
N-Synchronous Kahn Networks
A Relaxed Model of Synchrony for Real-Time Systems

Albert Cohen1, Marc Duranton2, Christine Eisenbeis1,
Claire Pagetti1,4, Florence Plateau3 and Marc Pouzet3

POPL, Charleston
January 12th, 2006

1: INRIA, Orsay France
2: PHILIPS NatLabs, Eindhoven, The Netherlands
3: University of Paris-Sud, Orsay, France
4: ONERA, Toulouse, France

1

Context

• Video intensive applications (TV boxes, medical systems)
tera-operations per second (on pixel components) is typical

• Ensure three properties: hard real-time and performance and safety

Implementations

• Today: specific hardware (ASIC)

• Evolution: multi-clock asynchronous architectures, mixing hardware/software
because of costs, variability of supported algorithms

Design and programming tools

• General purpose languages and compilers are not well adapted

• Kahn Networks (KN) is common practice in the field

2

A typical example: the Downscaler

high definition (HD) → standard definition (SD)

1920× 1080 pixels 720× 480

horizontal filter: number of pixels in a line from 1920 pixels downto 720 pixels,

vertical filter: number of lines from 1080 downto 480

hf vf

reorder

HD input SD output

Real-Time Constraints

the input and output processes: 30Hz.

HD pixels arrive at 30× 1920× 1080 = 62, 208, 000Hz

SD pixels at 30× 720× 480 = 10, 368, 000Hz (6 times slower)

3

Our Goal

Define a programming language dedicated to those Kahn Networks providing:

• a modular functional description

• a modular description and programming of the timing requirements

with a semantics and a compiler which statically guarantees four important
properties. E.g., on the downscaler:

• a proof that, according to worst-case time conditions, the frame and pixel rate
will be sustained

• a proof that the system executes in bounded memory

• an evaluation of the delay introduced by the downscaler in the video processing
chain, i.e., the delay before the output process starts receiving pixels

• an evaluation of memory requirements, to store data within the processes, and
to buffer the stream produced by the vertical filter in front of the output
process

4

What about Synchronous Languages?

• dedicated to hard real-time critical systems

• generation of custom hardware and software system with static guarantees
(real-time and resource constraints)

• static analysis, verification and testing tools

• synchrony is ensured by a type-system for clocks: a clock calculus

• it allows to program Synchronous Kahn Networks

5

But too restrictive for our video applications

?

t+

w
h
e
n

w
h
e
n

y

z

x

0 1

1 10 0

?

• streams must be synchronous when composed (y+z is rejected by the clock
calculus)

z

y

• adding buffer code (by hand) is feasible but hard and error-prone

• can we compute it automatically and obtain regular synchronous code?

we need a relaxed model of synchrony and relaxed clock calculus

6

N-Synchronous Kahn Networks

• propose a programming model based on a relaxed notion of synchrony

• yet compilable to some synchronous code

• allows to compose programs as soon as they can be made synchronous through
the insertion of a bounded buffer

z

buff[1]

1 1 1 1 1 1 1 1

1 1 1 1 11 1 1

0 0 0 0 0 0

0 00 0 0 0 0

y

• based on the use of infinite ultimately periodic clocks

• a precedence relation between clocks ck1 <: ck2

7

Infinite Ultimately Periodic Clocks

Introduce Q2 as the set of infinite periodic binary words. Coincides with rational
2-adic numbers

(01) = 01 01 01 01 01 01 01 01 01 . . .

0(1101) = 0 1101 1101 1101 1101 1101 1101 1101 . . .

• 1 stands for the presence of an event

• 0 for its absence

Definition:

w ::= u(v) where u ∈ (0 + 1)∗ and v ∈ (0 + 1)+

8

Causality order and Synchronisability

Precedence relation: w1 � w2

• “1s from w1 arrive before 1s from w2”

• � is a partial order which abstracts the causality order between streams

• (Q2,�,t,u) is a lattice

Synchronisability:
Two infinite periodic binary words w and w′ are synchronisable, noted w ./ w′ iff it
exists d ∈ N such that w � 0dw′ and d′ ∈ N such that w′ � 0d′

w.

1. 11(01) and (10) are synchronisable

2. (010) and (10) are not synchronisable since there are too much reads or too
much writes (infinite buffers)

Subsumption (sub-typing): w1 <: w2 ⇐⇒ w1 ./ w2 ∧ w1 � w2

9

Multi-sampled Systems (clock sampling)

c ::= w | c on w w ∈ (0 + 1)ω

c on w denotes a subsampled clock.

c on w is the clock obtained in advancing in w at the pace of clock c. E.g.,
1(10) on (01) = (0100).

base 1 1 1 1 1 1 1 1 1 1 ... (1)

p1 1 1 0 1 0 1 0 1 0 1 ... 1(10)

base on p1 1 1 0 1 0 1 0 1 0 1 ... 1(10)

p2 0 1 0 1 0 1 ... (01)

(base on p1) on p2 0 1 0 0 0 1 0 0 0 1 ... (0100)

Proposition 1 (on-associativity) Let w1, w2 and w3 be three infinite binary
words. Then w1 on (w2 on w3) = (w1 on w2) on w3.

10

Computing with Periodic Clocks

In the case of infinite periodic binary words, precedence relation, synchronizability,
equality can be decided in bounded time

Synchronizability: Two infinite periodic binary words u(v) and u′(v′) are
synchronizable, noted u(v) ./ u′(v′) iff they have the same rate, i.e., |v|1

|v′|1 = |v|
|v′| .

Equality: Let w = u(v) and w′ = u′(v′). We can always write w = a(b) and
w′ = a′(b′) with |a| = |a′| = max(|u|, |u′|) and |b| = |b′| = lcm(|v|, |v′|)

Delays and Buffers: can be computed practically after normalisation

The set of infinite periodic binary words is closed by sampling (on), delaying (pre)
and point-wise application of a boolean operation

w ::= u(v)

c ::= w | c on w | not c | pre c | . . .

11

A Synchronous Data-flow Kernel

• Reminiscent to Lustre and Lucid Synchrone

• receive a standard (strictly) synchronous semantics

e ::= x | i | e where x = e | e(e)
| e fby e | e when pe | merge pe e e

d ::= let node f(x) = e | d; d

dp ::= period p = pe | dp; dp

pe ::= p | w | pe on pe | not pe | . . .

• fby is the initialized delay (or register)

• when is the sampling operator allowing to extract a sub-stream from a stream

• merge is the combination operator allowing to combine two complementary
streams (with opposite clocks)

12

The Downscaler

let period c = (10100100)

let node hf p = o where

rec o2 = 0 fby p

and o3 = 0 fby o2

and o4 = 0 fby o3

and o5 = 0 fby o4

and o6 = 0 fby o5

and o = f (p,o2,o3,o4,o5,o6) when c

val hf : ’a -> ’a on c

let node main i = o where

rec t = hf i

and (i1,i2,i3,i4,i5,i6) = reorder t

and o = vf (i1,i2,i3,i4,i5,i6)

f

w
h
e
n

1 0 01 0 0 1 0

o

p

• The clock signature of each process abstracts its timing behavior

• Clock calculus: what is the clock signature of main?

13

Clock calculus

σ ::= ∀α.σ | ct
ct ::= ct → ct | ct× ct | ck
ck ::= ck on pe | α
H ::= [x1 : σ1, . . . , xm : σm]

P ::= [p1 : w1, . . . , pn : wn]

Judgment: P,H ` e : ct “expression e receive clock type ct in environments H

and P”

14

From 0-Synchrony to N-Synchrony

0-Synchrony:

• 0-synchrony can be checked using standard Milner-type system
[ICFP’96,Emsoft’03]

• only need clock equality (and clocks are not necessarily periodic)

H,P ` e1 : ck H,P ` e2 : ck

H,P ` op(e1, e2) : ck

N-Synchrony:

• extend the basic clock calculus of a synchronous language with a sub-typing
rule:

P,H ` e : ck on w w <: w′

(SUB)

P,H ` e : ck on w′

• defines the synchronisation points where buffer code should be inserted

15

An Example

+

w
h
e
n

w
h
e
n

y

z

x

0 1

1 10 0

t

1−buffer

w
h

e
n

w
h

e
n

z

x

0 1

1 10 0

t+

let node f(x) = t where t = (x when (1100)) + (x when (10))

(1100) and (10) can be synchronized using a buffer of size 1. Indeed:

P,H ` x when (1100)) : α on (1100) (1100) <: (10)

P,H ` x when (1100) : α on (10)

Finaly, f : ∀α.α → α on (01)
and the 1-buffer buffer[1]: ∀α.α on (1100) → α on (1010)

16

Translation into 0-Synchronous Programs

P,H ` e : ck on w ⇒ e′ w <: w′

(TRANSLATION)

P,H ` e : ck on w′ ⇒ bufferw,w′(e′)

bufferw,w′ : ∀α.α on w → α on w′

Theorem (correctness): Any well clocked (N -synchronous) program can be
transformed into a 0-synchronous program

This is a constructive proof: sub-typing points define where some buffering is
necessary

The translated program can be checked with the basic clock calculus

17

Algorithm (constraint resolution)

The sub-typing system is not deterministic and is thus not an algorithm

Standard solution:

• apply the (SUB) rule at every program construction

• generate a set of sub-typing constraints {ck1 <: ck′1, . . . , ckn <: ck′n}

• rely on a resolution algorithm

Resolution amounts to rewriting (simplifying) the set of constraints until we get the
empty set

Theorem (completeness): For any expression e, and for any period and clock
environments P and H, if e has an admissible clock type in P,H for the relaxed
clock calculus, then the type inference algorithm computes a clock ct verifying
P,H ` e : ct

18

Clock sampling (gating) vs Buffering

In general, there exists an infinite number of solutions.

+

f

g

f : ∀α1.α1 → α1 on (1100)

g : ∀α2.α2 → α2 on (10)

(+) : ∀α3.α3 × α3 → α3

We have to solve the constraint: α1 on (1100) <: α3 and α2 on (10) <: α3

Clock sampling: (unification)
find v1 and v2 st α1 = α4 on v1 and α2 = α4 on v2

Solution: α4 on (10111) on (1100) = α4 on (10100) = α3

α4 on (11110) on (10) = α4 on (10100) = α3

No buffering but the base clock must be faster

Buffering: (sub-typing)
α1 = α4 and α2 = α4, α4 on (1100) <: α3 and α4 on (10) <: α3

α4 on (1100) t (10) = α4 on (10) = α3

A 1-buffer is needed
19

(EQUAL)

S S
h α′

1 on V(w1, w2)/α1

α′
2 on V′(w1, w2)/α2

i
if S = S′ + I1 + I2,

I1 = {α1 on w1 <: ck1} or {ck1 <: α1 on w1}
I2 = {α2 on w2 <: ck2} or {ck2 <: α2 on w2}

,
α1 6= α2

w1 6= w2

(CYCLE)
S + {α on w1 <: α on w2} S

if w1 <: w2

(SUP)
S + {α on w1 <: α′, α on w2 <: α′} S + {α on w1 t w2 <: α′}
if w1 ./ w2

(INF)
S + {α′ <: α on w1, α′ <: α on w2} S + {α′ <: α on w1 u w2}
if w1 ./ w2

(CUT)
S + {α1 on w <: α2 on w} S + {α1 <: α3 on u1, α3 on u2 <: α2}
if α1 6= α2, u1 = Umax(w), u2 = Umin(w)

(FORK)
S + {α <: α1 on w, α <: α2 on w} S[α3 on u on w/α] + {α3 on u <: α1, α3 on u <: α2}
if α1 6= α2, u = Umin(w)

(JOIN)
S + {α1 on w <: α, α2 on w <: α} S[α3 on u on w/α] + {α1 <: α3 on u, α2 <: α3 on u}
if α1 6= α2, u = Umax(w)

(SUBST)
S ⊕ I S[ck/α]

if I = {α <: ck} or {ck <: α}, α /∈ FV(ck)

20

Conclusion

• N-Synchronous Kahn Networks introduce a relaxed model of synchrony

• extended synchrononous framework: automatic generation of the synchronous
buffers which are semantically (as defined by Kahn) guaranteed correct

• a relaxed clock calculus where buffering corresponds to sub-typing

• N -synchronous programs can be translated into 0-synchronous ones

• extend the expressive power of synchronous languages, yet allowing to do
compilation, simulation and verification after translation

• Lustre programs are 0-Synchronous Kahn Networks

• Kahn networks are ∞-Synchronous Kahn Networks

21

Current and Future Work

• algebraic characterisation and symbolic representation of clocks

• implementation inside an existing synchronous language

• optimization and architecture considerations (buffer size, locality, clock gating)

• forgetting buffering mechanism, periodic clocks are useful for dealing with
several implementations of the same function:

– parallel vs pipelined vs serial computation

– going from a version to an other changes clocks

– how to prove them to be equivalent (or to derive them from the same
program) according to resource constraints?

22

