
Lucid Synchrone
a Functional Synchronous Language

Marc Pouzet
LIENS

Marc.Pouzet@ens.fr

Modelica Design Meeting
Munich, January 25th, 2011.

1/60

Reactive systems

• They react continuously to the external environment.

• At the speed imposed by this environment.

• Statically bounded memory and response time.

Conciliate three notions in the programming model:

• Parallelism, concurrency while preserving determinism.
e.g, control at the same time rolling and pitching
↪→ parallel description of the system

• Strong temporal constraints.
e.g, the physics does not wait!
↪→ temporal constraints should be expressed in the system

• Safety is important (critical systems).
↪→ well founded languages, verification methods

2/60

Synchronous Kahn Networks

M3

M1 M2

M4

• parallel processes communicating through data-flows

• communication in zero time: data is available as soon as it is produced.

• a global logical time scale even though individual rhythms may differ

• these drawings are not so different from actual computer programs

3/60

SAO (Spécification Assistée par Ordinateur) — Airbus 80’s

Describe the system as block diagrams (synchronous communicating machines)

4/60

Programming with data-flow equations

The language Lustre (Caspi & Halbwachs, 1984).

X 1 2 1 4 5 6 ...

Y 2 4 2 1 1 2 ...

1 1 1 1 1 1 1 ...

X + Y 3 6 3 5 6 8 ...

X + 1 2 3 2 5 6 7 ...

The equation Z = X + Y means that at every instant n, Zn = Xn + Yn.

Time is logical: the two inputs X and Y arrive “at the same time”; the output Z is
produced at the very same instant.

Practically speaking, it suffices to check that the current output is produced before
the input for the next instant arrives.

5/60

Memorizing values

We add operators to memorize the value produced at the previous instant.

X 1 2 1 4 5 6 ...

pre X nil 1 2 1 4 5 ...

Y 2 4 2 1 1 2 ...

Y -> pre X 2 1 2 1 4 5 ...

S 1 3 4 8 13 19 ...

The sequence (Sn) such that S0 = X0 and Sn = Sn−1 + Xn for all n > 0 is written:
S = X -> pre S + X

As in mathematics, intermediate equations can be introduced:
S = X -> I; I = pre S + X

6/60

A classical model of control theory and electronics

Example: a linear filter

Y0 = bX0 , ∀n Yn+1 = aYn + bXn+1

6

ha Z- - h -

?

?

hbX

Y

The idea of Lustre:

• directly write mathematical equations

• analyze, transform and simulate them

• automatically translate them into executable programs

7/60

The expressiveness of Lustre

• First order functional language managing streams, no recursion.

• Types are declared; no polymorphism; no control-structures; limited clock
calculus.

Increase its expressiveness:

• Modularity (libraries), abstraction mechanisms.

• Polymorphism; type and clock inference.

• Control structures; imperative features (but in a safe way).

We started working on these questions with Paul Caspi in 1995 and introduced the
class Synchronous Kahn Networks [ICFP’96].

8/60

Lucid Synchrone

Try to mix all the best of these two paradigms:

• Synchronous data-flow languages (Lustre).

• General purpose ML languages (Objective Caml, Haskell,...).

A language combining:

• Synchronous data-flow as a way to deal with time.

• Features from ML to increase expressiveness: E.g., type inference,
polymorphism, higher-order.

Follow a few principles

• The synchronous property is checked by a dedicated type system called the
clock calculus. Inferred clocks express static constraints on synchronization.

• Clocks are used to give a precise semantics to all programming constructs.

• Several other type-based analysis (e.g., initialisation, causality).
9/60

Lucid Synchrone

Build a “laboratory” language

• study the extensions of Lustre and SCADE (synchronous and functional)

• experiment things and write programs!

• Version 1 (1995), Version 2 (2001), V3 (2006)

• http://www.di.ens.fr/∼pouzet/lucid-synchrone

ReLuC and SCADE 6 at Esterel-Tech.

In 2000, Esterel-Tech. was considering designing a new version of SCADE. We
started a close colaboration with the compilation team.

• Several features were implemented in the ReLuC prototype compiler (merge
instead of current, clock calculus, compilation into clocked equations).

• New results developped jointly: initialization analysis, hierarchical automata,
etc.

This made the basis of SCADE 6 available since 2008.
10/60

Main results since 1996

• Synchronous Kahn networks [ICFP’96]

• Clocks as dependent types [ICFP’96]

• Modular compilation (co-induction vs co-iteration) [CMCS’98]

• ML-like clock calculus [Emsoft’03]

• causality analysis [ESOP’01]

• initialization analysis [SLAP’03, STTT’04]

• higher-order and typing [Emsoft’04]

• data-flow and state machines [Emsoft’05, Emsoft’06]

• N-Synchronous Kahn Networks [Emsoft’05, POPL’06, APLAS’08, MPC’10]

• Clock-directed code generation of synchronous data-flow [LCTES’08]

• Modular Static Scheduling [Emsoft’09, JDAES’10]

11/60

Some examples (V3)

• int denote the type of streams of integers,

• 1 denotes an (infinite) constant stream of 1,

• usual primitives apply point-wise

c t f t . . .

x x0 x1 x2 . . .

y y0 y1 y2 . . .

if c then x else y x0 y1 x2 . . .

12/60

Combinatorial functions

Example: 1-bit adder

let xor x y = (x & not (y)) or (not x & y)

let full_add(a, b, c) = (s, co)

where

s = (a xor b) xor c

and co = (a & b) or (b & c) or (a & c)

The compiler automatically computes the type and clock signature.

val full_add : bool * bool * bool -> bool * bool

val full_add :: ’a * ’a * ’a -> ’a * ’a

13/60

Full Adder (hierarchical)

Compose two “half adder”

let half_add(a,b) = (s, co)

where

s = a xor b

and co = a & b

b
s

co

a

Instanciate twice

let full_add(a,b,c) = (s, co)

where

rec (s1, c1) = half_add(a,b)

and (s, c2) = half_add(c, s1)

and co = c1 or c2 c1

a

b

s1

c
s

s2
co

14/60

Sequential Functions

Operators fby, ->, pre

• fby: unitary (initialized) delay

• ->: initialization

• pre: un-initialized delay (register in circuits)

x x0 x1 x2 x3 x4 x5 . . .

y y0 y1 y2 y3 y4 y5 . . .

x fby y x0 y0 y1 y2 y3 y4 . . .

pre x nil x0 x1 x2 x3 x4 . . .

x -> y x0 y1 y2 y3 y4 y5 . . .

Warning: these operators applied to discrete signals only.

15/60

Sequential Functions

• Stream functions may depend on the past (statefull systems)

• Example: edge front detector

let node edge x = x -> not (pre x) & x

val edge : bool => bool

val edge :: ’a -> ’a

x t f t t t f . . .

edge x t f t f f f . . .

As in ML, it is also possible to give types explicitely:

let node edge (x:bool) = (o:bool) where

rec o = x -> not (pre x) & x

In V3, we distinguish combinatorial function (->) from sequential functions (=>)
16/60

Polymorphism (code reuse)

let node delay x = x -> pre x

val delay : ’a => ’a

val delay :: ’a -> ’a

let node edge x = false -> x <> pre x

val edge : ’a => ’a

val edge :: ’a -> ’a

In Lustre, polymorphism is limited to a set of predefined operators (e.g.,
if/then/else, when) and does not pass abstraction.

17/60

Library and Curryfication

(* module Numerical *)

let node integr h x0 x’ = x where

rec x = x0 -> pre x +. x’ *. h

val integr : float -> float -> float => float

val integr :: ’a -> ’a -> ’a -> ’a

(* module Main *)

let dt = 0.001

let integr0 = integr dt

val integr0 : float -> float => float

val integr0 :: ’a -> ’a -> ’a

18/60

Programming with equations

let node min_max x = (min, max) where

rec min = x -> if x < pre min then x else pre min

and max = x -> if x > pre max then x else pre max

val min_max : int -> int * int

val min_max :: ’a -> ’a * ’a

let node min_max x = (min, max) where

rec (min, max) =

(x, x) -> if x < pre min then (x, pre max)

else if x > pre max then (pre min, x)

else (pre min, pre max)

19/60

Causality Analysis

Reject programs which cannot be executed sequentially.

let node min_max x = (min, max) where

rec min = x -> if x < pre min then x else min

^^^^^

and max = x -> if x > pre max then x else pre max

Error: min depends instantaneously on itself

• A “syntactical” criteria: a recursion must cross a delay.

• A type system (with Pascal Cuoq [ESOP’01]).

• Type signatures (interfaces) can express dependences between inputs/outputs.

• Higher-order make the analysis quite difficult.

20/60

Initialization Analysis

Reject programs for which the result depend on the initial value of some delays.

let node min_max x = (min, max) where

rec min = if x < pre min then x else pre min

^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^

and max = x -> if x > pre max then x else pre max

Error: this expression may not be initialized

• Mostly a 1-bit abstraction: a stream is either defined at every instant or
possibly not at the very first only.

• A type system (with a sub-typing rule), with JL-Colaço from
Esterel-Technologies [SLAP’02, STTT’04].

• It worked (surprisingly) well for SCADE. Tested on real-size examples (75000
lines) at Esterel-Tech in the ReLuC compiler (2003). Now integrated to
SCADE 6.

21/60

Clocks: mix several time-scale

Mix slow and fast processes:

• E.g., multi-sampled systems (software), multi-clock (hardware).

• Filtering is not necessarily periodic: filtering can be done according to any
boolean condition.

• How to mix slow and fast processes in a safe way?

The clock calculus:

• The clock of a stream defines the instants where a value is present (that is,
available).

• The clock calculus is a dedicated type system which check that the actual clock
of a stream equals the expected clock.

• In Lucid Synchrone, a clock is a type and is automatically inferred.

22/60

Two operators

when (under-sampling) and merge (over-sampling)

c t t f f t f . . .

x x0 x1 x2 x3 x4 x5 . . .

x when c x0 x1 x4 . . .

x whenot c x2 x3 x5 . . .

y y0 y1 y2 . . .

merge c y (x whenot c) y0 y1 x2 x3 y2 x5 . . .

23/60

Clocks defined at top-level

let node sum x = s where rec s = x -> pre s + x

let node sampled_sum x c = sum (x when c)

val sampled_sum : int -> bool => int

val sampled_sum :: ’a -> (_c0:’a) -> ’a on _c0

let clock ten = count 10 true

let node sum_ten x = sampled_sum x ten

val ten : bool

val ten :: ’a

val sum_ten : int => int

val sum_ten :: ’a -> ’a on ten

24/60

let node hold ydef c x = y

where rec y = merge c x ((ydef -> pre y) whenot c)

val hold : ’a -> bool -> ’a => ’a

val hold :: ’a -> (_c0:’a) -> ’a on _c0 -> ’a

c f t f f f t . . .

x x0 x1 . . .

y y0 y1 y2 y3 . . .

ydef d0 d1 d2 d3 d4 d5 . . .

hold c x ydef d0 x0 x0 x0 x0 x1 . . .

For example, hold 0 ten is a stuttering function.

25/60

Filtering an input vs filtering an output

Clocks provide a way to define control structures, that is, pieces of code which are
executed according to some condition.

x x0 x1 x2 x3 x4 . . .

x when c x1 x3 . . .

pre x nil x0 x1 x2 x3 . . .

pre (x when c) nil x1 . . .

(pre x) when c x0 x2 . . .

As soon as a function f is sequential, f(x when c) 6= (f(x)) when c.

26/60

Over-sampling

• Define systems whose internal rate is faster that the rate of their inputs?

• Express temporal constraints, scheduling, resources.

Example: Computation of x^5

let node power x = x * x * x * x * x

let clock four = count 4 true

let node spower x = y where

rec i = merge four x ((1 fby i) whenot four)

and o = 1 fby (i * merge four x (o whenot four))

and y = o when four

val power :: ’a -> ’a

val spower :: ’a on four -> ’a on four

27/60

y on four

0

1

0

*

1

1
x on four

four

four

four

1

four t f f f t f f f t f f ...

x x0 x1 x2 ...

i x0 x0 x0 x0 x1 x1 x1 x1 x2 x2 x2 ...

o 1 x2
0 x3

0 x4
0 x5

0 x2
1 x3

1 x4
1 x5

1 x2
2 x3

2 ...

spower x 1 x5
0 x5

1 ...

power x x5
0 x5

1 x5
2 ...

Property: 1 fby (power x) and spower x are observationally equivalent
28/60

Nesting clocks

let clock sixty = sample 60

let node hour_minute_second second =

let minute = second when sixty in

let hour = minute when sixty in

hour,minute,second

val hour_minute_second : ’a => ’a * ’a * ’a

val hour_minute_second :: ’a -> ’a on sixty on sixty * ’a on sixty * ’a

A stream on ’a on sixty on sixty is only present one instant over 3600 instants.

Treatment of periodic clocks:

• No particular treatment of periods. Thus, ’a on (60) on (60) and ’a on

(3600) are considered different.

• The theory of N -synchrony allow to deal with ultimately periodic clocks:
[POPL’96, APLAS’08, MPC’10].

29/60

Filtering according to some boolean condition

Clocks are not necessarily periodic. It is possible to filter according to any boolean
condition.

E.g., the rising edge retrigger of the SCADE standard library.

30/60

let node count_down (res, n) = cpt where

rec cpt = if res then n else (n -> pre (cpt - 1))

let node rising_edge_retrigger rer_input number_of_cycle = rer_output

where

rec rer_output = (0 < v) & clk

and v = merge clk (count_down ((count,number_of_cycle) when clk))

((0 fby v) whenot clk)

and c = false fby rer_output

and clock clk = c or count

and count = false -> (rer_input & pre (not rer_input))

31/60

Clock Constraints and Synchrony

-

- odd -

&

-

-

The computation of (xn &x2n)n∈IN is not real-time

let odd x = x when half

let non_synchronous x = x & (odd x)

^^^^^^^^

This expression has clock ’a on half, but is used with clock ’a.

Execution with unbounded FIFOs!!!

• clocks = an information about the behavior of streams

• clocks = types

• the merge and type based clock calculus is reused in the ReLuC compiler of
SCADE

32/60

Higher-order

Iteration:

FBY

x
F

z

y
itx

z
F y

let node it f z x = y

where rec y = f x (init fby y)

val it : (’b -> ’a -> ’a) -> ’a -> ’b => ’a

val it :: (’b -> ’a -> ’a) -> ’a -> ’b -> ’a

Then:

let node sum x = it (+) 0 x

let node mult x = it (*) 1 x

33/60

A word on compilation

Compiler organisation:

• Type inference then clock inference.

• At then end of these processes, every expression is annotated with its type and
clock.

• Causality and initialization analysis.

• Every higher-level programming constructs (control-structures, automata,
signals) are translated into the basic clocked language.

Clock-directed code generation: [LCTES’08]

• The clock serves as a guard: a variable is only computed when its clock is true.

• Expressions with the same clock are gathered as much as possible while
respecting data-dependences.

34/60

Language extensions

This basic calculus can be extended with various features.

• Pattern matching, conditionals.

• Hierarchical automata, signals, etc.

• Everything can be translated into the basic language. Still, the code generation
does not have to be redone.

35/60

Delays: pre, next and last

Lustre and Lucid Synchrone are based on the unitary delay pre and the
initialization operator ->. fby is the initialized delay.

let node edge x = x -> not (pre x) & x

• If e is a signal, pre(e) is the value of e, the last time e has been observed.

• pre(e) stands for a local memory. e can be any expression.

• Thus, pre(x) is not necessarily the previous value of x !

let node f(x) = o where

rec match x with

| true -> do o = 0 -> pre o + 1 done

| false -> do o = 0 -> pre o - 1 done

end

x true true true false true false false false ...

o 0 1 2 0 3 1 2 3 ...

36/60

The operator last

• If x is a signal, last(x) defines the value of x, the last time x was computed.

• last(x) is the last computed value of x

• It only applies to a name, not an expression.

let node f(x) = o where

rec last o = 0 (* initialization *)

and match x with

| true -> do o = last o + 1 done

| false -> do o = last o - 1 done

end

x true true true false true false false false ...

o 1 2 3 2 3 2 1 0 ...

last(o) 0 1 2 3 2 3 2 1 ...

37/60

pre and last

None of the two is better than the other: pre/-> can be translated into
last/initialization and conversely.

The Lucid Synchrone compiler translates programs into a data-flow kernel using
only pre and ->. The new Hybrid language also.

The previous program is thus a short-cut for:

let node f(x) = o where

rec l_o = 0 -> pre o (* initialization *)

and match x with

| true -> do o = l_o + 1 done

| false -> do o = l_o - 1 done

end

38/60

Control structures are a special form of merge/when

Again, the precise semantics of the previous programs can be given in term of
clocked sequences.

let node f(x) = o where

rec l_o = 0 -> pre o

and o = merge x ((l_o when x) + 1) ((l_o whenot x) + 1)

Note that the semantics is very different for the first program:

let node f(x) = o where

rec o = merge x (0 -> pre(o when x) + 1) (0 -> pre(o whenot x) + 1)

In the first case, we access (0 -> pre o) when x.

In the second, we access 0 -> pre(o when x) + 1.

39/60

A remark on next versus pre

Let T be a discrete set of instants T = {t0, ..., tn, ...} and two signals x : T 7→ V ,
y : T 7→ V . Then:

• pre(x)(tn) = x(tn−1) and pre(x)(t0) = nil where nil ∈ V .

• (x -> y)(t0) = x(t0) and (x -> y)(tn) = y(tn)

• The equation:

next z = x init y

defines the signal z : T 7→ V such that z(tn+1) = x(tn) and z(t0) = y(t0).

Thus, any equation of this form is equivalent to:

next_z = x and z = y -> pre next_z

• None of the two is better than the other. It is mainly a matter of taste.

• Mixing both styles is confusing.

• pre, -> and last combine quite well.
40/60

Extending Synchronous Data-flow with Automata

[EMSOFT05,EMSOFT06]

Basis

• Mode-Automata by Maraninchi & Rémond [ESOP98, SCP03]

• SignalGTI (Rutten [EuroMicro95] and Lucid Synchrone V2 (Hamon & Pouzet
[PPDP00, SLAP04])

Proposal

• Extend a basic clocked calculus (SCADE/Lustre) with automata constructions.

• Base it on a translation semantics into well clocked programs; gives both the
semantics and the compilation method.

Two implementations

• Lucid Synchrone language and compiler

• ReLuC compiler of SCADE at Esterel-Technologies; the basis of SCADE V6
(released in 2008)

41/60

The Cruise Control with SCADE 6

42/60

Semantic principles

• only one set of equations is executed during a reaction

• two kinds of transitions: Weak delayed (“until”) or Strong (“unless”)

• both can be “by history” (H* in UML) or not (if not, both the SSM and the
data-flow in the target state are reseted

• at most one strong transition followed by a weak transition can be fired during a
reaction

• at every instant:

– what is the current active state?

– execute the corresponding set of equations

– what is the next state?

• forbids arbitrary long state traversal, simplifies program analysis, better
generated code

43/60

An example: the Franc/Euro converter

eu = v/6.55957;

c

cc

v fr

eu

EuroFranc

fr = v; fr = v*6.55957;

eu = v;

in Lucid Synchrone syntax:

let node converter v c = (euro, fr) where

automaton

| Franc -> do fr = v and eur = v / 6.55957

until c then Euro

| Euro -> do fr = v * 6.55957 and eu = v

until c then Franc

end

Remark: fr and eur are shared flow but with only one definition at a time
44/60

Strong vs Weak pre-emption

Two types of transitions can be considered

let node converter v c = (euro, fr) where

automaton

| Franc -> do fr = v and eur = v / 6.55957

unless c then Euro

| Euro -> do fr = v * 6.55957 and eu = v

unless c then Franc

end

• until means that the escape condition is executed after the body has been
executed

• unless means that the escape condition is executed before and determines the
active state of the reaction

45/60

Equations and Expressions in States

• every state defines the current value of a shared flow

• a flow must be defined only once per cycle

• the Lustre “pre” is local to its upper state (pre e gives the previous value of e,
the last time e was alive)

• the substitution principle of Lustre is still true at a given hierarchy ⇒ data-flow
diagrams make sense!

• the notation last x gives access to the latest value of x in its scope.

• an absent definition for a shared flow x is implicitly complemented (i.e.,
x = last x)

46/60

Mode Automata, a simple example

x = 0 1 2 3 4 5 4 3 2 1 0 −1 −2 −3 −4 −5 −4 −3 −2 −1 0 ...

Up Down

x = last x − 1x = 0 −> last x + 1

H

H
x = 5

x = −5

let node two_modes () = x where

rec automaton

| Up -> do x = 0 -> last x + 1

until x = 5 continue Down

| Down -> do x = last x - 1

until x = -5 continue Up

end

Remark: replacing until by unless would lead to a causality error!
47/60

Implicit completion of absent definitions

let node modes up down init = o where

automaton

| Await -> do o = init then Up

| Counting -> do automaton

Up -> do o = last o + 1 unless down then Down

| Down -> do o = last o - 1 unless up then Up

end

unless up & down then Silent

| Silent -> do then Up

end

• do ... then Up is a short-cut for do ... until true then Up

• the absent equation for x in the state Silent is implicitly x = last x

48/60

Translation semantics

• use clocks to give a precise semantics: we know how to compile clocked
data-flow programs efficiently (cf. Lucid Synchrone and ReLuC compilers)

• give a translation semantics into the basic data-flow language

• type and clocks are preserved during the source-to-source transformation

Several steps

• compilation of the automaton construction into the control structures (match
statements)

• compilation of the reset construction between equations into the basic reset

• elimination of shared memory last x

49/60

Two new features

Parameterized State Machines:

this provides a way to pass local information between two states without interfering
with the rest of the code

Valued Signals:

These are events tagged with values as found in Esterel and provide an alternative
to regular flows when programming control-dominated systems

50/60

Parameterized State Machines

• it is often necessary to communicate values between two states upon taking a
transition

• e.g., a setup state communicate initialization values to a run state

Setup Run
cond/x<−...

• can we provide a safe mechanism to communicate values between two states?

• without interfering with the rest of the automaton, i.e.,

• without relying on global shared variables (and imperative modifications) in
states nor transitions?

Parameterized states:

• states can be Parameterized by initial values which can be used in turn in the
target automaton

• preserves all the properties of the basic automata
51/60

A typical example

several modes of normal execution and a failure mode which needs some contextual
information

let node controller in1 in2 = out where

automaton

| State1 ->

do out = f (in1, in2)

until (out > 10) then State2

until (in2 = 0) then Fail_safe(1, 0)

| State2 ->

let rec x = 0 -> (pre x) + 1 in

do out = g (in1,x)

until (out > 1000) then Fail_safe(2, x)

| Fail_safe(error_code, resume_after) ->

let rec resume = resume_after -> (pre resume) - 1 in

do out = if (error_code = 1) then 0 else 1000

until (resume <= 0) then State2

end

52/60

Valued Signals and Signal Pattern Matching

• in a control structure (e.g., automaton), every shared flow must have a value at
every instant

• if an equation for x is missing, it keeps implicitly its last value (i.e., x = last x

is added)

• how to talk about absent value? If x is not produced, we want it to be absent

• in imperative formalisms (e.g., Esterel), an event is present if it is explicitly
emitted and considered absent otherwise

• can we provide a simple way to achieve the same in the context of data-flow
programming?

53/60

An example

let node sum x y = o where

present

| x(v) & y(w) -> do o = v + w done

| x(v1) -> do o = v1 done

| y(v2) -> do o = v2 done

| _ -> do o = 0 done

end

val sum : int sig -> int sig => int

val sum :: ’a sig -> ’a sig -> ’a

54/60

Accessing the value of a valued signal

• the value of a signal is the one which is emitted during the reaction

• what is the value in case where no value is emitted?

• Esterel: keeps the last computed value (i.e., implicitly complement the value
with a register)

emit S(?A + 1)

this is unsafe and raises initialization problems: what is the value if it has
never been emitted?

• need extra methodology development rules to guard every access by a test for
presence

present A then ... emit S(?A + 1) ...

55/60

Signal pattern matching

• a pattern-matching construct testing the presence of valued signals and
accessing their content

• a block structure and only present value can be accessed

let node sum x y = o where

present

| x(v) & y(w) -> do emit o = v + w done

| x(v1) -> do emit o = v1 done

| y(v2) -> do emit o = v2 done

| _ -> do done

end

val sum : int sig -> int sig -> int sig

val sum :: ’a sig -> ’a sig -> ’a sig

56/60

Signals as Existential Types

A signal is nothing but a pair made of:

• a boolean sequence c which is itself on clock type ck

• a sequence sampled on c, that is, with clock type ck on c

Then, clock verification is almost trivial and can be adapted from Laufer & Oderski
extension for existential types in ML.

57/60

Initialization analysis

The initialization analysis must now take into account the semantics of automata.

let node two x = o where

automaton

S1 -> do o = 0 -> last o + 1

until x continue S2

| S2 -> do o = last o - 1 until x continue S1

end

o is clearly well defined. This information is hidden in the translated program.

let node two x = o where

rec o = merge s (S1 -> 0 -> (pre o) when S1(s) + 1)

(S2 -> (pre o) when S2(s) - 1)

and ns = merge s (S1 -> if x when S1(s) then S2 else S1)

(S2 -> if x when S2(s) then S1 else S2)

and clock s = S1 -> pre ns

58/60

Initialisation analysis

For any variable x defined in an initial state only left with a weak transition, last x

is well initialized in the remaining states.

The following program is not well initialized.

let node two x = o where

automaton

| S1 -> do o = 0 -> last o + 1

unless x continue S2

| S2 -> do o = last o - 1

until x continue S1 end

• The reasonning is local (for each automaton).

• This is because at most two transitions are fired during a reaction (strong to
weak)

This analysis is implemented in Lucid Synchrone V3 (2006) and SCADE 6.
59/60

Conclusion/Current/Future Works

Compilation, semantics

• Other extensions, program analysis, etc.

• Certified compilation (for software).

Relaxed Synchrony for Video Systems

• Deal with non strictly synchronous systems but which can be synchronized
through the insertion of buffers?

• The model of N-Synchronous Kahn Networks [Emsoft’05, POPL’06, APLAS’08,
MPC’10]

Hybrid Systems

• Mix discrete and continuous systems is the next important step for synchronous
languages [CDC’10, LCTES’11].

• Talk this afternoon.

See current works on synchronous languages at: http://synchronics.inria.fr
60/60

