
A Synchronous-based Code Generator For Explicit
Hybrid Systems Languages

Timothy Bourke1 Jean-Louis Colaço2 Bruno Pagano2

Cédric Pasteur2 Marc Pouzet3,1

1. INRIA Paris-Rocquencourt
2. Esterel-Technologies/ANSYS, Toulouse

3. DI, École normale supérieure, Paris

CC’2015
London, ETAPS
April 17, 2015

Synchronous Block Diagram Languages: SCADE

I Widely used for critical control software development;

I E.g., avionic (Airbus, Ambraier, Comac, SAFRAN), trains (Ansaldo).

But modern systems need
more. . .

The Current Practice of Hybrid Systems Modeling

Embedded software interacts with physical devices.

The whole system has to be modeled: the controller and the plant.1

1Image by Esterel-Technologies/ANSYS.

Current Practice and Objective

Current Practice

I Simulink, Modelica used to model, rarely to implement critical soft.

I Software must be reimplemented in SCADE or imperative code.

I Interconnect tools (Simulink+Modelica+SCADE+Simplorer+...)

I Interchange format for co-simulation: S-functions, FMU/FMI

Objective and Approach

I Increase the confidence in what is simulated

I Use SCADE both to simulate and implement

I Synchronous code for both the controller and the plant

I Reuse the existing compiler infrastructure

I Run with an off-the-shelf numerical solver (e.g., SUNDIALS)

Hybrid System Modelers

Simulink / FMI Simplorer / Modelica

Ordinary differential equation Differential algebraic equation

ẏ = f (y , t) f (y , ẏ , t) = 0

Explicit Implicit

Causal Acausal

Hybrid System Modelers

Simulink / FMI / Zélus / Scade Hybrid Simplorer / Modelica

Ordinary differential equation Differential algebraic equation

ẏ = f (y , t) f (y , ẏ , t) = 0

Explicit Implicit

Causal Acausal

Background: [Benveniste et al., 2010 - 2014]

“Build a hybrid modeler on synchronous language principles”

Milestones

I Do as if time was global and discrete [JCSS’12]

I Lustre with ODEs [LCTES’11]

I Hierarchical automata, both discrete and hybrid [EMSOFT’11]

I Causality analysis [HSCC’14]

This was experimented in the language Zélus [HCSS’13]

The validation on an industrial compiler remained to be done.

SCADE Hybrid (summer 2014)

I Prototype based on KCG 6.4 (last release)

I SCADE Hybrid = full SCADE + ODEs

I Generates FMI 1.0 model-exchange FMUs with Simplorer

Synchronous languages in a slide

I Compose stream functions; basic values are streams.

I Operation apply pointwise + unit delay (fby) + automata.

(∗ computes [x(n) + y(n) + 1] at every instant [n] ∗)
fun add (x,y) = x + y + 1

(∗ returns [true] when the number of [t] has reached [bound] ∗)
node after (bound, t) = (c = bound) where

rec c = 0 fby (min(tick, bound))
and tick = if t then c + 1 else c

The counter can be instantiated twice in a two state automaton,

node blink (n, m, t) = x where
automaton
| On → do x = true until (after(n, t)) then Off
| Off → do x = false until (after(m, t)) then On

From it, a synchronous compiler produces sequential loop-free code
that compute a single step of the system.

A Simple Hybrid System

Yet, time was discrete. Now, a simple heat controller. 2

(∗ a model of the heater defined by an ODE with two modes ∗)
hybrid heater(active) = temp where

rec der temp = if active then c −. k ∗. temp else −. k ∗. temp init temp0

(∗ an hysteresis controller for a heater ∗)
hybrid hysteresis controller(temp) = active where

rec automaton
| Idle → do active = false until (up(t min −. temp)) then Active
| Active → do active = true until (up(temp −. t max)) then Idle

(∗ The controller and the plant are put parallel ∗)
hybrid main() = temp where

rec active = hysteresis controller(temp)
and temp = heater(active)

Three syntactic novelties: keyword hybrid, der and up.

2Hybrid version of N. Halbwachs’s example in Lustre at Collège de France, Jan.10.

From Discrete to Hybrid

The type language [LCTES’11]

bt ::= float | int | bool | zero | · · ·
σ ::= bt × ...× bt

k−→ bt × ...× bt
k ::= D | C | A A

D C

Function Definition: fun f(x1,...) = (y1,...)

I Combinatorial functions (A); usable anywhere.

Node Definition: node f(x1,...) = (y1,...)

I Discrete-time constructs (D) of SCADE/Lustre: pre, ->, fby.

Hybrid Definition: hybrid f(x1,...) = (y1,...)

I Continuous-time constructs (C): der x = ..., up, down, etc.

Mixing continuous/discrete parts

Zero-crossing events

I They correspond to event indicators/state events in FMI

I Detected by the solver when a given signal crosses zero

Design choices

I A discrete computation can only be triggered by a zero-crossing

I Discrete state only changes at a zero-crossing event

I A continuous state can be reset at a zero-crossing event

Example

node counter() = cpt where
rec cpt = 1 → pre cpt + 1

hybrid hybrid counter() = cpt where
rec cpt = present up(z) → counter() init 0
and z = sinus()

Output with SCADE Hybrid + Simplorer

How to communicate between continuous and discrete
time?

E.g., the bouncing ball

hybrid ball(y0) = y where
rec der y = y v init y0
and der y v = −. g init 0.0 reset z → 0.8 ∗. last y v
and z = up(−. y)

I Replacing last y v by y v would lead to a deadlock.

I In SCADE and Zélus, last y v is the previous value of y v.

I It coincides with the left limit of y v when y v is left continuous.

Internals

The Simulation Engine of Hybrid Systems

Alternate discrete steps and integration steps

D C
reaction

[reinitialize]

zero-crossing event
integrate

σ′, y ′ = nextσ(t, y) upz = gσ(t, y) ẏ = fσ(t, y)

Properties of the three functions

I nextσ gathers all discrete changes.

I gσ defines signals for zero-crossing detection.

I fσ is the function to integrate.

Compilation

The Compiler has to produce:

1. Inititialization function init to define y(0) and σ(0).

2. Functions f and g .

3. Function next.

The Runtime System

1. Program the simulation loop, using a black-box solver (e.g.,
SUNDIALS CVODE);

2. Or rely on an existing infrastructure.

Zélus follows (1); SCADE Hybrid follows (2), targetting Simplorer FMIs.

Compiler Architecture

Two implementations: Zélus and KCG 6.4 (Release 2014) of SCADE.

KCG 6.4 of SCADE

I Generates FMI 1.0 model-exchange FMUs for Simplorer.
I Only 5% of the compiler modified. Small changes in:

I static analysis (typing, causality).
I automata translation; code generation.
I FMU generation (XML description, wrapper).

I FMU integration loop: about 1000 LoC.

parsing typing causality
control

encoding
optimization

scheduling
SOL

generation
slicingdeadcode

removal

C code
generation

A SCADE-like Input Language

Essentially SCADE with three syntax extensions (in red).

d ::= const x = e | k f (pi) = pi whereE | d ; d

k ::= fun | node | hybrid

e ::= x | v | op(e, ..., e) | v fby e | last x | f (e, ..., e) | up(e)

p ::= x | (x , ..., x)

pi ::= xi | xi , ..., xi

xi ::= x | x last e | x default e

E ::= p = e | der x = e
| if e thenE elseE
| reset E every e
| local pi in E | do E and . . .E done

A Clocked Data-flow Internal Language

The internal language is extended with three extra operations.
Translation based on Colaco et al. [EMSOFT’05].

d ::= const x = c | k f (p) = a whereC | d ; d

k ::= fun | node | hybrid

C ::= (xi = ai)xi∈I with ∀i 6= j .xi 6= xj

a ::= eck

e ::= x | v | op(a, ..., a) | v fby a | pre(a)
| f (a, ..., a) every a
| merge(a, a, a) | a when a
| integr(a, a) | up(a)

p ::= x | (x , ..., x)

ck ::= base | ck on a

Clocked Equations Put in Normal Form
Name the result of every stateful operation. Separate into syntactic
categories.

I se: strict expressions

I de: delayed expressions

I ce: controlled expressions.

Equation lx = integr(x ′, x) defines lx to be the continuous state
variable; possibly reset with x .

eq ::= x = ceck | x = f (sa, ..., sa) every sack | x = deck

sa ::= seck

ca ::= ceck

se ::= x | v | op(sa, ..., sa) | sa when sa

ce ::= se | merge(sa, ca, ca) | ca when sa

de ::= pre(ca) | v fby ca | integr(ca, ca) | up(ca)

Well Scheduled Form

Equations are statically scheduled.

Read(a): set of variables read by a.

Given C = (xi = ai)xi∈I , a valid schedule is a one-to-one function

Schedule(.) : I → {1 . . . |I |}

such that, for all xi ∈ I , xj ∈ Read(ai) ∩ I :

1. if ai is strict, Schedule(xj) < Schedule(xi) and

2. if ai is delayed, Schedule(xi) ≤ Schedule(xj).

From the data-dependence point-of-view, integr(ca1, ca2) and up(ca)
break instantaneous loops.

A Sequential Object Language (SOL)
I Translation into an intermediate imperative language [Colaco et al.,

LCTES’08]
I Instead of producing two methods step and reset, produce more.
I Mark memory variables with a kind m

md ::= | const x = c
| const f = class〈M, I , (method i (pi) = ei whereSi)i∈[1..n]〉

M ::= [x : m[= v]; ...; x : m[= v]]

I ::= [o : f ; ...; o : f]

m ::= Discrete | Zero | Cont

e ::= v | lv | op(e, ..., e) | o.method(e, ..., e)

S ::= () | lv ← e | S ; S | var x , ..., x in S | if c thenS elseS

R, L ::= S ; ...; S

lv ::= x | lv .field | state (x)

State Variables

Discrete State Variables (sort Discrete)

I Read with state (x);

I modified with state (x)← c

Zero-crossing State Variables (sort Zero)

I A pair with two fields.

I The field state (x).zin is a boolean, true when a zero-crossing on x
has been detected, false otherwise.

I The field state (x).zout is the value for which a zero-crossing must
be detected.

Continuous State Variables (sort Cont)

I state (x).der is its instantaneous derivative;

I state (x).pos its value

Example: translation of the bouncing ball

let bouncing = machine(continuous) {

memories disc init_25 : bool = true;

zero result_17 : bool = false;

cont y_v_15 : float = 0.; cont y_14 : float = 0.

method reset =

init_25 <- true; y_v_15.pos <- 0.

method step time_23 y0_9 =

(if init_25 then (y_14.pos <- y0_9; ()) else ());

init_25 <- false;

result_17.zout <- (~-.) y_14.pos;

if result_17.zin

then (y_v_15.pos <- (*.) 0.8 y_v_15.pos);

y_14.der <- y_v_15.pos;

y_v_15.der <- (~-.) g; y_14.pos }

Finally

1. Translate as usual to produce a function step.

2. For hybrid nodes, copy-and-paste the step method.

3. Either into a cont method activated during the continuous mode, or
two extra methods derivatives and crossings.

4. Apply the following:
I During the continuous mode (method cont), all zero-crossings

(variables of type zero, e.g., state (x).zin) are surely false. All
zero-crossing outputs (state (x).zout ← ...) are useless.

I During the discrete step (method step), all derivative changes
(state (x).der ← ...) are useless.

I Remove dead-code by calling an existing pass.

5. That’s all!

Examples (both Zélus and SCADE) at: zelus.di.ens.fr/cc2015

zelus.di.ens.fr/cc2015

Conclusion

Two full scale experiments

I The Zélus academic langage and compiler.

I The industrial KCG 6.4 (Release 2014) code generator of SCADE.

I For KCG, less than 5% of extra LOC, in all.

I The extension is fully conservative w.r.t existing SCADE.

Lessons

I The existing compiler infrastructure of SCADE, based on successive
rewritting, helped a lot.

I Synchronous languages principles are useful to build a real hybrid
systems modeling language.

Yet, doing the same for ODEs + constraints (DAEs) is far less clear.

http://zelus.di.ens.fr

http://zelus.di.ens.fr

	Overview

