A Synchronous-based Code Generator For Explicit Hybrid Systems Languages

Timothy Bourke¹ Jean-Louis Colaço² Bruno Pagano² Cédric Pasteur² <u>Marc Pouzet^{3,1}</u>

1. INRIA Paris-Rocquencourt

2. Esterel-Technologies/ANSYS, Toulouse

3. DI, École normale supérieure, Paris

CC'2015 London, ETAPS April 17, 2015

Synchronous Block Diagram Languages: SCADE

- Widely used for critical control software development;
- E.g., avionic (Airbus, Ambraier, Comac, SAFRAN), trains (Ansaldo).

But modern systems need more...

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

The Current Practice of Hybrid Systems Modeling

Embedded software interacts with physical devices.

The whole system has to be modeled: the controller and the plant.¹

¹Image by Esterel-Technologies/ANSYS.

▲ロト ▲聞 ト ▲ 臣 ト ▲ 臣 ト 一臣 - めんぐ

Current Practice and Objective

Current Practice

- Simulink, Modelica used to **model**, rarely to **implement** critical soft.
- Software must be reimplemented in SCADE or imperative code.
- Interconnect tools (Simulink+Modelica+SCADE+Simplorer+...)
- Interchange format for co-simulation: S-functions, FMU/FMI

Objective and Approach

- Increase the confidence in what is simulated
- Use SCADE both to simulate and implement
- Synchronous code for both the controller and the plant
- Reuse the existing compiler infrastructure
- Run with an off-the-shelf numerical solver (e.g., SUNDIALS)

Hybrid System Modelers

Simulink / FMI	Simplorer / Modelica
Ordinary differential equation	Differential algebraic equation
$\dot{y} = f(y,t)$	$f(y,\dot{y},t)=0$
Explicit	Implicit
Causal	Acausal

Hybrid System Modelers

Simulink / FMI / Zélus / Scade Hybrid	Simplorer / Modelica
Ordinary differential equation	Differential algebraic equation
$\dot{y} = f(y,t)$	$f(y,\dot{y},t)=0$
Explicit	Implicit
Causal	Acausal

Background: [Benveniste et al., 2010 - 2014]

"Build a hybrid modeler on synchronous language principles"

Milestones

- Do as if time was global and discrete [JCSS'12]
- Lustre with ODEs [LCTES'11]
- Hierarchical automata, both discrete and hybrid [EMSOFT'11]
- Causality analysis [HSCC'14]

This was experimented in the language Zélus [HCSS'13]

The validation on an industrial compiler remained to be done. SCADE Hybrid (summer 2014)

- Prototype based on KCG 6.4 (last release)
- SCADE Hybrid = full SCADE + ODEs
- ► Generates FMI 1.0 model-exchange FMUs with Simplorer

Synchronous languages in a slide

- Compose stream functions; basic values are streams.
- Operation apply pointwise + unit delay (fby) + automata.

```
(* computes [x(n) + y(n) + 1] at every instant [n] *)
fun add (x,y) = x + y + 1
```

(* returns [true] when the number of [t] has reached [bound] *) node after (bound, t) = (c = bound) where rec c = 0 fby (min(tick, bound)) and tick = if t then c + 1 else c

The counter can be instantiated twice in a two state automaton,

 $\begin{array}{l} \mbox{node blink } (n, \ m, \ t) = x \ \mbox{where} \\ \mbox{automaton} \\ | \ \mbox{On} \rightarrow \mbox{do} \ x = \mbox{true} \quad \mbox{until } (after(n, \ t)) \ \mbox{then Off} \\ | \ \mbox{Off} \rightarrow \mbox{do} \ x = \mbox{false} \ \ \mbox{until } (after(m, \ t)) \ \mbox{then On} \end{array}$

From it, a synchronous compiler produces **sequential loop-free code** that compute a single **step** of the system.

A Simple Hybrid System

Yet, time was discrete. Now, a simple heat controller.²

```
(* a model of the heater defined by an ODE with two modes *)
hybrid heater(active) = temp where
rec der temp = if active then c -. k *. temp else -. k *. temp init temp0
```

```
(* an hysteresis controller for a heater *)
hybrid hysteresis_controller(temp) = active where
rec automaton
| Idle → do active = false until (up(t_min -. temp)) then Active
| Active → do active = true until (up(temp -. t_max)) then Idle
```

```
(* The controller and the plant are put parallel *)
hybrid main() = temp where
rec active = hysteresis_controller(temp)
and temp = heater(active)
```

Three syntactic novelties: keyword hybrid, der and up.

²Hybrid version of N. Halbwachs's example in Lustre at=Collège de=France, Jan.100.00

From Discrete to Hybrid The type language [LCTES'11]

$$\begin{array}{cccc} bt & ::= & \texttt{float} \mid \texttt{int} \mid \texttt{bool} \mid \texttt{zero} \mid \cdots & & & \\ \sigma & ::= & bt \times \ldots \times bt \xrightarrow{k} bt \times \ldots \times bt & & \\ k & ::= & \mathbb{D} \mid \mathbb{C} \mid \mathbb{A} & & & \mathbb{A} \end{array}$$

Л

C

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Function Definition: fun f(x1,...) = (y1,...)

• Combinatorial functions (A); usable anywhere.

Node Definition: node f(x1,...) = (y1,...)

Discrete-time constructs (D) of SCADE/Lustre: pre, ->, fby.

Hybrid Definition: hybrid f(x1,...) = (y1,...)

Continuous-time constructs (C): der x = ..., up, down, etc.

Mixing continuous/discrete parts

Zero-crossing events

- They correspond to event indicators/state events in FMI
- Detected by the solver when a given signal crosses zero

Design choices

A discrete computation can only be triggered by a zero-crossing

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

- Discrete state only changes at a zero-crossing event
- A continuous state can be reset at a zero-crossing event

Example

```
node counter() = cpt where
rec cpt = 1 \rightarrow pre cpt + 1
```

```
hybrid hybrid_counter() = cpt where
rec cpt = present up(z) \rightarrow counter() init 0
and z = sinus()
```

Output with SCADE Hybrid + Simplorer

How to communicate between continuous and discrete time?

E.g., the bouncing ball

```
hybrid ball(y0) = y where
rec der y = y_v init y0
and der y_v = -. g init 0.0 reset z \rightarrow 0.8 *. last y_v
and z = up(-. y)
```

- Replacing last y_v by y_v would lead to a deadlock.
- ► In SCADE and Zélus, last y_v is the previous value of y_v.
- It coincides with the **left limit** of y_v when y_v is left continuous.

Internals

◆□ ▶ < 圖 ▶ < 圖 ▶ < 圖 ▶ < 圖 • 의 Q @</p>

The Simulation Engine of Hybrid Systems

Alternate discrete steps and integration steps

 $\sigma', y' = next_{\sigma}(t, y)$ $upz = g_{\sigma}(t, y)$ $\dot{y} = f_{\sigma}(t, y)$

Properties of the three functions

- $next_{\sigma}$ gathers all discrete changes.
- g_{σ} defines signals for zero-crossing detection.
- f_{σ} is the function to integrate.

Compilation

The Compiler has to produce:

- 1. Inititialization function *init* to define y(0) and $\sigma(0)$.
- 2. Functions f and g.
- 3. Function *next*.

The Runtime System

- 1. Program the simulation loop, using a black-box solver (e.g., SUNDIALS CVODE);
- 2. Or rely on an existing infrastructure.

Zélus follows (1); SCADE Hybrid follows (2), targetting Simplorer FMIs.

Compiler Architecture

Two implementations: Zélus and KCG 6.4 (Release 2014) of SCADE. KCG 6.4 of SCADE

- ► Generates FMI 1.0 model-exchange FMUs for Simplorer.
- Only 5% of the compiler modified. Small changes in:
 - static analysis (typing, causality).
 - automata translation; code generation.
 - FMU generation (XML description, wrapper).
- ► FMU integration loop: about 1000 LoC.

A SCADE-like Input Language

Essentially SCADE with three syntax extensions (in red).

$$d ::= \operatorname{const} x = e \mid k f(pi) = pi \text{ where } E \mid d; d$$

$$k ::= \operatorname{fun} \mid \operatorname{node} \mid \operatorname{hybrid}$$

$$e ::= x \mid v \mid op(e, ..., e) \mid v \text{ fby } e \mid \operatorname{last} x \mid f(e, ..., e) \mid up(e)$$

$$p ::= x \mid (x, ..., x)$$

$$pi ::= xi \mid xi, ..., xi$$

$$xi ::= x \mid x \text{ last } e \mid x \text{ default } e$$

$$E ::= p = e \mid \operatorname{der} x = e$$

$$\mid \text{ if } e \text{ then } E \text{ else } E$$

$$\mid \text{ reset } E \text{ every } e$$

$$\mid \operatorname{local} pi \text{ in } E \mid \operatorname{do} E \text{ and } \dots E \text{ done}$$

・ロト・日本・モト・モート ヨー うへで

A Clocked Data-flow Internal Language

The internal language is extended with three extra operations. Translation based on Colaco et al. [EMSOFT'05].

$$d ::= \operatorname{const} x = c \mid k f(p) = a \operatorname{where} C \mid d; d$$

$$k ::= \operatorname{fun} \mid \operatorname{node} \mid \operatorname{hybrid}$$

$$C ::= (x_i = a_i)_{x_i \in I} \operatorname{with} \forall i \neq j. x_i \neq x_j$$

$$a ::= e^{ck}$$

$$e ::= x \mid v \mid op(a, ..., a) \mid v \operatorname{fby} a \mid \operatorname{pre}(a)$$

$$\mid f(a, ..., a) \operatorname{every} a$$

$$\mid \operatorname{merge}(a, a, a) \mid a \operatorname{when} a$$

$$\mid \operatorname{integr}(a, a) \mid \operatorname{up}(a)$$

$$p ::= x \mid (x, ..., x)$$

$$ck ::= \operatorname{base} \mid ck \operatorname{on} a$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

Clocked Equations Put in Normal Form

Name the result of every stateful operation. Separate into syntactic categories.

- se: strict expressions
- de: delayed expressions
- ce: controlled expressions.

Equation lx = integr(x', x) defines lx to be the continuous state variable; possibly reset with x.

$$eq ::= x = ce^{ck} | x = f(sa, ..., sa) every sa^{ck} | x = de^{ck}$$

$$sa ::= se^{ck}$$

$$ca ::= ce^{ck}$$

$$se ::= x | v | op(sa, ..., sa) | sa when sa$$

$$ce ::= se | merge(sa, ca, ca) | ca when sa$$

$$de ::= pre(ca) | v fby ca | integr(ca, ca) | up(ca)$$

Well Scheduled Form

Equations are statically scheduled.

Read(a): set of variables read by a.

Given $C = (x_i = a_i)_{x_i \in I}$, a valid schedule is a one-to-one function

 $Schedule(.): I \rightarrow \{1 \dots |I|\}$

such that, for all $x_i \in I, x_j \in Read(a_i) \cap I$:

- 1. if a_i is strict, $Schedule(x_i) < Schedule(x_i)$ and
- 2. if a_i is delayed, $Schedule(x_i) \leq Schedule(x_j)$.

From the data-dependence point-of-view, $integr(ca_1, ca_2)$ and up(ca) break instantaneous loops.

A Sequential Object Language (SOL)

- Translation into an intermediate imperative language [Colaco et al., LCTES'08]
- Instead of producing two methods step and reset, produce more.
- Mark memory variables with a kind m

State Variables

Discrete State Variables (sort Discrete)

- Read with state (x);
- modified with state $(x) \leftarrow c$

Zero-crossing State Variables (sort Zero)

- A pair with two fields.
- The field state (x).zin is a boolean, true when a zero-crossing on x has been detected, false otherwise.
- The field state (x).zout is the value for which a zero-crossing must be detected.

Continuous State Variables (sort *Cont*)

- state (x).der is its instantaneous derivative;
- state(x).pos its value

Example: translation of the bouncing ball

```
let bouncing = machine(continuous) {
  memories disc init_25 : bool = true;
     zero result_17 : bool = false;
     cont y_v_15 : float = 0.; cont y_14 : float = 0.
```

```
method reset =
    init_25 <- true; y_v_15.pos <- 0.</pre>
```

```
method step time_23 y0_9 =
  (if init_25 then (y_14.pos <- y0_9; ()) else ());
  init_25 <- false;
  result_17.zout <- (~-.) y_14.pos;
  if result_17.zin
    then (y_v_15.pos <- ( *. ) 0.8 y_v_15.pos);
  y_14.der <- y_v_15.pos;
  y_v_15.der <- (~-.) g; y_14.pos }</pre>
```

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Finally

- 1. Translate as usual to produce a function step.
- 2. For hybrid nodes, **copy-and-paste** the step method.
- 3. Either into a cont method activated during the continuous mode, or two extra methods derivatives and crossings.
- 4. Apply the following:
 - ▶ During the continuous mode (method cont), all zero-crossings (variables of type zero, e.g., state (x).zin) are surely false. All zero-crossing outputs (state (x).zout ← ...) are useless.
 - During the discrete step (method step), all derivative changes (state (x).der ← ...) are useless.

- Remove dead-code by calling an existing pass.
- 5. That's all!

Examples (both Zélus and SCADE) at: zelus.di.ens.fr/cc2015

Conclusion

Two full scale experiments

- ► The Zélus academic langage and compiler.
- ► The industrial KCG 6.4 (Release 2014) code generator of SCADE.
- ► For KCG, less than 5% of extra LOC, in all.
- ► The extension is **fully conservative** w.r.t existing SCADE.

Lessons

- The existing compiler infrastructure of SCADE, based on successive rewritting, helped a lot.
- Synchronous languages principles are useful to build a real hybrid systems modeling language.

Yet, doing the same for ODEs + constraints (DAEs) is far less clear.

Compiler

Zélus is a synchronous language extended with Ordinary Differential Equations (ODEs) to model systems with complex interaction between discrete-time and continuous-time dynamics. It shares the basic principles of Lustre with features from Lucid Synchrone (type inference, hierarchical automata, and signals). The compiler is written

Research

Zélus is used to experiment with new techniques for building hybrid modelers like Simulink/Stateflow and Modelica on top of a synchronous language. The language exploits novel techniques for defining the semantics of hybrid modelers, it provides dedicated type systems to ensure the absence of discontinuities during integration and the