N-Synchronous Kahn Networks
A Relaxed Model of Synchrony for Real-Time Systems

Albert Cohen', Marc Duranton?, Christine Eisenbeis’,

Claire Pagettil’*, Florence Plateau® and Marc Pouzet?

POPL, Charleston
January 12th, 2006

1: INRIA, Orsay France
2: PHILIPS NatLabs, Eindhoven, The Netherlands

3: University of Paris-Sud, Orsay, France
4: ONERA, Toulouse, France

Context

e Video intensive applications (TV boxes, medical systems)

tera-operations per second (on pixel components) is typical
e Ensure three properties: hard real-time and performance and safety
Implementations

e Today: specific hardware (ASIC)

e Evolution: multi-clock asynchronous architectures, mixing hardware /software

because of costs, variability of supported algorithms
Design and programming tools
e General purpose languages and compilers are not well adapted

e Kahn Networks (KN) is common practice in the field

A typical example: the Downscaler

high definition (HD) — standard definition (SD)
1920 x 1080 pixels 720 x 480

horizontal filter: number of pixels in a line from 1920 pixels downto 720 pixels,

vertical filter: number of lines from 1080 downto 480
reorder

HD input m > SD outputi

hf vf

Real-Time Constraints

the input and output processes: 30Hz.

HD pixels arrive at 30 x 1920 x 1080 = 62, 208, 000H =

SD pixels at 30 x 720 x 480 = 10, 368,000H z (6 times slower)

Our Goal

Define a programming language dedicated to those Kahn Networks providing:
e a modular functional description
e a modular description and programming of the timing requirements

with a semantics and a compiler which statically guarantees four important

properties. E.g., on the downscaler:

e a proof that, according to worst-case time conditions, the frame and pixel rate

will be sustained
e a proof that the system executes in bounded memory

e an evaluation of the delay introduced by the downscaler in the video processing

chain, i.e., the delay before the output process starts receiving pixels

e an evaluation of memory requirements, to store data within the processes, and
to buffer the stream produced by the vertical filter in front of the output

process

What about Synchronous Languages?

dedicated to hard real-time critical systems

generation of custom hardware and software system with static guarantees

(real-time and resource constraints)
static analysis, verification and testing tools
synchrony is ensured by a type-system for clocks: a clock calculus

it allows to program Synchronous Kahn Networks

But too restrictive for our video applications

SCICESEE

x
uaym
<
N
|

uaym ‘
N
V)

mol1h

streams must be synchronous when composed (y+z is rejected by the clock
il il
20 B RiNin B Ninin o Ninin B S—
i HiN uiE Nin N =
2 BiN BN BN Bin Bin Bin mim—

adding buffer code (by hand) is feasible but hard and error-prone

calculus)

can we compute it automatically and obtain regular synchronous code?

we need a relaxed model of synchrony and relaxed clock calculus

6

N-Synchronous Kahn Networks

e propose a programming model based on a relaxed notion of synchrony
e yet compilable to some synchronous code

e allows to compose programs as soon as they can be made synchronous through
the insertion of a bounded buffer

11001100110011
VWHDHDH%

buff[1] IDDIDDIDDI
Z I R RN BN RER N N -

10101010101010

e based on the use of infinite ultimately periodic clocks

e a precedence relation between clocks ck; <: cko

Infinite Ultimately Periodic Clocks

Introduce Q5 as the set of infinite periodic binary words. Coincides with rational

2-adic numbers

(01) = 010101010101010101...
0(1101) = 01101 1101 1101 1101 1101 1101 1101...

e 1 stands for the presence of an event
e (for its absence

Definition:
w ::= u(v) whereu € (04+1)* and v e (04 1)

Causality order and Synchronisability
Precedence relation: w; < ws
e “ls from wy arrive before 1s from ws”
e = is a partial order which abstracts the causality order between streams

o (Q2,=,,M) is a lattice

Synchronisability:
Two infinite periodic binary words w and w’ are synchronisable, noted w > w’ iff it
exists d € N such that w < 0%’ and d’ € N such that w’ < 04 w.

1. 11(01) and (10) are synchronisable

2. (010) and (10) are not synchronisable since there are too much reads or too

much writes (infinite buffers)

Subsumption (sub-typing): w; <: ws <= wi X wy A wy = wo

9

Multi-sampled Systems (clock sampling)
c = w|conw w e (04 1)
c on w denotes a subsampled clock.

c on w is the clock obtained in advancing in w at the pace of clock c. E.g.,
1(10) on (01) = (0100).

base 1111 1 11111 ..](@Q)

P 110101010 1 1(10)
base on p; 1 1.0 101 0 1 0 1 1(10)
P 0 1 0 1 0 1 (01)
(baseonpi)onpe |O 1 0O O O 1 O 0O O 1 (0100)

Proposition 1 (on-associativity) Let wi, wy and ws be three infinite binary

words. Then wy on (wg on w3) = (w1 on ws) on ws.

10

Computing with Periodic Clocks

In the case of infinite periodic binary words, precedence relation, synchronizability,
equality can be decided in bounded time

Synchronizability: Two infinite periodic binary words u(v) and u’(v’) are

v
U P

synchronizable, noted u(v) > u’(v’) iff they have the same rate, i.e.

Equality: Let w = u(v) and w’ = u/(v"). We can always write w = a(b) and
w’ = a' (V') with [a] = |a| = maz(|ul, [u']) and [b] = |b'] = lem([v], [v'])

Delays and Buffers: can be computed practically after normalisation

The set of infinite periodic binary words is closed by sampling (on), delaying (pre)
and point-wise application of a boolean operation

w = u(v)

c == w|conw|notc|prec]| ...

11

A Synchronous Data-flow Kernel

e Reminiscent to Lustre and Lucid Synchrone

e receive a standard (strictly) synchronous semantics

e == x|i|ewherex =c¢c]|e(e)

| e £by e | e when pe | merge pe e e

d == let node f(z)=-c¢|d;d
dp == period p = pe|dp;dp
pe == p|w|peonpe|notpe]| ...

e fby is the initialized delay (or register)
e when is the sampling operator allowing to extract a sub-stream from a stream

e merge is the combination operator allowing to combine two complementary

streams (with opposite clocks)

12

The Downscaler

let period c = (10100100)

rec o2 = 0 fby p

Uuayw

p
let node hf p = o where L{JL[]

and o3 = 0 fby o2
and o4 = 0 fby o3
and o5 = 0 fby o4
and 06 = 0 fby o5 -1]o]1]o]o]1]o]o}

and o = f (p,02,03,04,05,06) when c

val hf : ’a -> ’a on c

let node main i = o where
rec t = hf 1
and (i1,i2,i3,i4,i5,i6) = reorder t
and o = vf (i1,i2,i3,i4,i5,i6)

e The clock signature of each process abstracts its timing behavior
e Clock calculus: what is the clock signature of main?

13

Clock calculus

o = VYa.o|ct

ct = ct—ct|ctxct|ck
ck == ckonpe|a

H = [x1:01,...,%m O
P == |p1:wi,...,Dn: Wyl

Judgment: P, H |- e : ct “expression e receive clock type ct in environments H
and P”

14

From 0-Synchrony to N-Synchrony
0-Synchrony:

e (O-synchrony can be checked using standard Milner-type system
[ICFP’96,Emsoft’03]

e only need clock equality (and clocks are not necessarily periodic)

H Ple:ck H, Pley:ck

H, P\ op(ei,es) : ck
N-Synchrony:

e extend the basic clock calculus of a synchronous language with a sub-typing
rule:

PHFe:ckonw w<:uw
(SUB)

P,HVFe:ckonuw

e defines the synchronisation points where buffer code should be inserted

15

An Example

SUEENS

1-buffer

x

uaym

<

|

X
TEII)
—]

|

T
N

usym
N

o0]1] ~of1];
let node f(x) =t where t = (x when (1100)) + (x when (10))
(1100) and (10) can be synchronized using a buffer of size 1. Indeed:

P, H - x when (1100)) : a on (1100) (1100) <: (10)

P, H + x when (1100) : « on (10)

Finaly, f : Va.a — «a on (01)
and the 1-buffer buffer[1]: Va.a on (1100) — « on (1010)

16

Translation into 0-Synchronous Programs

PHFe:ckonw=¢ w<:w

(TRANSLATION)

P,H F e:ckonw' = buffer,, , ()

/
buffer,, ., : Va.oe on w — o on w

Theorem (correctness): Any well clocked (N-synchronous) program can be

transformed into a O-synchronous program

This is a constructive proof: sub-typing points define where some buffering is

necessary

The translated program can be checked with the basic clock calculus

17

Algorithm (constraint resolution)
The sub-typing system is not deterministic and is thus not an algorithm
Standard solution:
e apply the (suB) rule at every program construction
e generate a set of sub-typing constraints {ck; <: cki,...,ck, <:ck,}
e rely on a resolution algorithm

Resolution amounts to rewriting (simplifying) the set of constraints until we get the
empty set

Theorem (completeness): For any expression e, and for any period and clock
environments P and H, if e has an admissible clock type in P, H for the relaxed

clock calculus, then the type inference algorithm computes a clock ct verifying
PHFe:ct

18

Clock sampling (gating) vs Buffering

In general, there exists an infinite number of solutions.

1y f: Vaj.aq1 — a; on (1100)
+— g . Voag.ag — o on (10)
— g (—|—) : Vag.ag X (g — Q3

We have to solve the constraint: a; on (1100) <: a3 and as on (10) <: as

Clock sampling: (unification)

find v; and vo st ;1 = a4 on vy and oy = a4 on vy
Solution: a4 on (10111) on (1100) = a4 on (10100) = a3
ay on (11110) on (10) = ay on (10100) = a3

No buffering but the base clock must be faster

Buffering: (sub-typing)
a1 = ay and as = ay, ay on (1100) <: ag and a4 on (10) <: ag
a4 on (1100) U (10) = g on (10) = a3
A 1-buffer is needed
19

S~ S[O/1 on V('UJ]_,’LUQ)/Otl j|
(EQUAL) ay on V' (w1, ws)/ o
f S=§ 4 I, PTtaenwi<ickijorich <taponwi} ay#az
Is = {as on wa <: cka} or {cko <: as onwa} w1 # ws
(CYCLE) S+ {aonw; <:aonws} ~» S

if wi <: wo

S+{aonw; <:a', aonwy <:a'} ~ S+ {aonw; Uws <:a’}

(SUP)
if wi D<K wog
(INF) S+{a’ <:aonwi, @ <:aonwz} ~ S+ {a’ <:aonw; Mws}
if w1 X wo
(CUT) S+ {a;onw <:azonw} ~» S+ {a; <:azonui, azonuz <: az}
if oq # a2, Ul = umax(w)y U2 = Z/[rnin(/w)
(FORK) S+{a<:ajonw, a <:azonw} ~» S[lagonuonw/al+ {asonu <:ai, agonu <: az}
if oy # a2, U :L{min(w)
(JOIN) S+{aionw<:a, agonw <:a} ~» Slagonuonw/al+ {a1 <: azonu, as <: az on u}
if a1 # as, u = Umax(w)
SdI Slck
(SUBST) ®I ~ Slek/al

if I ={a<:ck}or{ck<:a}, a¢ FV(ck)

20

Conclusion

N-Synchronous Kahn Networks introduce a relaxed model of synchrony

extended synchrononous framework: automatic generation of the synchronous

buffers which are semantically (as defined by Kahn) guaranteed correct
a relaxed clock calculus where buffering corresponds to sub-typing
N-synchronous programs can be translated into 0-synchronous ones

extend the expressive power of synchronous languages, yet allowing to do

compilation, simulation and verification after translation
Lustre programs are 0-Synchronous Kahn Networks

Kahn networks are oco-Synchronous Kahn Networks

21

Current and Future Work

algebraic characterisation and symbolic representation of clocks
implementation inside an existing synchronous language
optimization and architecture considerations (buffer size, locality, clock gating)

forgetting buffering mechanism, periodic clocks are useful for dealing with
several implementations of the same function:
— parallel vs pipelined ws serial computation

— going from a version to an other changes clocks

— how to prove them to be equivalent (or to derive them from the same

program) according to resource constraints?

22

