such a points-to edge does not exist in the abstract heap σ ♯). The

effect of this assignment can be completely reflected in the abstract heap since the cell corresponding

to the assignment is abstracted by exactly one points-to edge and the new value to store in that cell is

also exactly abstracted by one node. We note that node α4 is no longer reachable in the shape graph,

and thus the value that this node denotes is no longer relevant when concretizing the abstract state. As a

consequence, it can be safely removed both in H
♯ (using function delete[n]shape) and in N

♯ (using function
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α0

y

α1

α2

α3

a

b

c

∧α3 ≤ α2

y · c = y · b + 1
α0

y

α1

α2

α4 α3

a

b

c

∧α3 ≤ α2

∧α4 = α2 + 1

Figure 15: Applying assignmem to an example assignment of the form loc = exp.

α0x α1y

α2

list
∧α2 6= 0x0

y = x -> next

α0x α1y

α2 α3

α4

next

d

list
∧α2 6= 0x0

Figure 16: Applying assignmem to an example that affects the summarized region α2 · list.

delete[n]num). Such an existential projection or “garbage collection” step may be viewed as a conversion

operation in the cofibered lattice structure shown in Figure 6.

Assignments of the form loc = exp. In general, the right-hand side of an assignment is not necessarily

a location expression. The evaluation of left-hand side loc proceeds as above, but the evaluation of the

right-hand side expression exp is extended. As an example, consider the assignment shown in Figure 15.

The evaluation of the location expression down to the abstract heap level works as before where

we find that eval[l]shape(α0 · c,σ
♯) = (α0,c). For the right-hand–side expression, it is not obvious what

eval[e]shape(α0 ·b+1,σ ♯) should return, as no symbolic node is equal to that value in the concretization of

all elements of σ ♯. It is possible to evaluate sub-expression α0 ·b to α2, but then eval[e]shape(α2 +1,σ ♯)
cannot be evaluated any further. The solution is to create a new symbolic variable and constrain it to

represent the value of the right-hand–side expression. Therefore, the evaluation of assigncomb proceeds

as follows: (1) generate a fresh node α4; (2) add α4 to the abstract heap σ ♯ and the numeric abstract

value ν♯ using the function newshape and newnum, respectively; (3) update the numeric abstract value ν♯

using assignnum(α4,α2 +1,ν♯), which over-approximates constraining α4 = α2 +1; and (4) mutate with

mutateshape with the new node α4 (i.e., mutateshape(α0,c,α4,σ
♯)).

4.2 Unfolding and assignment over summarized cells

struct list{struct list ⋆ next; int d;};

α · list := (emp∧α = 0x0)
∨ (α ·next 7→ β0 ∗ α ·d 7→ β1 ∗ β0 · list∧α 6= 0x0)

We now consider assignmem in the presence of

summary predicates, which intuitively “get in

the way” of evaluating location and value ex-

pressions in a shape graph. For instance, con-

sider trying to apply the assignment shown in

Figure 16. On the left, we have a separating shape graph where α2 is a list described by the inductive defi-

nition shown inset. For clarity, we also show the C-style struct definition that corresponds to the layout of

each list element. In applying the assignment, the evaluation of the right-hand–side expression x->next

fails. While x evaluates to node α2, there is no points-to edge from α2. Thus, eval[e]shape(α0 -> next)
fails. It is clear that the reason for this failure is that the memory cell corresponding to the right-hand–

side expression is summarized as part of the α2 · list predicate. To materialize this cell, this predicate
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should be unfolded; then, the assignment can proceed as in the previous section (Section 4.1). We can

now describe the transfer function for assignment assignmem(loc,exp,(σ ♯,ν♯)) in general:

1. It should call the underlying assigncomb and follow the process described previously in Section 4.1.

If evaluation via eval[l]shape or eval[e]shape fail, then they should return a failure address, which

consists of a pair (β , f) corresponding to the node and field offset that does not have a materialized

points-to edge. In the example in Figure 16, the failure address is (α2,next). Note that the interface

for evaluation shown in Figure 16 does not show the contents of the failure case for simplicity.

2. Then, assigncomb in the combined domain performs an unfolding of the abstract heap by calling

a function unfoldshape that implements the unfolding relation  with the target points-to edge to

materialize (β , f).
Condition 3 (Soundness of unfoldshape).

γH(σ
♯)⊆

⋃
{(σ ,ν) ∈ γH(σ

♯
u) | (σ

♯
u,expu) ∈ unfoldshape((β , f),σ

♯) and JexpuK(ν) = true} .

Note that unfolding of an abstract heap returns pairs consisting of an unfolded abstract heap and

a numeric constraint as an expression expu ∈ E
V♯[σ ♯

u ]
over the symbolic variables of the unfolded

abstract heap. This expression allows a summary to contain constraints not expressible in a shape

graph itself. For instance, in the list inductive definition, each case comes with a nullness or non-

nullness condition on the head pointer. Or more interestingly, we can imagine an orderedness

constraint for an inductive definition describing an ordered list. For the example from Figure 16,

unfolding the shape graph at (α2,next) generates two disjuncts, but the one corresponding to the

empty list can be eliminated due to the constraint that α2 has to be non-null.

3. The numeric constraints should be evaluated in the numeric abstract domain using a condition test

operator guardnum.

Condition 4 (Soundness of guardnum). Let V ⊆ V
♯, ν♯ ∈ Dnum〈V 〉, and ν ∈ γnum〈V 〉(ν

♯). Then,

If JexpK(ν) = true , then ν ∈ γnum〈V 〉(guardnum(exp,ν♯)) .

Thus, the initial abstract state in the combined domain (σ ♯,ν♯)∈H♯
⇒N

♯ can be over-approximated

by the following finite set of abstract states:

unfoldcomb(loc,(σ ♯,ν♯))
def
= {(σ ♯

u,guardnum(expu,ν
♯)) | (σ ♯

u,expu) ∈ unfoldshape((β , f),σ
♯)}

4. Finally, assigncomb should perform the same set of operations as described in Section 4.1 to reflect

the assignment on each unfolded heap. The assigncomb returns a finite set of elements because

of potential unfolding (and similarly for assignmem). The soundness condition for assignmem is

therefore as follows.

Condition 5 (Soundness of assignmem). Let (E,σ) ∈ γM(m♯). Then,

(E,σ [LJlocK(E,σ)← EJexpK(E,σ)]) ∈
⋃
{γM(m♯

u) | m
♯
u ∈ assignmem(loc,exp,m♯)} .

A very similar soundness condition applies to assigncomb.

Figure 16 shows the resulting abstract state for the assignment after unfolding and mutation on the

right. In certain cases, the unfolding process may have to be performed multiple times due to repeated

failures of calling eval[l]shape and eval[e]shape as shown in Chang and Rival [7]. This behavior is expected,

as unfolding may fail to materialize the correct region, and thus, termination should be enforced with a

bound on the number of unfolding steps.



18 Modular Construction of Shape-Numeric Analyzers

α0x

α2

list
∧α2 6= 0x0

assume(x -> next 6= 0x0)

α0x

α2 α3

α4

next

d

list

∧α2 6= 0x0
∧α3 6= 0x0

Figure 17: Applying the condition test guardmem to an example that affects a summarized region α2 · list.

4.3 Other transfer functions

Unfolding is also the basis for most other transfer functions. Once the points-to edges in question are

materialized, their definition is straightforward as it was for assignment (cf., Section 4.1).

• Condition test. The abstract domain M
♯ should define an operator guardmem that takes an expres-

sion (of Boolean type) and an abstract value and then returns an abstract value that has taken into

account the effect of the guard expression. Just like with assignment, this function may need to

perform an unfolding and thus returns in general a finite set of abstract states.

Condition 6 (Soundness of guardmem). Let m ∈ γM(m♯). Then,

If JexpK(m) = true , then m ∈
⋃
{γH(σ

♯
u) | σ

♯
u ∈ γM(guardmem(exp,m♯))} .

It applies the transfer function assignnum provided by N
♯ satisfying a similar soundness condition,

which is fairly standard (e.g., the APRON library provides such a function).

• Memory allocation. Transfer function allocmem accounts for the allocation of a fresh memory

block, and the assignment of the address of this block to a given location. Given abstract pre-

condition σ ♯, the abstract allocation function allocmem(loc, [f1, . . . , fn],σ
♯) returns a sound abstract

post-condition for the statement loc = malloc({f1, . . . , fn}).
• Memory deallocation. Similarly, transfer function freemem accounts for freeing the block pointed

to by an instruction such as free. It takes as argument a location pointing to the block being

freed, a list of fields, and the abstract pre-condition. It may also need to perform unfolding to

materialize the location. It calls freecomb in the H
♯
⇒ N

♯ level, which then materializes points-

to edges corresponding to the block to remove and deletes them from the graph using function

delete[e]shape defined by delete[e]shape(α , f,α · f 7→ β ∗ σ ♯
0) = σ ♯

0. After removing these edges, some

symbolic nodes may become unreachable in the graph and should be removed using delete[n]shape

and delete[n]num.

The analysis of a more full featured programming language would require additional classical transfer

functions, such as support for variable creation and deletion, though this can be supported completely at

the memory abstract domain M
♯ layer with the abstract environment E♯.

As an example of a condition test, consider applying guardmem in Figure 17. In the same way as

for the example assignment of Figure 16, the first attempt to compute guardcomb(α2 -> next 6= 0x0,σ ♯)
fails, as there is no points-to edge labeled with next starting from node α2. Thus guardcomb must first

call unfoldcomb. The unfolding returns a pair of abstract elements, yet the one corresponding to the

case where the list is empty does not need to be considered any further due to the numerical constraint

α2 6= 0x0. Therefore, only the second abstract elements remains, which corresponds to a list with the

first element materialized. At this stage, expression α2 -> next can be evaluated. Finally, the condition

test is reflected by applying guardnum in the numerical abstract domain N
♯.
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m
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⊑
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Figure 18: An abstract inclusion that holds and shows the need for a node relation Φ. In both abstract

heaps, variable x points to a list and y points to a number. On the left, the abstract heap describes a list

with at least two elements, while on the right, it describes one with at least one element. The number

pointed to by y is less than or equal to the data field d of the first element in both abstract heaps. The

data field of the first element is less than or equal to the data field of the second in the left abstract heap.

4.4 Abstract comparison

Abstract interpreters make use of inclusion testing operations in many situations, such as checking that

an abstract post-fixed point has been reached in a loop invariant computation or that some, for example,

user-supplied post-condition can be verified with the analysis results. As inclusion is often not decidable,

the comparison function is not required to be complete but should meet a soundness condition:

Condition 7 (Soundness of comparemem). If comparemem(m
♯
0,m

♯
1) = true, then γM(m♯

0)⊆ γM(m♯
1)

The implementation of such an operator is complicated by the fact that the underlying abstract heaps

may have distinct sets of symbolic nodes. This issue is a manifestation of the the cofibered abstract

domain construction (Section 3.2). The concretizations of all abstract domains below H
♯
⇒ N

♯ make

use of valuations, and thus the inclusion checking operator needs to account for a relation between the

symbolic nodes of the graphs. This relation between nodes in two graphs Φ is computed step-by-step

during the course of the inclusion checking.

The example in Figure 18 illustrates these difficulties. It is quite intuitive that any state in the con-

cretization of m
♯
0 is also in the concretization of m

♯
1. To see the role of the node relation Φ, let us consider

concretizations of m
♯
0 and m

♯
1. Clearly, if concrete state (E,σ) is in the concretization of m

♯
0 and in the

concretization of m
♯
1, then node α0 in m

♯
0 and α ′0 denotes the address of x. Thus α0 and α ′0 denote the

same value, that is, valuations used as part of the concretization should map those two nodes to the same

value. The Φ should relate these two nodes akin to a unification substitution. Similarly, α2 and α ′2 both

denote the value stored in variable x, thus should be related in Φ. On the other hand, node α6 of abstract

state m
♯
0 has no counterpart in m

♯
1—it corresponds to a null or non-null address in the region summarized

by the inductive edge.

We notice Φ can be viewed as a map from nodes in m
♯
1 to nodes of m

♯
0 and in this example, defined

by Φ(α ′i ) = αi for 0≤ i≤ 5. Also, we notice that mapping Φ can be derived step-by-step, starting from

the abstract environments. Thus, compareshape and comparecomb each take as a parameter a set of pairs of

symbolic nodes that should be related in Φ. We call this initial set the roots, as they are used as a starting

point in the computation of Φ.

We can now describe the steps of computing comparemem(m
♯
0 : (E♯

0,(σ
♯
0 ,ν

♯
0)),m

♯
1 : (E♯

1,(σ
♯
1 ,ν

♯
1))):

1. First, an initial node mapping Φ : V♯[σ ♯
1]→ V

♯[σ ♯
0] is derived from the abstract environments:

Φ
def
=E

♯
0◦(E

♯
1)
−1. This definition states that the addresses of the program variables in m

♯
1 correspond

to the respective addresses of the program variables in m
♯
0. It is well-defined, as two distinct
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variables cannot be allocated at the same physical address.

2. Then, it calls comparecomb(Φ,(σ ♯
0,ν

♯
0), (σ

♯
1,ν

♯
1)) that forwards to a call of compareshape(Φ,σ ♯

0 ,σ
♯
1).

3. The abstract heap comparison function compareshape attempts to match σ ♯
0 and σ ♯

1 region-by-region

using a set of local rules:

• (Decomposition) Suppose σ ♯
0 and σ ♯

1 can be decomposed as σ ♯
0 = σ ♯

0,0 ∗ σ ♯
0,1 and σ ♯

1 =
σ
♯
1,0 ∗ σ

♯
1,1. And if the corresponding sub-regions can be shown to satisfy the inclusions

compareshape(Φ,σ
♯
0,0,σ

♯
1,0) = (true,Φ′) and compareshape(Φ

′,σ
♯
0,1,σ

♯
1,0) = (true,Φ′′) ,

then the overall inclusion holds—compareshape(Φ,σ ♯
0,σ

♯
1) returns (true,Φ′′);

• (Points-to edges) If σ ♯
0 = α0 · f 7→ β0 ∗ σ ♯

0,r, σ ♯
1 = α1 · f 7→ β1 ∗ σ ♯

1,r and Φ(α1) = α0, then

we can conclude inclusion holds locally and extend Φ with Φ(β1) = β0;

• (Unfolding) If there is an unfolding of σ ♯
1 called σ ♯

1,u such that compareshape(Φ,σ ♯
0,σ

♯
1,u) =

(true,Φ′), then compareshape(Φ,σ ♯
0 ,σ

♯
1) = (true,Φ′).

4. When compareshape(Φ,σ ♯
0,σ

♯
1) succeeds and returns (true,Φ′), it means the inclusion holds with

respect to the shape. We, however, still need to check for inclusion with respect to the nu-

meric properties. Recall that the base numeric domain elements ν♯
0 ∈ Dnum〈V

♯[σ ♯
0]〉 and ν♯

1 ∈

Dnum〈V
♯[σ ♯

1]〉 have incomparable sets of symbolic variables. An inclusion check in the base nu-

meric domain can only be performed after renaming symbolic names so that they are consistent.

The node mapping Φ′ computed by the above is precisely the renaming that is needed. Thus, the

last step to perform to decide inclusion is to compute comparenum(ν
♯
0,renamenum(Φ

′,ν♯
1)) and re-

turn it as a result for comparecomb(Φ,(σ ♯
0 ,ν

♯
0),(σ

♯
1 ,ν

♯
1)). Note that function renamenum should be

sound in the following sense:

∀ν♯ ∈ Dnum〈V 〉, ∀ν ∈ γnum〈V 〉(ν
♯), (ν ◦Φ) ∈ γnum〈Φ(V )〉(renamenum(Φ,ν♯))

where Φ(V ) is the set of symbolic variables obtained by applying Φ to set V .

5. If any of the above steps fail, comparemem returns false.

To summarize, the soundness conditions of the inclusion tests for the lower-level domains on which

comparemem relies are as follows:

Condition 8 (Soundness of inclusion tests).

1. If comparenum(ν
♯
0,ν

♯
1) = true , then γnum〈V 〉(ν

♯
0)⊆ γnum〈V 〉(ν

♯
1) .

2. If compareshape(Φ,σ ♯
0 ,σ

♯
1) = (true,Φ′) , then (σ ,ν ◦Φ′) ∈ γH(σ

♯
1) for all (σ ,ν) ∈ γH(σ

♯
0) .

3. If comparecomb(Φ,(σ ♯
0 ,ν

♯
0),(σ

♯
1,ν

♯
1)) = (true,Φ′) , then (σ ,ν ◦Φ′) ∈ γH♯⇒N♯(σ

♯
1,ν

♯
1)

for all (σ ,ν) ∈ γH(σ
♯
0,ν

♯
0) .

Returning to the example in Figure 18, after starting with Φ = [α ′0 7→ α0,α
′
1 7→ α1], the compareshape

operation consumes the points-to edges one-by-one extending Φ incrementally, unfolding the inductive

edges in the right argument before concluding that inclusion holds in the shape domain. With the final

mapping Φ′(α ′i ) = αi for all i, the numeric inclusion simply needs to check that comparenum(α3 ≤ α5∧
α5 ≤ α7,renamenum(Φ

′,α ′3 ≤ α ′5)) = comparenum(α3 ≤ α5∧α5 ≤ α7,α3 ≤ α5) = true.

4.5 Join and widening

As is standard, the joinmem operation should satisfy the following:
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Figure 19: An abstract join showing the need for different sets of symbolic variables for each of the inputs

and the result. The inputs are the two possible abstract heaps where a possibly-empty and a non-empty

list are pointed to by two non-aliased program variables x and y, so the most precise over-approximation

is the abstract heap where both x and y point to two possibly-empty lists.

Condition 9 (Soundness of joinmem). For all m
♯
0 and m

♯
1, γM(m♯

0)∪ γM(m♯
1)⊆ γM(joinmem(m

♯
0,m

♯
1)).

Like the comparison operator, the join operator takes two abstract heaps that have distinct sets of

symbolic variables as input. Additionally, it generates a new abstract heap, which requires another set of

symbolic variables, as it may not be possible to use the same set as either input. The example shown in

Figure 19 illustrates this situation. In left input m
♯
0, variable x points to a non-empty list and y points to a

possibly empty list, whereas right input m
♯
1 describes the opposite. The most precise over-approximation

of m
♯
0 and m

♯
1 corresponds to the case where both x and y point to lists of any length (as shown on

the right side of the figure). These three elements all have distinct sets of nodes (that cannot be put

in a bijection). Thus, the join algorithm uses a slightly different notion of symbolic node mapping Ψ

that binds three-tuples of nodes consisting of one node from each parameter and one node in the output

abstract heap. Conceptually, the output abstract heap is a kind of product construction, so it is composed

of new symbolic variables corresponding to pairs of nodes with one from each input.

Overall, the join algorithm proceeds in a similar way as the inclusion test: the abstract heap join

produces a mapping relating symbolic variables along with a new abstract heap. This mapping is then

used to rename symbolic variables in the base numeric domain elements consistently to then apply the

join in the base domain. Similar to the inclusion test, an initial mapping Ψ is constructed using the

abstract environment at the M
♯ level and then extended step-by-step at the H

♯ level. For instance, in

Figure 19, the initial mapping is {(α0,α
′
0,α

′′
0 ),(α1,α

′
1,α

′′
1 )}, and then pairs (α2,α

′
2,α

′′
2 ) and (α3,α

′
3,α

′′
3 )

are added by joinshape. Note that nodes α3,α4,α
′
3,α

′
4 have no counterpart in the result.

The local rules abstract heap join rules used in joinshape belong to two main categories:

• (Bijection) When two fragments of each input are isomorphic modulo Ψ, they can be joined into

another such fragment. In the example, the points-to edges α0 7→ α2 and α ′0 7→ α ′2 can both be

over-approximated by α ′′0 7→ α ′′2 . Applying this rule adds the triple (α2,α
′
2,α

′′
2 ) to the mapping Ψ.

• (Weakening) When a heap fragment can be shown to be included in a more simple, summary

fragment (in terms of their concretizations), we can over-approximate the original fragment with

the summary. For instance, fragment α2 · next 7→ α3 ∗ α2 · d 7→ α4 ∗ α3 · list can be shown to be

included in α2 · list. The other input can be an effective means for directing the choice of possible

summary fragments [7, 8].

The widening operator widenmem can be defined similarly to joinmem. If the heap join rules enforce

termination (i.e., joinshape can be used as a widening) and joinnum is replaced with a widening operator

widennum, the cofibered domain definition guarantees the resulting operator enforces termination [38].
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4.6 Disjunctive abstract domain interface

partition∨ : C×Pfin(M
♯
∨) −→ M

♯
∨

collapse∨ : C×M
♯
∨ −→ M

♯
∨

assign∨ : C×LX×EX×M
♯
∨ −→ M

♯
∨

guard∨ : C×EX×M
♯
∨ −→ M

♯
∨

alloc∨ : C×LX×N×M
♯
∨ −→ M

♯
∨

free∨ : C×LX×N×M
♯
∨ −→ M

♯
∨

compare∨ : M
♯
∨×M

♯
∨ −→ B

join∨ : M
♯
∨×M

♯
∨ −→ M

♯
∨

widen∨ : M
♯
∨×M

♯
∨ −→ M

♯
∨

Figure 20: Disjunctive abstraction interface.

Recall from Sections 3.3 and 4.2 that unfolding returns

a finite set of abstract elements interpreted disjunctively

and thus justifies the need for a disjunctive abstrac-

tion layer—independent of other possible reasons like

a desire for path-sensitivity. In this subsection, we de-

scribe the interface for a disjunctive abstraction layer M
♯
∨

shown in Figure 20 that sits above the memory layer M♯.

The following discussion completes the picture of the ab-

stract domain interfaces (cf., Figure 11). There are two

main differences in the interface as compared to the one

for M♯. First, the disjunctive abstract domain should pro-

vide two additional operations partition∨ and collapse∨
that create and collapse partitions, respectively. A partition represents a disjunctive set of base domain

elements. Second, the transfer functions take an additional context information parameter c ∈C that can

be used in M
♯
∨ to tag each disjunct with how it arose in the course of the abstract interpretation.

Condition 10 (Soundness of partition∨ and collapse∨). Let s♯ : M
♯
∨ and S♯ : Pfin(M

♯
∨).

⋃
{γ∨(s

♯) | s♯ ∈ S♯} ⊆ γ∨(partition∨(c,S
♯)) γ∨(s

♯)⊆ γ∨(collapse∨(c,s
♯))

Note that contexts play no role in the concretization, but operations can use them, for example, to decide

which disjuncts to merge using joinmem and which disjuncts to preserve.

Transfer functions assign∨, guard∨, alloc∨, and free∨ all follow the same structure. They first call the

underlying operation on the memory abstract domain M
♯ and then apply the partition∨ partition on the

output. For instance, assign∨ is defined as follows while satisfying the expected soundness condition:

assign∨(c, loc,exp)
def
= partition∨(c,{assignmem(loc,exp,m♯) | m♯ ∈ s♯}) (definition)

(E,σ [LJlocK(E,σ)← EJexpK(E,σ)]) ∈ γ∨(assign∨(c, loc,exp,s♯)) (soundness)

Inclusion (compare∨), join, and widening operations should satisfy the usual soundness conditions. The

collapse∨ operator may be used to avoid generating too many disjuncts (and termination of the analysis).

5 A compositional abstract interpreter

In this section, we assemble an abstract interpreter for the language defined in Section 2 using the ab-

straction set up in Section 3 and the interface of abstract operations described in Section 4.

The abstract semantics of a program p is a function JpK♯ : M
♯
∨→M

♯
∨, which takes an abstract pre-

condition as input and produces an abstract post-condition as output. Based on an abstract interpretation

of the denotational semantics of programs [33, 34], we can define the abstract semantics by induction

over the syntax of programs as shown in Figure 21 in a completely standard manner. We let C [. . .] stand

for computing some context information based on, for example, the control state ℓ and/or the branch

taken. This context information may be used, for instance, by the disjunctive domain M
♯
∨ to guide trace

partitioning [30]. The abstract transitions for sequencing, assignment, dynamic memory allocation, and

deallocation are straightforward with the latter three calling the corresponding transfer function in the

top-layer abstract domain M
♯
∨. For if, the pre-condition is first constrained by the guard condition via
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Jp0; p1K
♯(s♯)

def
= Jp1K

♯ ◦ Jp0K
♯(s♯) Jℓ : loc = malloc(n)K♯(s♯)

def
= alloc∨(C [ℓ], loc,n,s♯)

Jℓ : loc = expK♯(s♯)
def
= assign∨(C [ℓ], loc,exp,s♯) Jℓ : free(loc)K♯(s♯)

def
= free∨(C [ℓ], loc,n,s♯)

Jℓ : if (exp) pt else pfK
♯(s♯)

def
= join∨(JptK

♯(guard∨(C [ℓ, true],exp,s♯)),
JpfK

♯(guard∨(C [ℓ, false],exp = false,s♯)))

Jℓ : while (exp) pK♯(s♯)
def
= guard∨(C [ℓ, false],exp = false, lfp

♯

s♯
F♯)

where F♯ : M
♯
∨ −→ M

♯
∨

s
♯
0 7−→ JpK♯(guard∨(C [ℓ, true],exp,s

♯
0))

Figure 21: A denotational-style abstract interpreter for the programming language defined in Section 2.2.

guard∨ to interpret the two branches and then the resulting states are joined via join∨. For while, we

write lfp♯ for an abstract post–fixed-point operator. The lfp♯ operator relies on widen∨ to terminate and

on compare∨ to verify the stability of the abstract post-fixed point. It may also use join∨ to increase the

level of precision when computing the first iterations. We omit a full definition of lfp♯ as there are many

well-known ways to obtain such an operator. The most simple one consists of applying only widen∨
until stabilization can be shown by compare∨. We simply state its soundness condition:

Condition 11 (Soundness of lfp♯). For all concrete transformers F : P(S)→P(S) monotone, all ab-

stract transformers F♯ : M
♯
∨→M

♯
∨, and all abstract states s♯ ∈M

♯
∨,

if F ◦ γ∨ ⊆ γ∨ ◦F ♯ , then lfpγ∨(s♯) F ⊆ γ∨(lfp
♯

s♯
F♯) .

We write lfpS for the least post–fixed point that is at least S and similarly for lfp
♯

s♯
. Finally, the static

analysis is sound in the following sense:

Theorem 1 (Soundness of the analysis). Let p be a program, and let s♯ ∈ M
♯
∨ be an abstract pre-

condition. Then, the result of the analysis is sound:

∀s ∈ γ∨(s
♯), JpKd(s)⊆ γ∨(JpK♯(s♯)) .

Soundness can be proven by induction over the syntax of programs and by composing the local soundness

conditions of all abstract operators.

Related work and discussion. An advantage of this iteration strategy, is that it leads to an intuitive

order of application of the abstract equations corresponding to the program [10], eliminating complex

iteration strategies [19]. It also simplifies the choice of widening points [4], as it applies widening

naturally, at loop heads, though it also allows one to make different choices in strategy by, for example,

modifying lfp♯ to unroll loop iterations [3].

6 Conclusion

We have presented a modular construction of a static analysis that is able to reason both about the

shape of data structures and their numeric contents simultaneously. Our construction is parametric in

the desired numeric abstraction, as well as the shape abstraction, making it possible to continuously

substitute improvements for each component or with variants targeted at different classes of programs

or even different programming languages. The main advantage of a modular construction is that it
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allows one to design, prove, and implement each component of the analysis independently. Modular

construction is a cornerstone of quality software engineering, and our experience has been that this nice

property becomes even more important when dealing with the complexity of creating a static analysis

that simultaneously reasons about shape and numeric properties.
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