A Hybrid Synchronous Language with Hierarchical Automata

Static Typing and Translation to Synchronous Code

Albert Benveniste ${ }^{1} \quad$ Benoît Caillaud ${ }^{1}$
Timothy Bourke ${ }^{1,2}$ Marc Pouzet ${ }^{2,1}$

1. INRIA
2. ENS, Paris

18th Workshop SYNCHRON, Nov. 28 - Dec. 2, 2011, Damarie-les-Lys

Aim

Programming languages perspective:

purely discrete data-flow well understood (Lustre, SCADE 6) purely continuous hier. automata (disc.) data-flow + hier. auto. well understood (Numerical solvers, Simulink) (Statecharts, Esterel)
(SCADE 6, Esterel v7)

Better understand the combination of discrete and continuous components

The usual questions (and techniques)

- Which programs make sense? (typing)
- How to reason about programs? (semantics, $\left.\begin{array}{l}\text { Benveniste et al. The Fundamentals } \\ \text { of Hybrid Modelers. JCSS } 2011 .\end{array}\right)$
= Efficient and faithful execution? (compilation)

Our interest: a language for programming discrete systems and their
physical environments

Aim

Programming languages perspective:

| purely discrete data-flow | well understood | (Lustre, SCADE 6) |
| :--- | :--- | :--- | :--- |
| purely continuous | well understood | (Numerical solvers, Simulink) |
| hier. automata (disc.) | well understood | (Statecharts, Esterel) |
| data-flow + hier. auto. | well understood | (SCADE 6, Esterel v7) |

Better understand the combination of discrete and continuous components

> The usual questions (and techniques)
> - Which programs make sense? (typing)
> - How to reason about programs? (semantics, $\left.\begin{array}{l}\text { Benveniste et al. The Fundamentals } \\ \text { of Hybrid Modelers. JCSS } 2011 .\end{array}\right)$
> - Efficient and faithful execution? (compilation)

> Our interest: a language for programming discrete systems and their
> physical environments

Aim

Programming languages perspective:

| purely discrete data-flow | well understood | (Lustre, SCADE 6) |
| :--- | :--- | :--- | :--- |
| purely continuous | well understood | (Numerical solvers, Simulink) |
| hier. automata (disc.) | well understood | (Statecharts, Esterel) |
| data-flow + hier. auto. | well understood | (SCADE 6, Esterel v7) |

Better understand the combination of discrete and continuous components
The usual questions (and techniques):

- Which programs make sense? (typing)
- How to reason about programs? (semantics, Benveniste et al. The Fundamentals
- Efficient and faithful execution? (compilation)
\square

Aim

Programming languages perspective:

| purely discrete data-flow | well understood | (Lustre, SCADE 6) |
| :--- | :--- | :--- | :--- |
| purely continuous | well understood | (Numerical solvers, Simulink) |
| hier. automata (disc.) | well understood | (Statecharts, Esterel) |
| data-flow + hier. auto. | well understood | (SCADE 6, Esterel v7) |

Better understand the combination of discrete and continuous components
The usual questions (and techniques):

- Which programs make sense? (typing)
- How to reason about programs? (semantics, $\begin{aligned} & \text { Benveniste et al. The Fundamentals } \\ & \text { of Hybrid Modelers. JCSS }\end{aligned}$ 2011.
- Efficient and faithful execution? (compilation)

Our interest: a language for programming discrete systems and their physical environments

Approach

- Add Ordinary Differential Equations to an existing synchronous language
- Two concrete reasons:
- Increase modeling power (hybrid programming)
- Exploit existing compiler (target for code generation)
- Simulate with an external off-the-shelf numerical solver (Sundials CVODE, $\left.\begin{array}{l}\text { Hindmarsh et al. SUNDIALS: Suite of nonlinear and differential/algebraic equation } \\ \text { solvers. ACM Trans. Mathematical Software, 31(3):363-396, } 2005\end{array}\right)$
- Conservative extension: synchronous functions are compiled optimized, and executed as per usual.
- Extend's previous work: add 'hierarchical automata to LCTES 2011

Understand (continuous) automata and their parallel composition
from a synchronous language viewpoint (causality relations, activations (clocks), semantics)

Approach

- Add Ordinary Differential Equations to an existing synchronous language
- Two concrete reasons:
- Increase modeling power (hybrid programming)
- Exploit existing compiler (target for code generation)
- Simulate with an external off-the-shelf numerical solver
(Sundials CVODE, $\begin{aligned} & \text { Hindmarsh et al. SUNDIALS: Suite of nonlinear and differential/algebraic equation) } \\ & \text { solvers. ACM Trans. Mathematical Software, 31(3):363-396, 2005. }\end{aligned}$
- Conservative extension: synchronous functions are compiled, optimized, and executed as per usual.
- Extend's previous work: add 'hierarchical automata to LCTES 2011

Understand (continuous) automata and their parallel composition
from a synchronous language viewpoint
(causality relations, activations (clocks), semantics)

Approach

- Add Ordinary Differential Equations to an existing synchronous language
- Two concrete reasons:
- Increase modeling power (hybrid programming)
- Exploit existing compiler (target for code generation)
- Simulate with an external off-the-shelf numerical solver
(Sundials CVODE, $\begin{aligned} & \text { Hindmarsh et al. SUNDIALS: Suite of nonlinear and differential/algebraic equation) } \\ & \text { solvers. ACM Trans. Mathematical Software, 31(3):363-396, 2005. }\end{aligned}$
- Conservative extension: synchronous functions are compiled, optimized, and executed as per usual.
- Extends previous work: add hierarchical automata to LCTES 2011

Understand (continuous) automata and their parallel composition from a synchronous language viewpoint (causality relations, activations (clocks), semantics)

Approach

- Add Ordinary Differential Equations to an existing synchronous language
- Two concrete reasons:
- Increase modeling power (hybrid programming)
- Exploit existing compiler (target for code generation)
- Simulate with an external off-the-shelf numerical solver
(Sundials CVODE, $\begin{aligned} & \text { Hindmarsh et al. SUNDIALS: Suite of nonlinear and differential/algebraic equation) } \\ & \text { solvers. ACM Trans. Mathematical Software, 31(3):363-396, 2005. }\end{aligned}$
- Conservative extension: synchronous functions are compiled, optimized, and executed as per usual.
- Extends previous work: add hierarchical automata to LCTES 2011

Understand (continuous) automata and their parallel composition from a synchronous language viewpoint (causality relations, activations (clocks), semantics)

Lee and Zheng. Operational semantics of hybrid systems. HSCC 2005.
Lee and Zheng. Leveraging synchronous language principles for heterogeneous modeling and design of embedded systems. EMSOFT'07.

AThe MathWorks"
Accolerating the pace of engineoring and sciences

Lee and Zheng. Operational semantics of hybrid systems. HSCC 2005.
Lee and Zheng. Leveraging synchronous language principles for heterogeneous modeling and design of embedded systems. EMSOFT'07.

Ptolemy and HyVisual

- Programming languages perspective
- Numerical solvers as directors
- Working tool and examples

MATLAB SIMULINK*

Carloni et al. Languages and tools for hybrid systems design. 2006.

Simulink/Stateflow

- Simulation \rightsquigarrow development
- two distinct simulation engines
- semantics \& consistency: non-obvious

MATLAB SIMULINK

Our approach

- Source-to-source compilation
- Automata \rightsquigarrow data-flow
- Extend other languages (SCADE 6)

Which programs make sense?

Given:
let node $\operatorname{sum}(x)=$ cpt where

$$
\text { rec } c p t=(0.0 \text { fby cpt })+. x
$$

Which programs make sense?

Given:
let node $\operatorname{sum}(x)=c p t$ where

$$
\text { rec } \mathrm{cpt}=(0.0 \text { fby cpt })+. x
$$

Evaluate:

```
der time = 1.0 init 0.0
and
y = sum(time)
```


Which programs make sense?

Given:

let node $\operatorname{sum}(x)=c p t$ where rec cpt $=(0.0$ fby cpt $)+$. x

Evaluate:

$$
\begin{aligned}
& \text { der } \text { time }=1.0 \text { init } 0.0 \\
& \text { and } \\
& y=\operatorname{sum}(\text { time })
\end{aligned}
$$

Interpretation:

Which programs make sense?

Given:

let node sum $(x)=\mathrm{cpt}$ where rec cpt $=(0.0$ fby cpt $)+$. x

Evaluate:

$$
\begin{aligned}
& \text { der } \text { time }=1.0 \text { init } 0.0 \\
& \text { and } \\
& y=\operatorname{sum}(\text { time })
\end{aligned}
$$

Interpretation:

- Option 1: $\mathbb{N} \subseteq \mathbb{R}$
- Option 2: depends on solver
- Option 3: infinitesimal steps
- Option 4: type and reject

Which programs make sense?

Given:

let node sum $(x)=c p t$ where rec cpt $=(0.0$ fby cpt $)+$. x

Evaluate:

$$
\begin{aligned}
& \text { der } \text { time }=1.0 \text { init } 0.0 \\
& \text { and } \\
& y=\operatorname{sum}(\text { time })
\end{aligned}
$$

Interpretation:

- Option 1: $\mathbb{N} \subseteq \mathbb{R}$
- Option 2: depends on solver

- Option 4: type and reject

Which programs make sense?

Given:

let node sum $(x)=\mathrm{cpt}$ where rec cpt $=(0.0$ fby cpt $)+. x$

Evaluate:

$$
\begin{aligned}
& \text { der } \text { time }=1.0 \text { init } 0.0 \\
& \text { and } \\
& y=\operatorname{sum}(\text { time })
\end{aligned}
$$

Interpretation:

- Option 1: $\mathbb{N} \subseteq \mathbb{R}$
- Option 2: depends on solver
- Option 3: infinitesimal steps

Which programs make sense?

Given:

let node sum $(x)=c p t$ where rec cpt $=(0.0$ fby cpt $)+. x$
Evaluate:

$$
\begin{aligned}
& \text { der time }=1.0 \text { init } 0.0 \\
& \text { and } \\
& y=\text { sum (time })
\end{aligned}
$$

Interpretation:

- Option 1: $\mathbb{N} \subseteq \mathbb{R}$
- Option 2: depends on solver
- Option 3: infinitesimal steps
- Option 4: type and reject

Which programs make sense?

Given:

let node sum $(x)=c p t$ where rec cpt $=(0.0$ fby cpt $)+$. x
Evaluate:

$$
\begin{aligned}
& \text { der time }=1.0 \text { init } 0.0 \\
& \text { and } \\
& y=\text { sum (time }) \text { every up(ez) init } 0.0
\end{aligned}
$$

Interpretation:

- Option 1: $\mathbb{N} \subseteq \mathbb{R}$
- Option 2: depends on solver
- Option 3: infinitesimal steps
- Option 4: type and reject

Which programs make sense?

Given:

let node sum $(x)=\mathrm{cpt}$ where rec cpt $=(0.0$ fby cpt $)+$. x

Evaluate:

$$
\begin{aligned}
& \text { der time }=1.0 \text { init } 0.0 \\
& \text { and } \\
& y=\operatorname{sum}(\text { time }) \text { every up(ez) init } 0.0
\end{aligned}
$$

Interpretation:

- Option 1: $\mathbb{N} \subseteq \mathbb{R}$
- Option 2: depends on solver
- Option 3: infinitesimal steps
- Option 4: type and reject

Explicitly relate simulation and logical time (using zero-crossings)
Try to minimize the effects of solver parameters and choices

Typing

Motivation

Reject unreasonable programs: behavior depends 'too much' on simulation parameters (like the step size, or number of iterations).

Translation to synchronous code: ensure that the translated code has no side effect/state changes during integration.

A signal is discrete if it is activated on a discrete clock. A clock is discrete if it is a zero-crossing event, declared so or a sub-clock of discrete clock.

Type system: reject programs that do not respect the invariant:
> discrete computations in (D) only
continuous evolutions in (C) only

Typing

Motivation

Reject unreasonable programs: behavior depends 'too much' on simulation parameters (like the step size, or number of iterations).

Translation to synchronous code: ensure that the translated code has no side effect/state changes during integration

A signal is discrete if it is activated on a discrete clock. A clock
is discrete if it is a zero-crossing event, declared so or a sub-clock of discrete clock.

Type system: reject programs that do not respect the invariant:

Typing

Motivation

Reject unreasonable programs: behavior depends 'too much' on simulation parameters (like the step size, or number of iterations).

Translation to synchronous code: ensure that the translated code has no side effect/state changes during integration.

A signal is discrete if it is activated on a discrete clock. A clock is discrete if it is a zero-crossing event, declared so or a sub-clock of discrete clock.

Type system: reject programs that do not respect the invariant:

- discrete computations in (D) only

Typing

Motivation

Reject unreasonable programs: behavior depends 'too much' on simulation parameters (like the step size, or number of iterations).

Translation to synchronous code: ensure that the translated code has no side effect/state changes during integration.

A signal is discrete if it is activated on a discrete clock. A clock is discrete if it is a zero-crossing event, declared so or a sub-clock of discrete clock.

Type system: reject programs that do not respect the invariant:

- discrete computations in D only
- continuous evolutions in Conly

Typing

Unreasonable programs

$$
\begin{array}{ll}
\text { der } y=1.0 \text { init } 0.0 & \text { and } \\
x=0.0 \rightarrow(\text { pre } x+.1 .0) & \text { and } \\
x=0.0 \rightarrow \text { pre } x)+y \\
y=x \text { init } 0.0
\end{array}
$$

- y is a variable that changes continuously
- x is discrete register
- The relationship between the two is ill-defined

Typing

The type language

$$
\begin{array}{ll}
b t & ::=\text { float } \mid \text { int } \mid \text { bool | zero } \\
t & ::=b t|t \times t| \beta \\
\sigma & ::=\forall \beta_{1}, \ldots, \beta_{n} \cdot t \xrightarrow{k} t \\
k & ::=\mathrm{D}|\mathrm{C}| \mathrm{A}
\end{array}
$$

Initial conditions

Typing

The type language

$$
\begin{array}{ll}
b t & ::=\text { float } \mid \text { int } \mid \text { bool | zero } \\
t & ::=b t|t \times t| \beta \\
\sigma & ::=\forall \beta_{1}, \ldots, \beta_{n} \cdot t \xrightarrow{k} t \\
k & ::=\mathrm{D}|\mathrm{C}| \mathrm{A}
\end{array}
$$

Initial conditions

$$
\begin{array}{ll}
(+) & : \\
(=) & \text { int } \times \text { int } \xrightarrow{A} \text { int } \\
\text { if } & : \forall \beta . \beta \times \beta \xrightarrow{A} \text { bool } \\
\text { if } & \forall \beta \text { bool } \times \beta \times \beta \xrightarrow{A} \beta \\
\text { pre(.) } & : \forall \beta . \beta \xrightarrow{D} \beta \\
\text { fiby. } & : \forall \beta . \beta \times \beta \xrightarrow{D} \beta \\
\text { up(.) } & : \\
\text { float } \xrightarrow{C} \text { zero }
\end{array}
$$

Typing of function body gives its kind $k \in\{C, D, A\}$:

$$
h: \text { float } \times \text { float } \xrightarrow{k} \text { float } \times \text { float }
$$

Less expressive but simpler than 'per-wire' kinds, e.g. Simulink

$$
j:\left(\text { float }_{D}\right) \times\left(\text { float }_{C}\right) \longrightarrow\left(\text { float }_{D}\right) \times\left(\text { float }_{C}\right)
$$

Typing of function body gives its kind $k \in\{C, D, A\}$: $h: f 1$ oat \times float $\stackrel{k}{ }$ float \times float

Less expressive but simpler than 'per-wire' kinds, e.g. Simulink

Typing of function body gives its kind $k \in\{C, D, A\}$:
$h: f 1$ oat \times float $\stackrel{k}{ }$ float \times float

Less expressive but simpler than 'per-wire' kinds, e.g. Simulink

Typing

$G, H \vdash_{C}$ der $y=1.0$ init 0.0

$G, H \vdash$? der $y=\cdots$ and $x=\cdots$

Typing of function body gives its kind $k \in\{C, D, A\}$: $h: f 10 a t \times f 10 a t{ }^{k}$, float \times float

Typing

$G, H \vdash_{C}$ der $y=1.0$ init 0.0

$G, H \vdash$? der $\mathrm{y}=\cdots$ and $x=\cdots$
$G, H \vdash$? der $y=\cdots$ and $x^{\prime}=\cdots$

Typing of function body gives its kind $k \in\{C, D, A\}$: $h: f 10 a t \times f 10 a t{ }^{k}$, float $\times f 10 a t$

Less expressive but simpler than 'per-wire' kinds, e.g. Simulink

Typing

$G, H \vdash_{\mathrm{C}}$ der $\mathrm{y}=1.0$ init 0.0

$G, H \vdash$? der $\mathrm{y}=\cdots$ and $x=\cdots$
$G, H \vdash_{\mathrm{C}}$ der $\mathrm{y}=\cdots$ and $x^{\prime}=\cdots$

Typing of function body gives its kind $k \in\{C, D, A\}$: $h: f 10 a t \times f 10 a t{ }^{k}$, float $\times f$ float

Less expressive but simpler than 'per-wire' kinds, e.g. Simulink

Typing
$G, H \vdash_{C}$ der $y=1.0$ init 0.0
$\begin{array}{rl}G, H \vdash_{\mathrm{D}} & x \\ G, H \vdash_{\mathrm{C}} x^{\prime} & =(0.0 \text { fby }(x+1)) \\ & (0.0 \text { fby }(x+1)) \\ & \text { every up(ez) init } 0.0\end{array}$
$G, H \vdash$? der $\mathrm{y}=\cdots$ and $x=\cdots$
$G, H \vdash_{C}$ der $y=\cdots$ and $x^{\prime}=\cdots$
$G, H \vdash ? \quad x=\cdots \quad$ and $x=\cdots$

Typing of function body gives its kind $k \in\{C, D, A\}$: $h: f 1$ oat $\times f$ loat ${ }^{k}$, float \times float

Less expressive but simpler than 'per-wire' kinds, e.g. Simulink

Typing
$G, H \vdash_{C}$ der $y=1.0$ init 0.0
$\begin{array}{rl}G, H \vdash_{\mathrm{D}} & x \\ G, H \vdash_{\mathrm{C}} x^{\prime} & =(0.0 \text { fby }(x+1)) \\ & (0.0 \text { fby }(x+1)) \\ & \quad \begin{array}{l}\text { every up(ez) init } 0.0\end{array}\end{array}$
$G, H \vdash$? der $\mathrm{y}=\cdots$ and $x=\cdots$
$G, H \vdash_{C}$ der $y=\cdots$ and $x^{\prime}=\cdots$
$G, H \vdash_{D} \quad x=\cdots \quad$ and $x=\cdots$

Typing of function body gives its kind $k \in\{C, D, A\}$: $h: f 10 a t \times f 10 a t{ }^{k}$, float \times float

Less expressive but simpler than 'per-wire' kinds, e.g. Simulink

Typing

$G, H \vdash_{\mathrm{C}}$ der $\mathrm{y}=1.0$ init 0.0

$$
G, H \vdash_{D} x=(0.0 \text { fby }(x+1))
$$

$G, H \vdash$? der $\mathrm{y}=\cdots$ and $x=\cdots$
$G, H \vdash_{\mathrm{C}}$ der $\mathrm{y}=\cdots$ and $x^{\prime}=\cdots$
$G, H \vdash_{D} \quad x=\cdots \quad$ and $x=\cdots$

Typing of function body gives its kind $k \in\{C, D, A\}$:

$$
h: \text { float } \times \text { float } \xrightarrow{k} \text { float } \times \text { float }
$$

Less expressive but simpler than 'per-wire' kinds, e.g. Simulink

$$
j:\left(\text { float }_{D}\right) \times\left(\text { float }_{C}\right) \longrightarrow\left(\text { float }_{D}\right) \times\left(\text { float }_{C}\right)
$$

What about continuous automata?

Stateflow User's Guide The Mathworks, pages 16-26 to to 16-29, 2011.

- 'Restricted subset of Stateflow chart semantics'
- restricts side-effects to major time steps
- supported by warnings and errors in tool (mostly)
- Our D/C/A/zero system extends naturally for the same effect
- For both discrete (synchronous) and continuous (hybrid) contexts

Automata

```
let hybrid ball(y0, y'0, start) =
    let
    rec init y = y0
    and
    automaton
    | Await }
        do
            der y = 0.0
        until start then Bounce(y'0)
        done
    | Bounce(v)}
        local c, y' in
        do
            der y' = -9.81 init v
            and der y = y'
            and c = up(-. y)
        until c on (y'< eps) then Await
            c then Bounce(-0.9 *. y')
        done
    end
    in
    y
```


Automata à la Lucid Synchrone/SCADE 6

```
> (Parameterized) modes
contain definitions, incl. automata
* mode-local definitions
> until: weak preemption (test after)
- unless: strong preemption (test before)
* then: enter-with-reset
> continue: entry-by-history
```


Automata

```
let hybrid ball(y0, y'0, start) =
    let
    rec init y = y0
    and
    automaton
    | Await }
        do
            der y = 0.0
        until start then Bounce(y'0)
        done
    | Bounce(v)
        do
            der y' = -9.81 init v
            and der y = y'
            and c = up(-. y)
        until c on (y'< eps) then Await
                c then Bounce(-0.9 *. y')
        done
    end
    in
y
```


Automata à la Lucid Synchrone/SCADE 6

- (Parameterized) modes contain definitions, incl. automata
- mode-local definitions
- until: weak preemption (test after)
- unless: strong preemption (test before)
> then: enter-with-reset
- continue: entry-by-history

Automata

```
let hybrid ball(y0, y'0, start) =
    let
    rec init y = y0
    and
    automaton
    | Await }
        do
            der y = 0.0
        until start then Bounce(y'0)
        done
    | Bounce(v) }->\mathrm{ ( 
                    der y' = -9.81 init v
            and der y = y'
            and c}=up(-. y
        until c on (y'< eps) then Await
            | c then Bounce(-0.9 *. y')
        done
    end
    in
y
```


Automata à la Lucid Synchrone/SCADE 6

- (Parameterized) modes contain definitions, incl. automata
- mode-local definitions
- until: weak preemption (test after)
- unless: strong preemption (test before)
- then: enter-with-reset
- continue: entry-by-history

Automata

```
let hybrid ball(y0, y'0, start) =
    let
    rec init y = y0
    and
    automaton
    | Await }
        do
            der y = 0.0
        until start then Bounce(y'0)
        done
    | Bounce(v) }
        local c, y' in
        do
            der y' = -9.81 init v
            and der y = y'
            and c = up(-. y)
        until c on (y'<eps) then Await
        done
    end
    in
y
```


Automata à la Lucid Synchrone/SCADE 6

- (Parameterized) modes contain definitions, incl. automata
- mode-local definitions
- until: weak preemption (test after)
- unless: strong preemption (test before)
> then: enter-with-reset
- continue: entry-by-history

Automata

```
let hybrid ball(y0, y'0, start)=
    let
    rec init y = y0
    and
    automaton
    | Await }
        do
            der y = 0.0
        until start then Bounce(y'0)
        done
    Bounce(v)}
        local c, y' in
        do
            der y' = -9.81 init v
            and der y = y'
            and c = up(-. y)
        until c on (y' < eps) then Await
            c then Bounce(-0.9 *. y')
        done
    end
    in
y
```


Automata à la Lucid Synchrone/SCADE 6

- (Parameterized) modes contain definitions, incl. automata
- mode-local definitions
- until: weak preemption (test after)
- unless: strong preemption (test before)
- then: enter-with-reset
- continue: entry-by-history

Automata

```
let hybrid ball(y0, y'0, start) =
    let
    rec init y = y0
    and
    automaton
    | Await }
        do
            der y = 0.0
        until start then Bounce(y'0)
        done
    Bounce(v)}
        local c, y' in
        do
            der y' = -9.81 init v
            and der y = y'
            and c}=up(-. y
        until c on (y'< eps) then Await
                c then Bounce(-0.9 *. y')
        done
    end
    in
y do
der \(y^{\prime}=-9.81\) init \(v\)
and der \(y=y^{\prime}\)
and \(c=u p(-y)\)
until con ( \(y^{\prime}<e p s\) ) then Await done
end
in
y
```


Typing rules

- mode body: same kind as outer context - until
- guard: zero : : C/D
\square
- unless
- guard: zero : : A
- action :: D

Automata

```
        C
let hybrid ball(y0, y'0, start)=
    let
    rec init y = y0
    and
    automaton
    | Await }
        do
            der y = 0.0 C
        until start then Bounce(y'0)
        done
    Bounce(v)}
        local c, y' in
        do
                der y'}=-9.81 init 
            and der y = y'
            and c = up(-. y)
        until c on (y'< eps) then Await
                c then Bounce(-0.9 *. y')
        done
    end
    in
y
```


Typing rules

- mode body: same kind as outer context

Automata

```
let hybrid ball(y0, y'0, start) =
    let
    rec init y = y0
    and
    automaton
    | Await }
        do
            der y = 0.0
        until start then Bounce( (y'0)
        done zero::C
    | Bounce(v)}
        local c, y' in
        do
                        der y' = -9.81 init v
            and der y = y'
            and c = up(-. y)
        until \ l on (y'< eps) then Await 
        done
    end
                        zero ::C D
```

 Typing rules
 - mode body: same kind as outer context
 - until
 - guard : zero :: C/D
 - action :: D

Automata

```
let hybrid ball(y0, y'0, start) =
    let
    rec init y = y0
    and
    automaton
    Await }
        do
            der y = 0.0
        until start then Bounce(y'0)
        done zero::C
    | Bounce(v) }
        local c, y' in
        do
                        der y' = -9.81 init v
            and der y = y'
            and c = up(-. y)
        until \ l on (y'< eps) then Await 
        done
    end
                        zero ::C D
```

 Typing rules
 - mode body: same kind as outer context
 - until
 - guard : zero :: C/D
 - action :: D
 - unless
 - guard: zero :: A
 - action :: D

Automata

```
let hybrid ball (y0, y'0, start) =
    let
    rec init y = y0
    and
    automaton
    | Await }
        do
            der y = 0.0
        until start then Bounce(y'0)
        done
    Bounce(v)}
        local c, y' in
        do
            der y' = -9.81 init v
            and der y = y'
            and c = up(-. y)
        until c on (y'< eps) then Await
            c then Bounce(-0.9 *. y')
        done
    end
    in
y
```


Zero-crossing events

- Detected by the solver
- Constant mode during integration
- Cannot be negated
(i.e. no reaction to absence)
- Less convenient than booleans?

Automata

```
let hybrid ball(y0, y'0, start) =
    let
    rec init y = y0
    and
    automaton
    | Await }
        do
            der y = 0.0
        until start then Bounce(y'0)
        done
    Bounce(v)}
        local c, y' in
        do
            der y' = -9.81 init v
            and der y = y'
            and c = up(-. y)
        until c on (y'< eps) then Await
            c then Bounce(-0.9 *. y')
        done
    end
    in
y
```


Zero-crossing events

- Detected by the solver
- Constant mode during integration
- Cannot be negated (i.e. no reaction to absence)
- Less convenient than booleans?
- up(if b then 1.0 else -1.0)
- . on • : zero \times bool \longrightarrow zero

Automata

```
let hybrid ball(y0, y'0, start) =
    let
    rec init y = y0
    and
    automaton
    | Await }
        do
            der y = 0.0
        until start then Bounce(y'0)
        done
    Bounce(v)}
        local c, y' in
        do
            der y' = -9.81 init v
            and der y = y'
            and c = up(-. y)
        until c on (y'< eps) then Await
            c then Bounce(-0.9 *. y')
        done
    end
    in
y
```


Zero-crossing events

- Detected by the solver
- Constant mode during integration
- Cannot be negated (i.e. no reaction to absence)
- Less convenient than booleans?

Automata

```
let hybrid ball(y0, y'0, start) =
    let
    rec init y = y0
    and
    automaton
    | Await }
        do
            der y = 0.0
        until start then Bounce(y'0)
        done
    | Bounce(v) }
        local c, y' in
        do
            der y' = -9.81 init v
            and der y = y'
            and c = up(-. y)
        until con (y'< eps) then Await
        done
    end
    in
y
```


Zero-crossing events

- Detected by the solver
- Constant mode during integration
- Cannot be negated (i.e. no reaction to absence)
- Less convenient than booleans?
- up(if b then 1.0 else -1.0)
- . on • : zero \times bool $\xrightarrow{\text { A }}$ zero

Strong and weak transitions

transition

discrete

Strong and weak transitions

Strong and weak transitions

transition

discrete

Strong and weak transitions

- Synchronous languages ignore the gaps between reactions
- But a hybrid language cannot
- Strong preemption: ok (state entry on discrete step)

Strong and weak transitions

- Synchronous languages ignore the gaps between reactions
- But a hybrid language cannot
- Strong preemption: ok (state entry on discrete step)

Strong and weak transitions

- Synchronous languages ignore the gaps between reactions
- But a hybrid language cannot
- Strong preemption: ok (state entry on discrete step)

Strong and weak transitions

continuous

- Weak preemption: ...

Strong and weak transitions

continuous

- Weak preemption: ...

Strong and weak transitions

- Weak preemption: ...

Strong and weak transitions

continuous

- Weak preemption: ...

Strong and weak transitions

continuous

- Weak preemption: ...

Strong and weak transitions

- Weak preemption: ...

Strong and weak transitions

- Weak preemption: . .

Strong and weak transitions

transition

discrete

continuous

- Weak preemption: trickier

Strong and weak transitions

transition

continuous

- Weak preemption: trickier
- state exit on discrete step

Strong and weak transitions

transition

continuous

- Weak preemption: trickier
- state exit on discrete step

Strong and weak transitions

- Weak preemption: trickier
- state exit on discrete step
- need an extra discrete step for state entry

Execution (Simulation)

- Only d may have side effects and change the discrete state (σ)
- Both f, nor g must be combinatorial
- D^{\prime} ensures correct initialization after weak transitions

Execution (Simulation)

- Only d may have side effects and change the discrete state (σ)
- Both f, nor g must be combinatorial
- D^{\prime} ensures correct initialization after weak transitions
- Cf. Simulink: major and minor time steps, time always advances
- Cf. Ptolemy: iteration in D until σ is stable (no need for D^{\prime})

Solver execution

Give solver two functions: $d y=f_{\sigma}(t, y), u p z=g_{\sigma}(t, y)$

- Bigger and bigger steps (bound by $h_{\min }$ and $h_{\max }$)
- t does not necessarily advance monotonically

Solver execution

Give solver two functions: $d y=f_{\sigma}(t, y), u p z=g_{\sigma}(t, y)$

- Bigger and bigger steps (bound by $h_{\min }$ and $h_{\max }$)
- t does not necessarily advance monotonically
- Cannot change state within f or g
- Guaranteed for well-typed programs

Solver execution

Give solver two functions: $d y=f_{\sigma}(t, y), u p z=g_{\sigma}(t, y)$

- Bigger and bigger steps (bound by $h_{\min }$ and $h_{\text {max }}$)
- t does not necessarily advance monotonically

Solver execution

Give solver two functions: $d y=f_{\sigma}(t, y), u p z=g_{\sigma}(t, y)$

- Bigger and bigger steps (bound by $h_{\min }$ and $h_{\max }$)
- t does not necessarily advance monotonically

Solver execution

Give solver two functions: $d y=f_{\sigma}(t, y), u p z=g_{\sigma}(t, y)$

- Bigger and bigger steps (bound by $h_{\min }$ and $h_{\max }$)
- t does not necessarily advance monotonically
- Cannot change state within f or g
- Guaranteed for well-typed programs

Solver execution

Give solver two functions: $d y=f_{\sigma}(t, y), u p z=g_{\sigma}(t, y)$

g g

- Bigger and bigger steps (bound by $h_{\min }$ and $h_{\text {max }}$)
- t does not necessarily advance monotonically
- Cannot change state within f or g
- Guaranteed for well-typed programs

Solver execution

Give solver two functions: $d y=f_{\sigma}(t, y), u p z=g_{\sigma}(t, y)$

- Bigger and bigger steps (bound by $h_{\min }$ and $h_{\max }$)
- t does not necessarily advance monotonically
- Cannot change state within f or g
- Guaranteed for well-typed programs

Solver execution

Give solver two functions: $d y=f_{\sigma}(t, y), u p z=g_{\sigma}(t, y)$

1. approximation error too large

- Bigger and bigger steps (bound by $h_{\text {min }}$ and $h_{\text {max }}$)
- t does not necessarily advance monotonically
- Cannot change state within f or g
- Guaranteed for well-typed programs

Solver execution

Give solver two functions: $d y=f_{\sigma}(t, y), u p z=g_{\sigma}(t, y)$

1. approximation error too large

- Bigger and bigger steps (bound by $h_{\min }$ and $h_{\text {max }}$)
- t does not necessarily advance monotonically
- Cannot change state within f or g
- Guaranteed for well-typed programs

Solver execution

Give solver two functions: $d y=f_{\sigma}(t, y), u p z=g_{\sigma}(t, y)$

1. approximation error too large

- Bigger and bigger steps (bound by $h_{\text {min }}$ and $h_{\text {max }}$)
- t does not necessarily advance monotonically

Solver execution

Give solver two functions: $d y=f_{\sigma}(t, y), u p z=g_{\sigma}(t, y)$

1. approximation error too large

- Bigger and bigger steps (bound by $h_{\min }$ and $h_{\text {max }}$)

Solver execution

Give solver two functions: $d y=f_{\sigma}(t, y), u p z=g_{\sigma}(t, y)$

1. approximation error too large

- Bigger and bigger steps (bound by $h_{\min }$ and $h_{\text {max }}$)

Solver execution

Give solver two functions: $d y=f_{\sigma}(t, y), u p z=g_{\sigma}(t, y)$

1. approximation error too large

2. expression crosses zero

- Bigger and bigger steps (bound by $h_{\min }$ and $h_{\max }$)

Solver execution

Give solver two functions: $d y=f_{\sigma}(t, y), u p z=g_{\sigma}(t, y)$

1. approximation error too large

2. expression crosses zero

- Bigger and bigger steps (bound by $h_{\min }$ and $h_{\max }$)

Solver execution

Give solver two functions: $d y=f_{\sigma}(t, y), u p z=g_{\sigma}(t, y)$

1. approximation error too large

2. expression crosses zero

- Bigger and bigger steps (bound by $h_{\min }$ and $h_{\max }$)

Solver execution

Give solver two functions: $d y=f_{\sigma}(t, y), u p z=g_{\sigma}(t, y)$

1. approximation error too large

2. expression crosses zero

- Bigger and bigger steps (bound by $h_{\min }$ and $h_{\max }$)

Solver execution

Give solver two functions: $d y=f_{\sigma}(t, y), u p z=g_{\sigma}(t, y)$

1. approximation error too large

2. expression crosses zero

- Bigger and bigger steps (bound by $h_{\min }$ and $h_{\max }$)
- t does not necessarily advance monotonically
- Cannot change state within f or g
- Guaranteed for well-typed programs

Source-to-source transformation

Source-to-source transformation

Source-to-source transformation

Data-flow + Auto. + ODE $\xrightarrow{\text { ode }}$ Data-flow + Auto.

- Pro: simpler definition of ODE
- Con: subtle invariant over intermediate language

Source-to-source transformation

- Pro: intermediate result is well-typed
- Pro/Con: ODE code must include cases for automata

Source-to-source transformation details

```
let hybrid ball(y0, y'0, start) =
let
rec init y = y0
and automaton
    Await }
        do
            der y = 0.0
            until start then Bounce(y'0)
            done
        | Bounce(v)}
            local c, y' in
            do
                der y' = -9.81 init v
                and der y = y'
                and c}=up(-.y
            until c on (y'<eps) then Await
                | c then Bounce(-0.9 *. y')
            done
        end
    in
y
```


Source-to-source transformation details

```
let hybrid ball(y0, y'0, start) =
    let
    rec init y = y0
    and automaton
    | Await }
            do
                der y = 0.0
            until start then Bounce(y'0)
            done
        | Bounce(v) }
            local c, y' in
            do
                der y'}=-9.81 init 
                    and der y = y'
                    and c}=up(-.y
            until c on (y'<eps) then Await
                c then Bounce(-0.9 *. y')
            done
        end
```

```
let node ball ((y0, y'0, start), ((ly, ly'), z))
```

let node ball ((y0, y'0, start), ((ly, ly'), z))
let
let
rec $y=y 0->$ ly
rec $y=y 0->$ ly
and automaton
and automaton
Await \rightarrow
Await \rightarrow
do
do
and $\begin{aligned} \mathrm{dy}^{\prime} & =0.0 \\ & =1 \mathrm{y},\end{aligned}$
and $\begin{aligned} \mathrm{dy}^{\prime} & =0.0 \\ & =1 \mathrm{y},\end{aligned}$
and $\mathrm{dy}=0.0$
and $\mathrm{dy}=0.0$
and upz $=(0.0$, false $)$
and upz $=(0.0$, false $)$
until start then Bounce (y'0) done
until start then Bounce (y'0) done
\mid Bounce (v) \rightarrow
\mid Bounce (v) \rightarrow
local c in
local c in
do
do
$d^{\prime}=-9.81$
$d^{\prime}=-9.81$
and $y^{\prime}=v->\mathrm{ly}{ }^{\prime}$
and $y^{\prime}=v->\mathrm{ly}{ }^{\prime}$
and $d y=y^{\prime}$
and $d y=y^{\prime}$
and $c=z$
and $c=z$
and upz $=(-. y$, true)
and upz $=(-. y$, true)
until c \& ($\left.y^{\prime}<e p s\right)$ then Await
until c \& ($\left.y^{\prime}<e p s\right)$ then Await
c then Bounce $\left(-0.9\right.$ *. $\left.y^{\prime}\right)$
c then Bounce $\left(-0.9\right.$ *. $\left.y^{\prime}\right)$
done
done
end
end
in
y
$\left(y, \quad\left(\left(y, y^{\prime}\right),(d y, d y \prime), u p z\right)\right)$
$\left(y, \quad\left(\left(y, y^{\prime}\right),(d y, d y \prime), u p z\right)\right)$

- Source-to-source transformation (to give $f_{\sigma}, g_{\sigma}, d_{\sigma}$)

```

\section*{Source-to-source transformation details}
```

let hybrid ball (y0, y'0, start)= let node ball((y0, y'0, start), ((ly, ly'), z))
let
rec init y = y0
and automaton
Await }
do
der y = 0.0
until start then Bounce(y'0)
done
| Bounce(v) }->\mathrm{ ,
local c, y' in
do
der y'}=-9.81 init
and der y = y'
and c = up(-. y)
until c on (y'<eps) then Await
c then Bounce(-0.9 *. y')
done
end
let
rec y = y0 -> ly
and automaton
Await }
do
dy'}=0.0
and dy =0.0
and upz = (0.0, false)
until start then Bounce(y'0) done
Bounce(v)}
local c in
do
dy'}=-9.8
and }\mp@subsup{\textrm{y}}{}{\prime}=v-> ly
and dy = y'
and c}=
and upz = (-.y, true)
until c \& (y'< eps) then Await
| then Bounce(-0.9*. y')
done
end
in
y
in
(y, ((y, y'), (dy, dy'), upz))

- Source-to-source transformation (to give $f_{\sigma}, g_{\sigma}, d_{\sigma}$)
- Transform each hybrid function into a discrete one

```

\section*{Source-to-source transformation details}
```

let hybrid ball(y0, y'0, start)=
let
rec init y = y0
and automaton
Await }
do
der y = 0.0
until start then Bounce(y'0)
|done
local c, y' in
do
der y'= -9.81 init v do
and der y = y and y'}=v-> ly
and c}=\textrm{up}(-.y)\quad\mathrm{ and dy = y'
and c}=\textrm{z
and upz = (-.y, true)
until c on (y'< eps) then Await until c\&\& (y'< eps) then Await
c then Bounce(-0.9*. y)
done
end
in
y
let node ball((y0, y'0, start), ((ly, ly'), z))
Bounce (v) }
let
rec y = y0 -> ly
and automaton
Await }
do
dy'}=0.0
and dy = 0.0
and upz = (0.0, false)
until start then Bounce(y'0) done
| Bounce(v)}
local c in
dy'}=-9.8

```
- Continuous-state definitions are 'externalized' via inputs and outputs

\section*{Source-to-source transformation details}
```

let hybrid ball(y0, y'0, start) =
let
rec init y = y0
and automaton
Await }
do
der y = 0.0
until start then Bounce(y'0)
done
let node ball((y0, y'0, start), ((ly, ly'), z))
let
rec y = y0 -> ly
and automaton
Await }
do
and y'
and dy =0.0
and upz = (0.0, false)
until start then Bounce(y'0) done
| Bounce(v) }->\mathrm{ ,
local c, y' in
do
der y'=-9.81 init v
do
and c = up(-. y)
| Bounce(v)}
local c in
dy'}=-9.8
= -> ly
and dy = y
and c}=\textrm{z
and upz = (-.y, true)
until c on (y'< eps) then Await until c\& (y'< eps) then Await
c then Bounce(-0.9 *. y')
c then Bounce(-0.9 *. y')
done
end
done
end
in
y
(y, ((y, y'), (dy, dy'), upz))

```
- Continuous-state definitions are 'externalized' via inputs and outputs
- Initialization is a discrete action; branch entry must be restricted

\section*{Source-to-source transformation details}
```

let hybrid ball(y0, y'0, start) =
let
rec init y = y0
and automaton
Await }
do
der y = 0.0
until start then Bounce(y'0)
done
| Bounce (v) }->\mathrm{ ,
local c, y' in
do
der y'= -9.81 init v
and der y = y'
and c = up(-. y)
let node ball((y0, y'0, start), ((ly, ly'), z))
let
rec y = y0 -> ly
and automaton
| Await }
do
and y'
and dy =0.0
and upz = (0.0, false)
until start then Bounce(y'0) done
Bounce(v) }
local c in
do
dy'}=-9.8
and }\mp@subsup{\textrm{y}}{}{\prime}=v-> ly
and dy = y'
and c}=
and upz = (-.y, true)
until c on (y'< eps) then Await until c\& (y'< eps) then Await
c then Bounce(-0.9 *. y')
c then Bounce(-0.9 *. y')
done
end
done
end
in
y
(y, ((y, y'), (dy, dy'), upz))

```
- Continuous-state definitions are 'externalized' via inputs and outputs
- Initialization is a discrete action; branch entry must be restricted

\section*{Source-to-source transformation details}
```

let hybrid ball(y0, y'0, start) = let node ball((y0, y'0, start), ((ly, ly'), z))
let
rec init y = y0
and automaton
| Await }
do
der y = 0.0
until start then Bounce(y'0)
done
| Bounce(v) }\mp@subsup{|}{\mathrm{ , }}{
| Bounce(v) }\mp@subsup{|}{\mathrm{ , }}{
do
der der y'}=-9.81\mathrm{ init v
and c=up(-. y)
| Bounce(v) }
local c in
do
and dy'}=\mp@code{\mp@subsup{y}{}{\prime}}

```

```

 and dy = y'
 and c = z
 and upz = (-. y, true)
 until con (y'<eps) then Await
 until c& & (y'<eps) then Await
 c then Bounce(-0.9 *. y')
 end
    ```
```

 let
    ```
        let
    rec \(y=y 0->\) ly
    rec \(y=y 0->\) ly
    and automaton
    and automaton
        \(\mid\) Await \(\rightarrow\)
        \(\mid\) Await \(\rightarrow\)
        do
        do
        do \(\begin{aligned} & \text { dy' }=0.0 \\ & \text { and } y^{\prime}=1 y \\ & \text { and dy }=0.0 \\ & \text { and upz }=(0.0, \text { false }) \\ & \text { until start then Bounce }\left(y^{\prime} 0\right) \text { done }\end{aligned}\)
```

 do \(\begin{aligned} & \text { dy' }=0.0 \\ & \text { and } y^{\prime}=1 y \\ & \text { and dy }=0.0 \\ & \text { and upz }=(0.0, \text { false }) \\ & \text { until start then Bounce }\left(y^{\prime} 0\right) \text { done }\end{aligned}\)
    ```
```

 done
 end
 in
 y
 (y, ((y, y'), (dy, dy'), upz))
    ```
- Continuous-state definitions are 'externalized' via inputs and outputs
- Initialization is a discrete action; branch entry must be restricted
- Extending the scope mandates additional definitions for other modes

\section*{Source-to-source transformation details}
```

let hybrid ball(y0, y'0, start)=
let
rec init y = y0
and automaton
Await }
do
der y = 0.0
until start then Bounce(y'0)
done
Bounce(v)}
local c, y' in
do
der y'=-9.81 init v
and der y = y
and c}=up(-.y
let node ball((y0, y'0, start), ((ly, ly')
let
rec y = y0 -> ly
and automaton
| Await
and yy'}=00.0
and dy = 0.0
and upz = (0.0, false)
until start then Bounce(y'0) done
Bounce(v)}
local c in
do
dy'}=-9.8
and }\mp@subsup{y}{}{\prime}=v -> ly
and dy = y'
and c}=\textrm{z
and upz = (-.y, true)
until c on (y'< eps) then Await until c\& (y'< eps) then Await
done
end
end
in
y
in
(y, ((y, y'), (dy, dy')

```
- Zero-crossing operators, up(•), are also 'externalized'
- Detection always occurs externally; boolean values internally

\section*{Source-to-source transformation details}
```

let hybrid ball(y0, y'0, start)=
let
rec init y = y0
and automaton
Await }
do
der y = 0.0
until start then Bounce(y'0)
done
Bounce(v) }
local c, y' in
do
der }\mp@subsup{y}{}{\prime}=-9.81 init
and der y = y'
and c}=up(-.y
let node ball((y0, y'0, start), ((ly, ly'), z))
let
rec y = y0 -> ly
and automaton
Await }
do
and dy'}=0.0
and dy =0.0
and upz = (0.0, false)
until start then Bounce(y'0) done
| Bounce(v)}
local c in
do
dy}\begin{array}{rl}{dy}\&{=-9.81}
{\mathrm{ and y }\mp@subsup{y}{}{\prime}}\&{=v-> ly'}
and dy = y'
and c}=
and upz =(-.y, true)
until c on (y'<eps) then Await
until c \& (y'< eps) then Await
c then Bounce(-0.9 *. y')
done
end
in
y
in
(y, ((y, y'), (dy, dy'), upz))

```
- Zero-crossing operators, up(•), are also 'externalized'
- Detection always occurs externally; boolean values internally
- Additional definitions in inactive modes involve a slight technicality

\section*{Demonstrations}
- Bouncing ball (standard)
- Bang-bang temperature controller (Simulink/Stateflow)
- Sticky Masses (Ptolemy)

\section*{Conclusions and Future Work}

\section*{Conclusions}
- Synchronous languages should and can properly treat hybrid systems
- There are three good reasons for doing so:
1. To exploit existing compilers and techniques
2. For programming the discrete subcomponents
3. To clarify underlying principles and guide language design/semantics
- A prototype compiler in OCaml using Sundials CVODE solver

\section*{Future Work}
- clock calculus, higher order functions
- integrate multiple solvers
- real-time simulation (compromise accuracy and execution time)```

