
Divide and recycle: types and compilation for a
hybrid synchronous language a

Marc Pouzet
LIENS

Institut Universitaire de France
Marc.Pouzet@ens.fr

Paris, Synchronics days
Oct. 2010, 18th

aJoint work with Albert Benveniste, Timothy Bourke and Benoit Caillaud

1/22

Motivation and Context

• Explicit vs Implicit hybrid system modelers: Simulink, Scicos vs Modelica.

• In this talk, we consider only explicit ones.

• A lot of work on the formal verification of hybrid systems but relatively few on
programming language aspects.

Objective:

• Extend a Lustre-like language where dataflow equations are mixed with ODE.

• Make it conservative, i.e., nothing must change for the discrete subset (same
typing, same code generation).

Contribution:

• Divide with a novel type system.

• Recycle existing tools, synchronous compilers and numerical solvers to execute
them.

2/22

Parallel composition: homogeneous case

Two equations with discrete time:

f = 0.0 -> pre f + s and s = 0.2 * (x - pre f)

and the initial value problem:

der(y’) = -9.81 init 0.0 and der(y) = y’ init 10.0

The first program can be written in any synchronous language, e.g. Lustre.

∀n ∈ IN∗, fn = fn−1 + sn and f0 = 0 ∀n ∈ IN, sn = 0.2 ∗ (xn − fn−1)

The second program can be written in any hybrid modeler, e.g. Simulink.

∀t ∈ IR+, y′(t) = 0.0 +
∫ t

0
−9.81 dt = −9.81 t

∀t ∈ IR+, y(t) = 10.0 +
∫ t

0
y′(t) dt = 10.0− 9.81

∫ t

0
t dt

Parallel composition is clear since equations share the same time scale.

3/22

Parallel composition: heterogeneous case

Two equations: a signal defined at discrete instants, the other continuously.

der(time) = 1.0 init 0.0 and x = 0.0 fby x + time

or:

x = 0.0 fby x +. 1.0 and der(y) = x init 0.0

It would be tempting to define the first equation as: ∀n ∈ IN, xn = xn−1 + time(n)

And the second as:

∀n ∈ IN∗, xn = xn−1 + 1.0 and x0 = 1.0

∀t ∈ IR+, y(t) = 0.0 +
∫ t

0
x(t) dt

i.e., x(t) as a piecewise constant function from IR+ to IR+ with ∀t ∈ IR+, x(t) = xbtc.

In both cases, this would be a mistake. x is defined on a discrete, logical time; time
on an continuous, absolute time.

4/22

Equations with reset

Two independent groups of equations.

der(p) = 1.0 init 0.0 reset 0.0 every up(p - 1.0)

and

x = 0.0 fby x + p

and

der(time) = 1.0 init 0.0

and

z = up(sin (freq * time))

Properly translated in Simulink, changing freq changes the output of x!

If f is running on a continuous time basis, what would be the meaning of:

y = f(x) every up(z) init 0

All these programs are wrongly typed and should be statically rejected. Simulink
does it!

5/22

Discrete vs Continuous time signals

A signal is discrete if it is activated on a discrete clock.

A clock is termed discrete if it has been declared so or if it is the result of a
zero-crossing or a sub-sampling of a discrete clock. Otherwise, it is termed
continuous.

Notation

• up(e) tests the zero-crossing of expression e (from negative to positive).

• Handlers have priorities.

z = 1 every up(x) | 2 every up(y) init 0

• last(x) for the left-limit of signal x.

z = last z + 1 every up(x) | last z - 1 every up(y) init 0

6/22

Examples

Combinatorial and sequential function (discrete time).

let add (x,y) = x + y

let node counter(top, tick) = o where

o = if top then i else 0 fby o + 1

and i = if tick then 1 else 0

let edge x = true -> pre x <> x

• add get type signature: int× int
A→ int

• counter get type signature: bool× bool
D→ int

• edge get type signature: ∀α.α
D→ α

7/22

Connecting a discrete to continuous time

let hybrid counter_ten(top, tick) = o where

(* a periodic timer *)

der(time) = 1.0 /. 10.0 init 0.0 reset 0.0 every zero

and zero = up(time -. 1.0)

(* discrete function *)

and o = counter(top, tick) when zero init 0

The type signature is: bool× bool
C→ int.

Remark: provide ad-hoc programming constructs for periodic timers.

8/22

The Bouncing ball

let hybrid bouncing(x0,y0,x’0,y’0) = (x,y) where

der(x) = x’ init x0

and

der(x’) = 0.0 init x’0

and

der(y) = y’ init y0

and

der(y’) = -. g init y’0 reset -. 0.9 *. last y’ every up(-. y)

Its type signature is: float× float× float
C→ float× float

9/22

The language kernel

• Synchronous (discrete) Lustre-like functions.

• Ordinary Differential Equations (ODE) with reset handlers

d ::= let k f(p) = e | d; d

e ::= x | v | op(e) | e fby e | last(x)

| up(e) | f(e) | (e, e) | let E in e

p ::= (p, p) | x

h ::= e every e || ... || e every e

E ::= x = e | der(x) = e init e reset h

| x = h default e init e

| x = h init e | E and E

10/22

Typing

The type language

σ ::= ∀β1, ..., βn.t
k→ t

t ::= t× t | β | bt
k ::= D | C | A
bt ::= float | int | bool | zero

We restrict to a first order language. Extension to higher-order later (but simple).

Initial conditions
(+) : int× int

A→ int

(=) : ∀β.β × β
A→ bool

if : ∀β.bool× β × β
A→ β

pre(.) : ∀β.β
D→ β

. fby . : ∀β.β × β
D→ β

up(.) : float
C→ zero

11/22

The Type system

Global and local environment

G ::= [f1 : σ1; ...; fn : σn] H ::= [] | H,x : t | H, last(x) : t

Typing predicates

• G, H `k e : t: Expression e has type t and kind k. G, H `k e : t

• H,H `k E : H ′: Equation E produces environment H ′ and has kind k.

Subtyping

An combinatorial function can be passed where a discrete or continuous one is
expected:

∀k, A ≤ k

12/22

A sketch of Typing rules

(der)

G, H `C e1 : float G, H `C e2 : float G, H ` h : float

G, H `C der(x) = e1 init e2 reset h : [last(x) : float]

(and)

G, H `k E1 : H1 G, H `k E2 : H2

G, H `k E1 and E2 : H1 + H2

(eq)

G, H `k e : t

G, H `k x = e : [x : t]

(app)

t
k→ t′ ∈ Inst(G(f)) G, H `k e : t

G, H `k f(e) : t′

13/22

A sketch of the semantics

The base clock: ∂ infinitesimal, the set

BaseClock(∂) = {n∂ | n ∈ ?N}

is isomorphic to ?N as a total order.

For t = tn = n∂ ∈ BaseClock(∂), •t = tn−1 and t• = tn+1.

Clock and signals A clock T is a subset of BaseClock(∂). A signal s is a total
function s : T 7→ V .

If T is a clock and b a signal b : T 7→ B, then T on b defines a subset of T comprising
those instants where b(t) is true:

T on b = {t | (t ∈ T) ∧ (b(t) = true)}

If s : T 7→ ?R, we write T on up(s) for the instants when s crosses zero, that is:

T on up(s) = {t• | (t ∈ T) ∧ (s(•t) ≤ 0) ∧ (s(t) > 0)}

The effect of up(e) is delayed by one cycle.

14/22

Discrete vs Continuous

Let x be a signal with clock domain Tx, it is typed discrete (D(T)) either if it has
been so declared, or if its clock is the result of a zero-crossing or a sub-clock of a
discrete clock. Otherwise it is typed continuous (C(T)). That is:

1. C(BaseClock(∂))

2. If C(T) and s : T 7→ ?R then D(T on up(s))

3. If D(T) and s : T 7→ B then D(T on s)

4. If C(T) and s : T 7→ B then C(T on s)

Correction of the type system:

When an is typed D (resp. C), it is indeed activated on a discrete (resp. continuous)
clock.

15/22

integr#(T)(s)(s0)(hs)(t) = s′(t) where

s′(t) = s0(t) if t = min(T)

s′(t) = s′(•t) + ∂s(•t) if handler#(T)(hs)(t) = NoEvent

s′(t) = v if handler#(T)(hs)(t) = Xcrossing(v)

up#(T)(s)(t) = false if t = min(T)

up#(T)(s)(t•) = true if (s(•t) ≤ 0) ∧ (s(t) > 0) and (t ∈ T)

up#(T)(s)(t•) = false otherwise

16/22

Compilation

The non-standard semantics is not operational. It serves as a reference to establish
the correctness of the compilation. Two problem to address:

1. The compilation of the discrete part, that is, the synchronous subset of the
language.

2. The compilation of the continuous part which is to be linked to a black-box
numerical solver.

Principle

Translate the program into the discrete subset. Compile the result with an existing
synchronous compiler such that it verifies the following invariant:

The discrete state, i.e., the values of delays, will not change if all of the
zero-crossing conditions are false.

17/22

Example (counter)

Add extra input and outputs.

• up(e) becomes a fresh boolean input z and generate an equation upz = e.

• der(x) = e init e0 becomes dx = e init e0.

• A continuous state variable becomes an input.

let node counter_ten([z], [time], (top, tick)) =

(o, [upz], [dtime])

where

dtime = 1.0 /. 10.0 init 0.0 reset 0.0 every z

and o = counter(top, tick) when z init 0

and upz = time -. 1.0

In practice, represent these extra inputs with arrays.

Now, ignoring details of syntax, the function counter_ten can be processed by any
synchronous compiler, and the generated transition function verifies the invariant.

18/22

Interfacing with a numerical solver

We used the Sundials CVODE library. An Ocaml interface has been developed.

Structure of the execution: Run the transition function with two modes, a
continuous one and a discrete one

• Continuous phase: processed by the numerical solver which stops when a
zero-crossing event has been detected.

• Discrete phase: compute the consequence of (one or several) zero-crossing(s).

DI C D
/ init

zc

no-zc zc
no-zc / reinit

19/22

Delta-delayed synchrony vs Instantaneous synchrony

For cascaded zero-crossing, two interpretations of up(e) lead to different results.

• Delta-delay: the effect of a zero-crossing is delayed by one instant.

T on up(s) = {t• | (t ∈ T) ∧ (s(•t) ≤ 0) ∧ (s(t) > 0)}

• Instantaneous: the effect is immediate.

T on up(s) = {t | (t ∈ T) ∧ (s(•t) ≤ 0) ∧ (s(t) > 0)}

We have considered the first solution.

• Simple to compile. But the discrete state can last several instants.

• The second one is (a little) more complicated to compile. But all zero-crossing
can be statically scheduled. Only one instant in the discrete state.

Simultaneous events: A zero-crossing is a boolean signal; they are treated with a
priority. Exactly what Simulink does.

20/22

Conclusion

Proposal

• To mix signals on discrete time and signal on continuous time.

• A Lustre-like proposal to combine stream equations with ODE.

• Divide with a type-system, recycle a existing compiler to use a numerical solver
as a black-box.

Extension

• (Hybrid) hierarchical automata can be translated into the basic language

• Implementation in a real language

21/22

References

[1] Albert Benveniste, Timothy Bourke, Benoit Caillaud, and Marc Pouzet.
Non-standard semantics of hybrid systems: ODE. Submitted for publication,
October 2010.

[2] Albert Benveniste, Timothy Bourke, Benoit Caillaud, and Marc Pouzet. Divide
and recycle: types and compilation for a hybrid synchronous language. In ACM
SIGPLAN/SIGBED Conference on Languages, Compilers, Tools and Theory for
Embedded Systems (LCTES’11), Chicago, USA, April 2011.

[3] Albert Benveniste, Benoit Caillaud, and Marc Pouzet. Non-standard semantics
of hybrid systems: DAE. Submitted for publication, October 2010.

[4] Albert Benveniste, Benoit Caillaud, and Marc Pouzet. The Fundamentals of
Hybrid Systems Modelers. In 49th IEEE International Conference on Decision
and Control (CDC), Atlanta, Georgia, USA, December 15-17 2010.

22/22

