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Motivations

• address the modular programming of synchronous systems with modes

• allowing to separate their specification from their implementation and their

instantiation with a particular controller

Existing solutions are either unsafe or two restrictive to allow for a truly modular design

• in synchronous data-flow, shared states must be transmitted explicitly

• the Simulink solution is more modular but rely on unsafe read/write to shared variables

Proposal: We make an analogy between modes and object orientation and propose to

organize a design in term of classes and objects:

• shared variables play the part of attribute

• subsystems defining the behavior of each mode correspond to methods

• provide modular means to guaranty the absence of conflict (e.g., critical races)
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Example: an automotive power-train modeling a

• a set of modes described as data-flow block (in Simulink)

• activated through hierarchical automata (in Stateflow)
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Observation

Interest of the approach

• control laws are described as data-flow systems whereas their activation is defined as

an hierarchical automaton

• both styles (data-flow + control-flow (automata)) live together and can be combined

Weaknesses

• the control structure is completely hidden in boolean variables

– E.g., nothing states that do_1 and do_2 are exclusive

– exclusive flows have to be merged; concurrent writes are not statically checked

• too much wires in this diagram!

– the current and last value managed explicitly (e.g., t_c2_c and t_c2_l)

– otherwise, use the “Read/Write” blocks but this may lead to critical races
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Other tools/languages

This design methodology can be followed with many other tools combining two different

languages/notations: SCADE 5+SSM, PtolemyII, etc.

Still, we need a better/more integrated solution inside a unique language

Mode automata (SCADE 6) [Maraninchi et all, ESOP’98; Colaço et all, EMSOFT’05 and ’06]

Provide a programming construct to describe systems with modes

• modes communicate through shared variables (last o)

• ensure the absence of data-race by simple means

let node updown(y) returns (o)

last o = 0 in

automaton

| Up -> do o = last o + y until (o = 4) then Down Done

| Down -> do o = last o - y until (o = -4) then Up Done

end

val updown : int => int
Seminar INRIA, Paris, March 10th, 2009, page 7/46



Mode Automata

• data-flow equations and hierarchical automata can be mixed arbitrarily

• the resulting language is compiled into a subset language, mainly Lustre with clocks

• this programming construct is integrated to SCADE 6

Still, mode-automata do not allow for a truly modular programming of modes allowing to

separate:

• the specification of modes

• its instantiation with a precise control automaton

The actual solution is to program modes in a purely functional manner:

• explicitly communicate values between states (add extra wires)

• this reduces modularity and leads to poor generated code

In this sense, the Simulink solution using imperative shared variables is more modular
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Mode Automata and Structured Design

Mode-automata are not only related to questions of mixing discrete and continuous

dynamics but also to questions of modular design.

Suppose that two teams must develop a system with two modes, up and down...

Software architecture design

• define the functional requirements of the two main modes

• define the interface between them, i.e., the shared state variables the modes have to

exchange

• together with their name, types, ranges, precision, timing characteristics, etc.

Mode design

• each team can build its own mode, modeling it, simulating it, testing it

• in Simulink, this will be done thanks to the “Data Read/Data Write” and “Data” blocks.
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The up mode
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The up mode test harness
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The up mode test result
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The dowm mode

In a similar way:
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Overall Design

In parallel, the architecture team can start studying the global system model dealing with the

transition logic.

Intensive use of Stateflow at this stage with global variable blocks of Simulink

For example...
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Integration Phase (the updown subsystem)
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Integration Phase (the updown test harness)
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Integration Phase (the updown test result)
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Interest of the Approach

• it is modular: teams can work quite independently

• problems are dealt with at the right level: problems at each mode are treated at the

mode level and global problems are treated at the integration level.

• clearer: global variables allow avoiding complex wiring (and corresponding wiring error)

Question

• this last point is the classical weakness of purely functional programming

• it could be simulated in a purely functional way (with monads-like constructs)

• this would not give good target code
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Drawbacks

• those of Simulink/Stateflow first: imprecise semantics, termination problems, weak

typing and absence of static checks

• ensure the modes are exclusive in time; otherwise, the semantics of the “Read” and

“Write” Data block can become as chaotic as to depend upon the lexicographic order of

the subsystems they are included in

• the “Data” block corresponds to the declaration of a shared variable with a “dynamic

binding” semantics

– in the updown system, the fact that “A” reads in “up” match “A” writes in “down” is

discovered when the global model “updown” is constructed.

– this is not necessarily a bad principle but...

– most modern functional language stick to static binding for safety reasons (remember

that block-diagram language are functional first-order languages)

– Shared variables become global variables: Simulink is not that modular
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Some Proposal for Improvement

We have thus identified two main drawbacks related to:

• the exclusivity of mode activation,

• the dynamic binding of shared variable names

Proposal

• a system is an object where shared variables stand for instance variables and modes

are methods

• equip with a mean to specify the valid use of an object ensuring the absence of

concurrent writes

• build upon control-structures (e.g., [EMSOFT’05, EMSOFT’06])

• source-to-source compilation into an object-based imperative code
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Examples

let f x =

object

last o = x

when up(y) returns (o) where

o = last o + y

when down(y) returns (o) where

o = last o - y

with up # down

end

val f :

int -> < up: int => int; down: int => int with up # down >

f is essentially a parameterized class. When evaluated, it returns an object with two

methods
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The synthesized type gives names of methods, their type and reminds the scheduling

policy of the object. Every instance will have to follow it.

val f : int -> < up: int => int;

down int => int

with up # down >

• the notation up # down states that up and down are exclusive, i.e., they should not

appear both in a synchronous reaction

• up # down is a scheduling policy which define what is a valid synchronous reaction

• it defines a finite set of valid scheduling
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Instantiation

(* instantiation *)

let node g(x) returns (w) where

new o = f (x + 2) in

automaton

| Up -> do v = o.up(y) until (v = 5) then Down done

| Down -> do v = o.down(y) until (v = -5) then Up done

end

val g : int => int

• new o = f(x+2) instantiates the object. o has a local scope

• the two modes are executed exclusively

• this verification is simple and syntax-directed
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Observation Methods

Separate the code that modifies the state form the code that observe it.

let move x y =

object

last nx = x

last ny = y

when movex(x) returns () where

nx = last nx + x

when movey(y) returns () where

ny = last ny + y

when show() returns (nx, ny)

with ((movex || movey) # {}) < show

end

P1 || P2 is the shuffle operator; P1 < P2 for the sequence; {} is the empty schedule
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(Re)-building Lustre primitives: pre, ->

let ipre(x) =

object

last nx = x

when get() returns (last nx) where

when set(y) returns () where

do nx = y done

with get < set

end

val ipre : ’a -> < get: unit => ’a; set: ’a => unit with get < set >

let pre =

object

last nx

when get() returns (last nx) where

when set(y) returns () where

do nx = y done

with get < set end

val pre : ’a -> < get: unit => ’a; set: ’a => unit with get < set >
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let (->) =

object

last init = true

when get(x,y) returns (o) where

var o in

do o = if last init then x else y

and init = false

done

with get end

let node fby(x,y) returns (x -> pre(y))

That is:

let (fby) =

object

new p = pre

new o = (->)

when get(x) returns (o.get(x,p.get()))

when set(y) returns (p.set(y))

with get < set

end
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What is minimal?

A Lustre node is a particular case of a synchronous object

let node counter(x,y) returns (z) where

var y in

do z = 0 -> pre z + y + cpt done

...

r = counter(x1,x2)

is equivalent to

let counter =

object

when step (x,y) returns (z) where

var y in

do z = 0 -> pre z + y done

with step

end

...

new m = counter in ... r = m.step(x1,x2)
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Verification: correct use of an object

In the current implementation, the calling context should respect the scheduling policy

specified by the programmer, i.e., it should be included in the set of declared schedules

let f x =

object

last o1 = x

last o2 = x

when one(y) returns (o) where

o1 = last o1 + y

when two(y) returns (o) where

o2 = last o2 + y

with up || down

end

The policy one||two policy says that the e two methods one and two must be called in

parallel.
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Verification: correct use of an object

We can call one and two in a context where the two processes are run in parallel.

let node main1 x returns o where

var o in

new m = f (x+1) in

do o = m.one(x) + m.two(x) done

let node main1 x returns o where

var o in

new m = f (x+1) in

do o = m.two(m.one(x)) done

The calling context defines a scheduling which must be included in the set of possible

schedules.

• m.one || m.two projected on m gives one || two

• m.two < m.one gives two < one included in one || two
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Verification: soundness of a definition

The policy defines a set of schedules: we check that all of them are coherent

let f x =

object

last o = x

when up(y) returns (o) where

do o = last o + y done

when down(y) returns (o) where

do o = last o - y done

with up < down end

is statically rejected

• Let S = [(last o <↓ o)/up, (last o <↓ o)/down]

• S(up < down) = (last o < ↓ o) < (last o < ↓ o) is not satisfiable because

↓ o < ↓ o is not
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Higher-order

Write a component which take a component as an argument and infer the most general

scheduling policy.

let node g h x returns (w)

new o = h(x+2) in

do automaton

| Up -> do v = o.up(y) until (v = 5) then Down done

| Down -> do v = o.down(y) until (v = -5) then Up done

end

and

w = o.show(x)

done

val g : (int -> < up: int => int; down: int => int;

show: int => ’a, ... with (up#down)||show) => ’a

Since we do not know the dependences between methods of o, we infer the strongest

constraint.
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Higher-order and implicit dependences

We can also syntactically force an execution order

let node g h x returns (w)

new o = h(x+2) in

do automaton

| Up -> do v = o.up(y) until (v = 5) then Down done

| Down -> do v = o.down(y) until (v = -5) then Up done

end

in

w = o.show(x)

done

val g : (int -> < up: int => int; down: int => int;

show: int => ’a, ... with (up#down)<show) => ’a

Here, the context says that show is necessarily done after.
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Now we instantiate the previous code with an actual object.

let myf m = object

when up(x) returns (v) ...

when down(x) returns (v) ...

when show() returns (...) ...

with (up#down)<show

end

...

(* instantiation *)

let node main x returns (w) where

do o = f myf x done

This program is statically rejected in case (1) because (up#down)||down is not

included in (up#down)<show. It is accepted in case (2).
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Scheduling policies and Scheduling Constraints

Policies:

• a scheduling policy is an expression telling what is a valid reaction

• the activation of a mode corresponds to the definition of a clock name; the policy is a

boolean property

P ::= m | ε | P || P | P < P | P # P

Constraints:

• Add shared variables and named methods to policies

C ::= o.m | ε | C || C | C < C | C # C | ↓ x | ↑ x | lastx
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Soundness of Policies and Constraints

A stands for an action (e.g., method call, read, write).

Parallel composition as a shuffle operator. This lead to two interesting normal forms:

Constraints as sets of schedules:

t ::= A | A < t

C ::= #
i

ti

• Equality, inclusion, intersection simple to compute

• mostly unreadable and algorithmically expensive

Constraints as disjunctions of parallel/sequential schedules:

t ::= t < t | t || t | A

C ::= #
i

ti

• less explosive; this is used for checking that a constraint is causal
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Causality

let node f(x) returns (o) where

var o1 in

var o2 in

do o1 = o2 + 1

and o2 = o1 + 2 done

file "t1.ls", line 7-10, characters 2-63:

Type error: the following constraint is not causal.

ˆo2 < o1 || ˆo1 < o2

A constraint is causal when every schedule is causal. This can be computed efficiently on

the weak normal form. We check the absence of cycles.

let node f(x) returns (o2) where

var o1 in

last o2 = 0 in

do o1 = last o2 + 1

and o2 = o1 + 2 done
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Soundness and Correction

Soundness: C is sound iff for every variable x in C , its normal form does not contain

(↓ x < ↓ x) nor (↓ x < ↑ x) nor (↓ x < ↑ lastx).

Relating policies : inclusion between normal forms

Restriction: If C is a constraint, C|o is the projection of C on o. It returns a policy where

only method calls o.m have been kept.

Correct Use of an Object: If Pc is the declared policy of o and C|o is the actual policy of o.

It has to respect Pc, that is, C|o ⊆ Pc.
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The Type Language

σ ::= ∀α1, ..., αn.∀ρ1, ..., ρm.t

t ::= t → t | t× t | α | c(t, ..., t) | r

r ::= ∅ | m : t, r | r with P | ρ

A typing environment H is defined in the following way:

H ::= ∅ | H + x : σ | H + lastx : t | H + new o : t

The Type Judgment:

H,C ` e : t

Under typing environment H and scheduling constraints C , e is of type t.
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The Type System

Syntax-directed construction of constraints, e.g.,:

H,C1 ` e1 : t1 H,C2 ` e2 : t2

H,C1 || C2 ` (e1, e2) : t1 × t2

H,C1 ` e2 : t1 → t2 H,C2 ` e1 : t1

H,C1 || C2 ` e2 e1 : t2

H, ε ` e : {r with C|o} H + new o : {r with C|o}, C ` d : H0

H,Co ` new o = e in d : H0

H ` fields : H0 H, s(P ) ` objs : H1

H + H0 + H1 + self : {r with P} ` modes : r, s Sound(s(P ))

H, ε ` 〈fields objs modes with P 〉 : {r with P}
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The Type System:

• it is based on row types as introduced by Rémy & Vouillon for Objective ML [TPOS’97]

• we extend row types with policies

The comma operator (,) is the concatenation for method names and act as the exclusion

operator (#) on scheduling policies. Rules are:

(r with P1) with P2 = (r with P2) with P1

(r with P1) with P2 = r with P1 # P2

m1 : t1,m2 : t2, r = m2 : t2,m1 : t1, r

Using above properties, a row type can be normalized into:

{m1 : t1, ...,mn : tn with P ; ρ} or {m1 : t1, ...,mn : tn with P}.

The unification algorithm of Rémy & Vouillon is modified accordingly.
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Example

let node g(f)(x) returns (r) where

new o1 = f (x) in

new o2 = f (x+1) in

var r in

if (x = 0) then do r = o1.m(x) + o2.m(x) done

else do r = o1.n(x) + o1.m(x) done

val g :

(int -> < m: int => int; n: int => int ...

with {} # m # (m || n) >) -> int => int

Constraints:

H ′, (o1.m || o2.m) ` o1.m(x) + o2.m(x) : int

and

H ′, (o1.n || o1.m) ` o1.n(x) + o1.m(x) : int

then

C = (o1.m || o2.m) # (o1.n || o1.m)
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Discussion

Still, we cannot develop and test modes separately without adding extra wires.

An alternative to objects was to simply add (restricted forms) of references + an effect type

system. E.g.,:

let node up(last x)(y) returns () where

do x = last x + y done

• up takes a reference (a left-value) and modifies it

• a type-system with effect (e.g., policy constraints) to check the coherency. E.g.:

∀lastx : int.int ⇒ unit with lastx < ↓ x

• heavy, types hard to read; type inference is complicated in case of higher-order and not

conservative
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Extensions: inheritance

Still, we cannot develop and test modes separately.

class virtual cup =

object

virtual last x : int

when up(y) returns (x) where

do x = last x + y done

end

class type cdown =

object

virtual last x : int

when down(y) returns (x) where

do x = last x - y done

end

• join the two with multiple inheritance

• what should be the minimal policies given to each class?

class updown x0 =

object

last x = x0

inherit up

inherit down end

• The minimal constraint for cup is that up(y) reads and writes x
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Related Works

• Reactive modules [Alur & Henzinger, FMSD’99]: more expressive

(synchronous/asynchronous)

• Interface automata [De Alfaro & Henzinger, ESEC/FSE’01]: more expressive signatures

(dynanic properties as automata) but need model-checking techniques

• 42 model [Maraninchi et all, GPCE’07]: general model of a component

(synchronous/asynchronous), more general scheduling policies

• a synchronous object generalises the notion of a Lustre node

• the idea of separating the specification from the possible implementations is present in

Signal; this is hidden in clocks; needs the full power of the clock calculus
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Conclusion and Future Works

• a completely new implementation with these ideas (10000 LOC, Ocaml)

• the target language is imperative and object-based

• automata, signals and flows, (static) higher-order,

• compilation through source-to-source program transformation.

• provide more constructs (as macros) for describing policies

• avoid the declaration of policies

• introduce class and inheritance
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