
Towards a Higher-Order Synchronous Data-Flow Language

Jean-Louis Colaço
Esterel Technologies

Toulouse, France

Jean-Louis.Colaco@esterel-
technologies.com

Alain Girault
INRIA Rhône Alpes
Montbonnot, France

Alain.Girault@inrialpes.fr

Grégoire Hamon
∗

Chalmers University
Goeteborg, Sweden

hamon@cs.chalmers.se

Marc Pouzet
†

Université Pierre et Marie Curie
Paris, France

Marc.Pouzet@lip6.fr

ABSTRACT
The paper introduces a higher-order synchronous data-flow
language in which communication channels may themselves
transport programs. This provides a mean to dynamically
reconfigure data-flow processes. The language comes as a
natural and strict extension of both Lustre and Lucid Syn-
chrone. This extension is conservative, in the sense that a
first-order restriction of the language can receive the same
semantics.

We illustrate the expressivity of the language with some
examples, before giving the formal semantics of the underly-
ing calculus. The language is equipped with a polymorphic
type system allowing types to be automatically inferred and
a clock calculus rejecting programs for which synchronous
execution cannot be statically guaranteed. To our knowl-
edge, this is the first higher-order synchronous data-flow
language where stream functions are first class citizens.

Categories and Subject Descriptors
C.3 [Special-purpose and application-based systems]:
Real-time and embedded systems; D.3.2 [Language classi-
fications]: Data-flow languages; F.3.2 [Semantics of pro-
gramming languages]: Operational semantics.

General Terms
Languages, theory.

Keywords
Synchronous data-flow programming language, stream func-
tions, Kahn processes, functional programming, dynamic re-
configuration, type systems.

∗This work was partially financed by the Swedish Founda-
tion for Strategic Research.
†This work was partially financed by the French ACI
Sécurité Informatique Alidecs.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
EMSOFT’04,September 27–29, 2004, Pisa, Italy.
Copyright 2004 ACM 1-58113-860-1/04/0009 ...$5.00.

1. INTRODUCTION
Synchronous data-flow programming languages, such as

Lustre [17] or Signal [16], are domain specific languages
dedicated to the implementation of critical real-time embed-
ded software. They are based on the synchronous model of
concurrency and time, providing high-level constructs while
insuring strong guarantees such as the execution in both
bounded time and memory. They are associated to efficient
compilation methods into sequential code, verification tools,
and automatic distribution mechanisms allowing programs
to be executed in a distributed asynchronous context [2].
Introduced in the eighties, these languages are used now
in various industrial domains such as nuclear power plants,
avionics, and public transportation.

More recently, Lucid Synchrone [25, 11]1 was intro-
duced to demonstrate that Lustre could be extended with
powerful features such as automatic type and clock infer-
ence, as well as some form of higher-order, while retaining
the fundamental properties of Lustre. The language has
been in use for several years now and serves as a labora-
tory for prototyping language extensions and program anal-
ysis [14, 13]. It is used by the Scade team at Esterel
Technologies for experimenting extensions of Scade and
the design of a new compiler [12].

Classical synchronous data-flow languages such as Lus-
tre and Signal are first-order languages in essence: a syn-
chronous stream function corresponds to a finite state ma-
chine and there is a clear separation between a value —
something which can be transported on a channel — and a
program. Higher order comes naturally in this setting as a
way to parameterize a function by another function, as is
done in Lucid Synchrone. Yet, Lucid Synchrone pro-
vides only a restricted form of higher-order since the code
taken as a parameter or returned as a result is determined
statically and cannot evolve dynamically. Moreover, such
static higher order can be eliminated by the compiler by
means of inlining, producing a first-order program2. Thus,
whereas static higher-order increases modularity, the pro-
gram is entirely determined statically, and values which may
be transmitted on channels are still non-functional values.

1http://www-spi.lip6.fr/lucid-synchrone
2Nonetheless, this is certainly not the right way to do. Sepa-
rate compilation is lost and code size may grow dramatically.

http://www-spi.lip6.fr/lucid-synchrone


Nonetheless, even in the area of real-time embedded soft-
ware, there is a need to dynamically reconfigure a system,
that is, to change the code to be executed during its exe-
cution or to dynamically load some code through a chan-
nel. Examples can be found in robot missions, networks
switches, software-defined radio, or in contexts where qual-
ity of services must be adapted during the execution. In
a dynamic reconfiguration, the new program to be run is
not known statically when compiling the original program
(though some constraints should be imposed on it).

Dynamic reconfiguration can be related to general higher
order (i.e., a program becomes a first-class citizen). Whereas
Dynamic reconfiguration has been extensively studied in the
context of asynchronous process calculi [22, 26], existing syn-
chronous data-flow languages do not provide a mean for de-
scribing or analyzing such dynamic features. This is the
purpose of the present paper.

We propose a conservative higher-order extension of an
existing synchronous data-flow language such as Lustre
or Lucid Synchrone. By conservative, we mean that its
first-order restriction corresponds to Lustre and shares its
Kahn [19] semantics. Such an extension is obtained by defin-
ing a synchronous operational semantics as well as type and
clock conditions rejecting programs for which synchronous
execution cannot be statically guaranteed.

First, Section 2 gives an overview of the proposed lan-
guage through examples. Then, the underlying calculus and
its behavioral semantics are formally defined in Section 3.
Section 4 defines static conditions rejecting programs which
cannot be executed synchronously. They are given by means
of type conditions and clock conditions. Section 5 compares
the proposed calculus to existing ones, and finally, Section 6
gives future research directions and concludes.

2. MOTIVATIONS AND OVERVIEW
Our motivations are twofold. First, we advocate that

higher-order provides more modular ways to specify pro-
grams mixing data-flow and control. Such programs are
classically found in automatic control software, as is the case
of the Airbus flight control software. Second, we advocate
that higher-order is an essential feature in the domain of
embedded systems like software-defined radio. We illustrate
with several examples the features of the language and its
expressive power. In these examples, we use clocks, a stan-
dard practice in data-flow programming languages. Indeed,
such languages use clocks as powerful control structures to
manipulate data, and clocks are a form of temporal types.
Basically, it suffices to know that the clock of a stream de-
fines the sequence of logical instants where it bears a value.

2.1 The need for better modularity
In synchronous data-flow languages, functions are either

sequential or combinatorial : in the first case their results at
a given instant depends on the history of their inputs, while
in the second case they do not3. For example, the function
computing the average sequence of two input sequences is a
combinatorial function, written as:

let average (x, y) = (x + y) / 2

3The term sequential comes from the electronic circuit com-
munity. It designates circuits with latches, as opposed to
combinatorial circuits.

Its type signature is:

node average : int * int -> int

which states that average is a combinatorial function from
a pair of integer streams to an integer stream.

A typical example of a sequential function is the rectangle
integration function. It is written as follows4:

let node rectangle (init, dt, dx) = x where

rec x = init -> pre x +. dx *. dt

This time, the output x is defined by a recursive equation.
+. and *. stand for the floating point addition and multi-
plication. The initialization operator -> and the delay pre

are the ones of Lustre and Lucid Synchrone.
Here, the rectangle function takes three streams, init,

dt, and dx, and returns a stream x so that xn = init1 +
Σn

i=2 dxi ∗ dti. Its type and clock signatures, as synthesized
by the type system and the clock calculus, are respectively:

node rectangle : float * float * float => float

node rectangle :: ’a * ’a * ’a -> ’a

The rectangle function is a sequential function and this is
why its definition is annotated with the additional keyword
node. In the type signature, we use -> for combinatorial
functions and => for sequential functions. The clock signa-
ture specifies that the three inputs of rectangle must have
the same clock, symbolically noted ’a, which is also the clock
of the result. Now, a function can be instantiated:

let node double_rect (x0, dx0, dt, d2x) = x where

rec dx = rectangle (x0, dt, d2x)

and x = rectangle (dx0, dt, dx)

node double_rect :

float * float * float * float => float

node double_rect :: ’a * ’a * ’a * ’a -> ’a

This double integration is “wired” with the rectangle in-
tegrating function and must be rewritten if a better inte-
grating function is preferred. Higher-order can be used here
to obtain a more generic code:

let node double (node integr) (x0,dx0,dt,d2x) = x

where rec dx = integr (x0, dt, d2x)

and x = integr (dx0, dt, dx)

node double : (’a * ’b * ’c => ’c)

-> (’a * ’a * ’b * ’c) => ’c

node double :: (’a * ’b * ’c -> ’c)

-> (’a * ’a * ’b * ’c) -> ’c

The node double is parameterized by a node integr (this
is why this parameter is preceeded by the keyword node)
and a tuple (x0,dx0,dt,d2x). Note that the type and clock
calculus generate signatures as general as possible. One in-
ferred constraint in the type signature comes from the fact
that dx is used as the third parameter of integr, hence the
type signature ’a * ’b * ’c => ’c for integr. Similarly,
the type signature of the tuple (x0,dx0,dt,d2x) is inferred
to be (’a * ’a * ’b * ’c). Now, the double node can be
instantiated as follows:
4Except the extra keyword node for qualifying sequential
functions, programs are written in Lucid Synchrone (ver-
sion 2.0) syntax. See [25] for a tutorial introduction of the
language.



let double_rect = double rectangle

When the slope of the function to be integrated is too
steep, it is preferable to use a trapeze integration:

let node trapeze (init, dt, dx) = x where

rec x = init -> pre x + ((dx + pre dx) / 2) * dt

let double_trapeze = double trapeze

While modularity has increased through the use of func-
tions as parameters, we can observe that this higher-order
feature is static: the first argument of the function double

is a constant node defined at top-level and can not evolve
dynamically. What about a more general case where the
integrating function in argument is not known at compile
time and may evolve during the execution? In other words,
what about having streams of (stream) functions? In or-
der to use another integration method, we want this process
to be reconfigured dynamically according to some criteria,
materialized by the res argument:

let node server (node intgr, res) (x0, dt, dx) = o

where

rec o = (intgr every res) (po, dt, dx)

and po = x0 -> pre o

node server :

(’a * ’b * ’c => ’a) * bool

-> ’a * ’b * ’c => ’a

node server :: ’a * ’a -> ’a * ’a * ’a -> ’a

Think of the server function as a process which expects
two inputs and returns one output. Its first input is a stream
of sequential functions and (res, dt, dx) is a structured
input of three streams. (po, dt, dx) is the current input
given to the integrating function. The intuitive behavior of
the server function is the following: every time the boolean
res is true, a new reconfiguration occurs by instantiating the
current value of intgr. Thus, if f is a stream of stream func-
tions and r is a boolean stream, the construction f every r
stands for a stream function which is reseted every time r
is true. The following table is an example of a run of the
server function:

res f f f t f f f t f f
intgr i1 i2 i3 i4 i5 i6 i7 i8 i9 i10
dt 1 1 1 1 1 1 1 1 1 1
dx dx1 dx2 dx3 dx4 dx5 dx6 dx7 dx8 dx9 dx10

(intgr every res)
(po, dt, dx)

u1 u2 u3 v1 v2 v3 v4 w1 w2 w3

i1(po, dt, dx) u1 u2 u3 ⊥ ⊥ ⊥ ⊥ ⊥ ⊥ ⊥
i4(po, dt, dx) ⊥ ⊥ ⊥ v1 v2 v3 v4 ⊥ ⊥ ⊥
i8(po, dt, dx) ⊥ ⊥ ⊥ ⊥ ⊥ ⊥ ⊥ w1 w2 w3

(intgr every res) (po, dt, dx) first computes the re-
sult of i1(po, dt, dx), until the reset condition res is true,
which occurs at the fourth instant. When res is true, a re-
configuration occurs and the system computes i4(po, dt,

dx), and so on.
Looking at the clock of the server function, we can ob-

serve that the clock of intgr is ’a. This means that intgr

is a stream which is present when ’a is true.
Now, we have to feed the function main with some input.

We define the generic two-state automaton switch and a
feed function.

let node switch (o1, o2, c1, c2) = o where

rec (o, s1, s2) =

if c1 & true -> pre s1 then

(o2, false, true)

else if false -> pre s2 then

if not c2 then

(o2, false, true)

else

(o1, true, false)

else

(o1, true, false)

node switch : ’a * ’a * bool * bool => ’a

node switch :: ’a * ’a * ’a * ’a -> ’a

The switch function expects four streams and returns a
stream. Now, we have to transform the functions rectangle
and trapeze into constant streams of functions. This is
achieved by the let/static construction:

let static rectangle = rectangle

let static trapeze = trapeze

node rectangle : float * float * float => float

node rectangle :: ’a

node trapeze : float * float * float => float

node trapeze :: ’a

The construction let static x = e defines the stream x
which is equal to the value of e. Such a definition is accepted
by the compiler if the value of e does not evolve during the
execution. In the above example, rectangle is a constant
functional value and this is why it can be transformed into
an infinite constant stream (we also say lifted as a stream).

The feed function selects the trapeze integrator as soon
a the slope is too steep and switches to the rectangle in-
tegrator otherwise. To avoid oscillation, we introduce an
hysteresis cycle5.

let node feed (dx, thres1, thres2) = (intgr, new)

where

rec up = abs(dx) > thres2

and down = abs (dx) < thres1

and intgr = switch (rectangle, trapeze, up, down)

and new = up or down

node feed :

float * float * float

=> (float * float * float => float) * bool

node feed :: ’a * ’a * ’a -> ’a * ’a

Clearly, higher-order provides better modularity here. In
particular, the switch function can be used equally well with
scalars as with functions!

2.2 The need for dynamicity
Software-defined radio has recently emerged as an impor-

tant research area for mobile telephone operators. Quoting
Mitola, “a software radio is a radio whose channel mod-
ulation waveforms are defined in software” [23, 4]6. The

5Using two thresholds to create a hysteresis cycle is standard
practice in automatic control.
6http://ourworld.compuserve.com/homepages/jmitola

http://ourworld.compuserve.com/homepages/jmitola


basic functionalities that both the emitter (e.g., the base
station, the wireless network hub...) and the receiver (e.g.,
the cell phone terminal, the PDA...) must run are digital
to analog conversion, analog to digital conversion, modula-
tion/demodulation, radio frequency conversion, and so on.
Software radio means that these functionalities are imple-
mented as software modules run on general purpose hard-
ware. There are two reasons for this:

• The increase in complexity of functions and compo-
nents, coupled with the rapid changes in standards, re-
quires the modification of the functionalities of existing
base stations several times during their life. Thanks to
software radio, these changes will be conducted by re-
programming some modules rather than by replacing
some hardware or maintaining several infrastructures
in parallel.

• The mobile terminal has to adapt seamlessly to its en-
vironment, for instance when moving from a UMTS
zone to a WIFI zone. In order to achieve this, it must
update its signal processing functions on the fly. There
are even cases where the mobile terminal does not pos-
sess a copy of some of the modules that are needed to
replace existing ones. Thanks to software radio, mod-
ules will be dynamically downloaded from the local
base station to the mobile terminal.

A concrete example where dynamicity is required is the
secure downloading procedure run by a terminal handset.
It involves five cryptographic components [20]: three primi-
tives (a hash function, a digital signature, and a symmetric
key ciphering) and two keys (one secret and one public).
The problem is that, at some point during the life of the
terminal, a security flaw might be discovered, incriminating
one or more of these components, therefore requiring their
dynamic update. But to achieve this, the secure download
procedure must be run, which requires the usage of a secure
version of all five components. This is why each terminal
possesses, for each component, several versions of it with
different performance levels (teh most performant one being
used). When one component currently in use is detected to
be flawed, it is first dynamically replaced by another safer
but slower version of itself, then this new version is used to
download the patched version of the flawed component.

As of today, the existing solutions for programming re-
configurable systems are mainly based on middleware ap-
proaches (e.g., the Fractal component model [8], the RMA
approach [24], the Erlang language [1] used for program-
ming networks switches) or general asynchronous process
calculi [22, 26] and languages [15]. The drawback of mid-
dleware approaches is the absence of high-level constructs
and clear semantics, in particular for time, communication
and parallel composition. Asynchronous process calculi and
associated languages are dedicated to global computing in
an open asynchronous environment. They provide power-
ful features such as dynamic creation and reconfiguration as
well as mobility features. Nonetheless, asynchrony comes
at the price of non-determinism and there is no simple se-
mantics of time, making their use in the context of safety
critical embedded systems inappropriate. Moreover, identi-
fying sub-parts of the calculus for which synchronous execu-
tion and efficient compilation can be guaranteed statically
remains open.

Thus, starting from the observation that the synchronous
model has proved to be well adapted for programming digital
components, we propose here an extension of this model that
uses higher-order features to address the above-mentioned
needs. This is a first step toward reconfigurable systems,
and we only address language aspects in the present paper.

As a final remark, it is important to notice that build-
ing our proposal on the synchronous model does not mean
that the global system is expected to run in a synchronous
manner; however, synchrony ensures that an asynchronous
implementation of the system will not need synchronisation
features at run-time involving possibly unbounded buffer-
ing [9]. Yet, the asynchronous execution of the proposed
calculus and the generalization of distribution techniques
such as [10] remains to be done.

2.3 Stream functions vs streams of functions
Lifting functional values to build stream values raises sev-

eral problems. We investigate them informally in this sec-
tion, before tackling them formally in the semantics (Sec-
tion 3).

2.3.1 Instantiating a non constant stream of functions
The first problem is that one should be very careful when

instantiating a non constant stream of sequential functions.
Consider for instance f and g, which have the same type
and clock signatures:

let node f x = y where rec y = 0 -> pre y + x

node f : int => int

node f : ’a -> ’a

let node g x = y where

rec y = 0 -> pre (1 -> pre y + x) + pre y

node g : int => int

node g : ’a -> ’a

Note that f is a sequential function with only one memory,
while g has two. Below is an example of a run of the f and
g functions, fed with a simple constant stream of integers z:

z 1 1 1 1 1 1 1 1 ...

f(z) 0 1 2 3 4 5 6 7 ...

g(z) 0 1 2 4 7 12 20 33 ...

The stream function f is instantiated by simply writing
the application f(z). Consider now the functions f and g

lifted as the constant streams of functions lf and lg, and
the non constant stream of functions h:

let static lf = f

let static lg = g

let h = lf -> lg

At the first instant h bears the value f, while at the sub-
sequent instants it bears the value g. What happens if we
instantiate g with the stream z? Computing (g 1) (g 1)

(g 1) (g 1)... and transmitting from one instant to the
next the values stored in the two memories is probably what
the user expects since it coincides with g(z). In other words,
the constant stream of functions g instantiated with its ar-
gument z coincides with the result stream of the stream



function g, fed with the successive values of the stream of
integers z.

But what happens now if we instantiate h with the same
stream z? Computing (f 1) (g 1) (g 1) (g 1)... and
trying to transmit the values stored in the memories does
not work since f and g do not have the same number of mem-
ories! In contrast, building at each instant a fresh instanti-
ation of the h function works but is costly and is probably
not what the user expects. This is why we have introduced
the construction every in Section 2.1: to allow the user
to instantiate a stream of functions with some arguments
and to specify exactly at what instants the instantiation of
the code must be done. Thus, the regular application h(z)

where h is a stream will be rejected by the compiler whereas
the following program will be accepted:

let node main z c = y where

rec h = lf -> lg

and y = (h every c)(z)

That way, the stream of functions lf -> lg is instantiated
(with a fresh memory) at each instant where c bears the
value true.

2.3.2 Free variables
The second problem is raised by free variables. Consider

for instance:

...

let node f x = x -> y

Here, y is a free variable of the stream function f. This
function f can be instantiated with any stream of integers
by writing simply f(z) if z is an integer stream. Now, if
we consider f as a stream of functions, then it is legiti-
mate to write pre f. But what does it mean? Actually,
the value of f at a given instant can be memorized an arbi-
trary number of times (e.g., pre(pre(pre f))). And each
time, the context of f, i.e., the values of its free variables,
must be stored for further instantiation. Whereas emitting
a function with evolving free variables is useful, its seman-
tics is still unclear and we propose to reject those programs.
Thus, we shall consider that only “constant” functions, that
is, functions which do not depend on evolving free variables,
can be transformed into streams. This is achieved with the
let/static construction, which lifts a constant value into
an infinite constant stream. Here, the following definition
will be rejected, because f depends on some stream y which
may evolve during the execution:

let static lf = f

3. SYNCHRONOUS SEMANTICS
In this section, we define a synchronous data-flow calculus

into which the source programs given in Section 2 can be
easily translated.

An expression e may be an immediate value imported
from the host language (i), a variable (x), the application of
an initialized delay (e fby e)7, a combination (merge e e e), a

7fby is the initialized delay such that e1 -> e2 can be trans-
lated into if true fby false then e1 else e2. An uninitial-
ized delay pre (e) can be translated into an initialized delay
provided that expressions are correctly initialized [12].

sampling operator (e when e), a reconfiguration (e every e),
and a pair (e, e) with its access functions fst and snd, a
combinatorial function (λx.e where D), or finally a node
(Λx.e where D).

Definitions (D) contain equations (x = e), parallel equa-
tions (D and D), sequential equations (D in D), the result
of an application (x = e(e)), clock definitions (clock(x) =
e), definitions of static values (static(x) = e), reseted defi-
nitions (reset x = e(e) every x) and sequences of equations
(do D until e then D).

e ::= i | x | e fby e | merge e e e | e when e
| (e, e) | fst e | snd e | e every e
| λx.d | Λx.d

d ::= e where D
D ::= x = e | clock(x) = e | static(x) = e

| x = e(e) | D in D | D and D
| reset x = e(e) every x
| do D until e then D

i ::= true | false | 0 | . . .

Our calculus has a 3-address code flavor since every result
of a computation (i.e., an application) must be named, fol-
lowing the presentation of the semantics of Signal [3]. We
adopt a slightly different syntax for our calculus to ease the
description of the semantical rules.

Thus, the definition of a node let node f x = e where D
as given in Section 2 is translated into the definition f =
Λx.e where D. The function definition let f x = e where D
is translated into the definition f = λx.e where D. A com-
plex equation of the form f = e1(e2) is translated into the se-
quential equations x1 = e1 in x2 = e2 in f = x1(x2) where
x1 and x2 are fresh variables.

In this calculus, the primitive every used in the introduc-
tion is a shortcut for:

f every c = Λx.y where reset y = f(x) every c

The semantics is given by reaction rules. We define the
set of instantaneous values (v), reaction environments (R),
and four predicates defining reactions.

Values: v ::= p | (v, v) | ⊥
c ::= i | λx.e where D | Λx.e where D
abs ::=⊥ | (abs, abs)
p ::= c | (p, p)

Environment: R ::= [v1/x1, ..., vn/xn]

Reaction: R ` e1
v−→ e2

R ` D
R′
−→ D′ with R′ ⊆ R

Sequence: S ::= ε | R.S

Execution: S ` D : S′

Instantaneous values (v) are made of absent values (⊥),
immediate values (i), combinatorial or sequential functions,
and pairs of values. We distinguish present values (p) from
absent ones (abs). A composed value is present if all its
components are present. A composed value is absent if all
its components are absent.

Dom(R) denotes the domain of R. V ar(R) is the set of
free variables appearing in R. R1, R2 denotes the concatena-



tion of R1 and R2, provided there is no name conflict, that
is, Dom(R2) ∩ Dom(R1) = ∅. In other words, a variable
defined in R2 must not be already defined in R1. Finally,
rules are considered modulo renaming (α-conversion).

The predicate R ` e1
v−→ e2 means that the expression

e1 under the environment R emits the value v and rewrites

into the expression e2. The predicate R ` D
R′
−→ D′ means

that the declaration D defines the instantaneous environ-
ment R′ and rewrites into the declaration D′. The complete
execution of a program, under a sequence of input environ-
ments S = R1.R2... produces a sequence of environments
S′ = R′

1.R
′
2... so that:

Rin , R ` D
Rout−→ D′ Rout ⊆ R S ` D′ : S′

Rin .S ` D : Rout .S
′

During a synchronous reaction, computations may ob-
serve both input and local or output signals emitted during
the reaction. This is why the reaction is computed in an
extended environment Rin , R containing input, local, and
output signals. Moreover, this extended environment R is
temporary and can be removed at the end of the reaction.

These two predicates are formally defined in Figures 1, 2,
and 3. Figure 1 gives the semantics to the set of synchronous
primitives following standard formulation [18, 11]. The ini-
tialized delay e1 fby e2 returns the first value of e1, then it
emits the previous value of e2. Thus, it is equivalent to
e1 -> pre (e2). The sampling operator when is the one of
Lustre. merge is borrowed from Lucid Synchrone. The
sampling operator when emits a value if its two inputs are
present and the second one is true; the merge operator com-
bines two complementary streams with opposite clocks.

Let us comment on rules in Figure 2. Constant values
(immediate of functional ones) can be emitted or not (rules
(Constant-abs) and (Constant)). A signal x emits its current
value (rule (TAUT)). Rules (DEF) and (AND) are for variable
definitions and parallel definitions respectively. Some def-
initions may introduce clock names (rule (Clock)) or static
values (rule (Static)). A clock name is a particular boolean
variable which can then be used to sample a stream (this
construction has been first introduced in [13]). The static

keyword states that the value is static and will not evolve
during the execution of the program. The rules (app) and
(App) express how functions are applied. A function is in-
stantiated once by replacing itself by its body and argu-
ments. Finally, the rules for building and un-building pairs
are straightforward ((PAIR), (fst), and (snd)).

Finally, we add rules for reconfiguration operators (Fig-
ure 3). While the inputs of a reset operator are absent,
a reset operator computes nothing (rule (Reset-abs)). When
the condition is present, the body is instantiated and reset

rewrites into a sequential operator do/until (rule (Reset)).
The body D is computed while the condition e is false.
When the condition becomes true, the continuation D2 is
activated (rules (Do-abs), (Do-t) and (Do-f)).

4. TYPES AND CLOCKS

4.1 Typing
Our calculus is statically typed and we give it an ml-like

type system [21]. We distinguish type schemes (σ) which
can be quantified from regular types (t). A regular type

(Fby-abs)
R ` e1

abs−→ e′
1 R ` e2

abs−→ e′
2

R ` e1 fby e2
abs−→ e′

1 fby e′
2

(Fby)
R ` e1

p1−→ e′
1 R ` e2

p2−→ e′
2

R ` e1 fby e2
p1−→ p2 fby e′

2

(When-abs)
R ` e1

abs−→ e′
1 R ` e2

abs−→ e′
2

R ` e1 when e2
abs−→ e′

1 when e′
2

(When-t)
R ` e1

p−→ e′
1 R ` e2

true−→ e′
2

R ` e1 when e2
p−→ e′

1 when e′
2

(When-f)
R ` e1

p−→ e′
1 R ` e2

false−→ e′
2

R ` e1 when e2
abs−→ e′

1 when e′
2

(Merge-abs)
R ` e1

abs−→ e′
1 R ` e2

abs−→ e′
2 R ` e3

abs−→ e′
3

R ` merge e1 e2 e3
abs−→ merge e′

1 e′
2 e′

3

(Merge-t)
R ` e1

true−→ e′
1 R ` e2

p−→ e′
2 R ` e3

abs−→ e′
3

R ` merge e1 e2 e3
p−→ merge e′

1 e′
2 e′

3

(Merge-f)
R ` e1

false−→ e′
1 R ` e2

abs−→ e′
2 R ` e3

p−→ e′
3

R ` merge e1 e2 e3
p−→ merge e′

1 e′
2 e′

3

Figure 1: Synchronous primitives

is made of basic atomic types (B), combinatorial function

types (t
0−→ t) and sequential function types (t

1−→ t), prod-
uct types (t×t) and type variables (α). Combinatorial func-
tion types were printed t1 → t2, while sequential functions
(i.e., node) types were printed t1 ⇒ t2 in Section 2.

σ ::= ∀α.σ | t
t ::= B | t k−→ t | t× t | α
B ::= int | bool | . . .
k ::= 0 | 1
H ::= [x1 : σ1, ..., xn : σn]

4.1.1 Initial conditions, instantiation and general-
ization

Types can be instantiated or generalized over free type
variables. A type scheme ∀α1, ..., αn.t can be instantiated
into a type t[t1/α1, ..., tn/αn] by substituting types ti to type
variables αi. A type t can be generalized into a type scheme
∀α1, ..., αn.t if the type variables αi do not appear free in
the typing environment H. FV (t) stands for the set of type
variables (α) from t, FV (σ) stands for the set of free type
variables from σ and FV (H) stands for the set of free type
variables appearing in H.

t[t1/α1, ..., tn/αn]≤∀α1, ..., αn.t

genH(t) = ∀α1, ..., αn.t where
{α1, ..., αn} = FV (t)− FV (H)

genH(H0)(x) = genH(H0(x))



(Constant-abs) R ` c
abs−→ c (Constant) R ` c

c−→ c (TAUT) R[v/x] ` x
v−→ x

(DEF)

R ` e
v−→ e′

R ` x = e
[v/x]−→ x = e′

(AND)
R ` D1

R1−→ D′
1 R ` D2

R2−→ D′
2

R ` D1 and D2
R1,R2−→ D′

1 and D′
2

(SEQ)
R ` D1

R1−→ D′
1 R ` D2

R2−→ D′
2

R ` D1 in D2
R1,R2−→ D′

1 in D′
2

(Clock)

R ` e
v−→ e′

R ` clock(x) = e
[v/x]−→ clock(x) = e′

(Static)

R ` e
v−→ e

R ` static(x) = e
[v/x]−→ static(x) = e

(app)
R ` e1

λy.e where D−→ e′
1 R ` x = e and y = e2 and D

R′
−→ D′

R ` x = e1(e2)
R′
−→ D′

(App)
R ` e1

Λy.e where D−→ e′
1 R ` x = e and y = e2 and D

R′
−→ D′

R ` x = e1(e2)
R′
−→ D′

(PAIR)

R ` e1
v1−→ e′

1 R ` e2
v2−→ e′

2

R ` (e1, e2)
(v1,v2)−→ (e′

1, e
′
2)

(fst)
R ` e

(v1,v2)−→ e′

R ` fst e
v1−→ fst e′

(snd)
R ` e

(v1,v2)−→ e′

R ` snd e
v2−→ snd e′

Figure 2: Behavioral synchronous semantics

Expressions and declarations are typed in an initial envi-
ronment H0.

H0 = [. fby . : ∀α.α
0−→ α

1−→ α,

. when . : ∀α.α
0−→ bool

1−→ α,

merge . . . : ∀α.bool
0−→ α

0−→ α
1−→ α,

fst . : ∀α1, α2.α1 × α2
0−→ α1,

snd . : ∀α1, α2.α1 × α2
0−→ α2]

Typing is obtained by asserting judgments of the form

H
k

` e : t and H
k

` D : H0. The first one states that “the
expression e has type t in environment H”. The second
one states that “the definition D is well typed in H and
produces the typing environment H0”. k = 0 means that
the expression is combinatorial (no internal state is modified
during the computation) whereas k = 1 stands for a statefull
expression. These two predicates are defined in Figure 4.

If a variable has a type scheme, then it can be instantiated
(rule (Inst)). A local definition x = e defines a local type
environment (rule (Def)). An application is typed by first
typing the function and then its argument (rule (app)). In
doing so, we must check that the function is combinatorial if
the current expression is expected to be combinatorial. This
is ensured by the inequality k1 ≤ k.

Apart from the separation between combinatorial and se-
quential functions and up to syntactic details, this type sys-
tem is a classical ml type system. It provides type polymor-
phism and type inference. In Lustre or Signal, programs
are also statically typed but types are monomorphic and
they are verified instead of being synthesized. Type poly-
morphism was also provided in Lucid Synchrone [25] but
its type system has never been published so far. Moreover,
the type system of Lucid Synchrone and its implemen-
tation were far more complex than what is presented here.
In particular, it incorporated equational rules to deal with
pairs of streams and stream of pairs, and streams of func-

tions were forbidden. Finally, it appears that the separation
between combinatorial and sequential functions introduced
in the present calculus by giving them different types eases
the communication between the host language and the data-
flow part8. Thus, the present type system is both simpler
and more expressive.

4.2 Clock calculus
The purpose of the type calculus is to check the data con-

sistency of the program. A regular type gives some informa-
tion on what is transported on a signal. The purpose of the
clock calculus is to check the time consistency of the pro-
gram. Thus, a clock can also be considered as a type that
gives some information on when a value is transported on a
signal.

In this paper, we adopt the clock as type approach which
has been introduced already [11]. In this section, we define
the clock type language and the clock calculus and base it
on the system presented in [13].

The goal of the clock calculus is to produce judgments of
the form H ` e : cl for expressions and H ` D : H0 for
definitions. H ` e : cl means that “the expression e has
clock cl in the environment H”. H ` D : H0 means that
“the definition D defines the local environment H0 under
the environment H”.

ρ ::= ∀α1, ..., αn.∀X1, ..., Xm.cl | cl
cl ::= cl → cl | cl × cl | (c : s) | s
s ::= base | α | s on c
c ::= X | n
H ::= [x1 : ρ1, ..., xn : ρn]

We distinguish clock schemes (ρ) that can be quantified,
from regular clocks (cl). A regular clock is made of function

8Such a separation already exists in industrial tools such as
Scade.



(Reset-abs)
R ` e1

abs−→ e′
1 R ` e2

abs−→ e′
2 R ` e3

abs−→ e′
3

R ` reset x = e1(e2) every e3
[abs/x]−→ reset x = e′

1(e
′
2) every e′

3

(Reset)
R ` e3

i−→ e′
3 R ` x = e1(e2)

R′
−→ D′

R ` reset x = e1(e2) every e3
R′
−→ do D′ until e′

3 then reset x = e1(e2) every e′
3

(Do-abs)
R ` e

abs−→ e′ R ` D1
R1−→ D1 R ` D2

R2−→ D2

R ` do D1 until e then D2
R1−→ do D1 until e then D2

(Do-f)
R ` e

false−→ e′ R ` D1
R1−→ D′

1

R ` do D1 until e then D2
R1−→ do D′

1 until e′ then D2

(Do-t)
R ` e

true−→ e′ R ` D2
R2−→ D′

2

R ` do D1 until e then D2
R2−→ D′

2

Figure 3: Behavioral synchronous semantics for imperative constructs

(Inst)

t ≤ H(x)

H
k

` x : t
(Clock)

H
k

` e : bool

H
k

` clock(x) = e : [bool/x]

(Def)
H

k

` e : t

H
k

` x = e : [t/x]

(Static)
H

0

` e : t

H
k

` static(x) = e : [t/x]

(app)
H

k

` e1 : t1
k1−→ t2 H

k

` e2 : t1 k1 ≤ k

H
k

` x = e1(e2) : [t2/x]

(fun)
H, x : t1

0

` d : t2

H
k

` λx.d : t1
0−→ t2

(Fun)
H, x : t1

1

` d : t2

H
k

` Λx.d : t1
1−→ t2

(And)
H

k

` D1 : H1 H
k

` D2 : H2

H
k

` D1 and D2 : H1, H2

(Seq)
H

k

` D1 : H1 H, genH(H1)
k

` D2 : H2

H
k

` D1 in D2 : H2

(Reset)
H

1

` e1 : t2
1−→ t1 H

1

` e2 : t2 H
1

` e3 : bool

H
1

` reset x = e1(e2) every e3 : [t1/x]

(Do)
H

1

` D1 : H1 H
1

` e : bool H
1

` D2 : H2 H2 ⊆ H1

H
1

` do D1 until e then D2 : H2

(Where)
H, H0

k

` D : H0 H, H0

k

` e : t

H
k

` e where D : t

(Pair)
H

k

` e1 : t1 H
k

` e2 : t2

H
k

` (e1, e2) : t1 × t2

Figure 4: Typing rules

clocks (cl → cl), product clocks (cl × cl), a dependence (c :
s), and stream clocks (s). A stream clock may be the base
clock (base), a clock variable (α), a sampled clock (s on c)
on a condition c. Here, c can be either a name (n) or a
variable (X).

FV (cl) defines the set of free variables (α) of cl. Dom(H)
is the domain of H. FN (cl) stands for the set of free name
variables (X). N (cl) is the set of names (n) of cl. Their
definitions are straightforward and not given here.

Expressions and declarations are clocked in an initial en-
vironment H0 giving clock types to synchronous primitives.
The rules for these primitives are the one given in [13] and
we do not go into much details. fby expects its two argu-
ments to be on the same clock. An expression e1 when e2

is well clocked if e1 and e2 have the same clock α. In that
case, the clock of the result is a sub-clock of α that we write
α on X where X stands for the boolean value of e2. The
clock type (X : α) given to e2 says that e2 has clock α and
has some value X. merge expects a boolean stream and two
complementary streams (that is, with opposite clocks).

H0 = [. fby . : ∀α.α → α → α,
. when . : ∀α.∀X.α → (X : α) → α on X,
merge . . . : ∀α.∀X.

(X : α) → α on X → α on not X → α,
fst . : ∀α1, α2.α1 × α2 → α1,
snd . : ∀α1, α2.α1 × α2 → α2]

Clocks can be instantiated or generalized in the following
way:

cl[~s/~α][~c/ ~X] ≤∀~α.∀ ~X.cl

genH(cl) = ∀α1, ..., αn.∀X1, ..., Xm.cl where
{α1, ..., αn} = FV (cl)− FV (H) and
{X1, ..., Xm} = FN (cl)− FN (H)

genH(H0)(x) = genH(H0(x))

When clocking programs, we have to consider some equiv-
alence rules between clocks. For example, the initialized
delay fby receives a clock type ∀α.α → α → α, meaning



that it takes two streams of values and emits a stream of
values with the same clock. But, what about the clock of
an expression (1, 2) fby (3, 4)? First, the clock of the pair of
streams (1, 2) is α1 × α2. As is, the clock type variable α
cannot be instantiated by a pair clock (remind that a clock
type variable is given to signals and can only be instanti-
ated by stream clock types (s)). We say that (1, 2) is a pair
of streams and it can be considered as a stream of pairs as
soon as the clocks of the two streams can be synchronized,
that is, they can be made equal. Thus, we consider that a
structured value can receive a stream clock s when all its
components can be synchronized on that clock. We shall
write cl �H s when a clock type cl can be synchronized to
the stream clock s (called its apparent clock). The predicate
is defined below:

(Eq) s �H s

(Product)
cl1 �H s cl2 �H s

cl1 × cl2 �H s

(Fun)
cl1 �H s cl2 �H s FV (s) ∩ FV (H) = ∅

cl1 → cl2 �H s

A pair clock cl1 × cl2 can be synchronised with s as soon
as both cl1 and cl2 can be synchronised with s. A func-
tion clock type cl1 → cl2 can be considered as a stream of
functions with apparent clock s as soon as cl1 and cl2 can
be synchronised with clock s, and s can be fully general-
ized. This means that we have written a constant stream
function. This is stated by rule (Fun).

The two predicates H ` e : cl and H ` D : H0 for clocking
expressions and definitions are defined in Figure 5.

The system states that an immediate value i may receive
any stream clock s (rule (Im)). The clock of a variable can be
instantiated (rule (Inst)). In our calculus, clocks are intro-
duced with a special keyword clock, following the approach
first introduced in [13]. The clock construction states that
x is a boolean stream with clock s (rule (Clock)). Moreover,
this boolean stream can in turn be used to down-sample an
other stream, and we give a unique symbolic value n so that
only streams down-sampled with the same source name n
can be considered to be synchronous. An expression e is a
static expression if its clock can be synchronised with some
clock s which can itself be fully generalised (rule (Static)).
The clock rules for definitions, applications and functions
are straitforward. The reset constructions expects all its
argument to be synchronised on some clock s.

5. RELATED WORK
Higher-order features and dynamic reconfiguration has

been extensively studied in the context of asynchronous and
non-deterministic process calculi [22, 26]. These calculi are
dedicated to global computing in an open network and thus,
provide very powerful features (e.g., dynamic creation, mi-
gration, scope extrusion phenomena). Nonetheless, this ex-
pressivity comes at a price. In particular, recognizing sub-
sets which are deterministic and can be executed in both
bounded time and memory is hard. We address the more
restrictive domain of embedded systems for which we need
to ensure safety properties (e.g., execution in bounded time
and memory, deadlock freedom). This is why we build our
proposal on the synchronous model, and study the mini-
mal extension that allows us to increase modularity and to

(Im) H ` i : s (Inst)
cl ≤ H(x)

H ` x : cl

(Clock)
H ` e : s n 6∈ N (H)

H ` clock(x) = e : [(n : s)/x]

(Static)
H ` e : cl cl �H s FV (s) ∩ FV (H) = ∅

H ` static(x) = e : [s/x]

(Def)
H ` e : cl

H ` x = e : [cl/x]

(app)
H ` e1 : cl1 → cl2 H ` e2 : cl1

H ` x = e1(e2) : [cl2/x]

(fun)
H, x : cl1 ` d : cl2

H ` λx.d : cl1 → cl2
(Fun)

H, x : cl1 ` d : cl2

H ` Λx.d : cl1 → cl2

(And)
H ` D1 : H1 H ` D2 : H2

H ` D1 and D2 : H1, H2

(Seq)
H ` D1 : H1 H, genH(H1) ` D2 : H2

H ` D1 in D2 : H2

(Reset)
H ` e1 : s H ` e2 : s H ` e3 : s

H ` reset x = e1(e2) every e3 : [s/x]

(Do)
H ` D1 : H1 H ` e : s H ` D2 : H2 H2 ⊆ H1

H ` do D1 until e then D2 : H2

(Where)
H, H0 ` D : H0 H, H0 ` e : cl

H ` e where D : cl

(Pair)
H ` e1 : cl1 H ` e2 : cl2

H ` (e1, e2) : cl1 × cl2

Figure 5: Clocking rules

describe systems that can emit or receive programs.
This work is also related to the reactive approach pio-

neered by Boussinot [6, 7]. This approach combines the
principles of synchronous programming — the existence of
a global time shared by all the processes put in parallel —
with the ability to dynamically create processes.

Besides the π-calculus and its variants for mobility [22,
26], Boudol has recently proposed ULM, “Un Langage pour
la Mobilité” [5]. ULM has a traditional call-by-value func-
tional and imperative core, enhanced with some reactive
constructs for emitting signals, suspending, and aborting,
and constructs for manipulating threads and mobile agents.
ULM was inspired by SL [6] for the reactive part, and by
process calculi for the mobility part. The principle is that
a thread is suspended as soon as it refers to an absent sig-
nal. When all the threads are suspended or terminated,
agents willing to migrate do so, possibly activating sus-
pended threads.

Compared to these works, our proposal is built on a data-
flow model à la Lustre instead of an imperative one. More-
over, programs can be compiled statically whereas they are
scheduled dynamically in the reactive approach. Finally, our
proposal provides static conditions (e.g., type and clocks)
which are absent in the reactive approach.



6. CONCLUSION AND FUTURE WORK
Our contribution is a synchronous data-flow language with

higher order features. The expressive power gained thanks
to higher-order allows programs with dynamic loading and
dynamic reconfiguration capabilities. These dynamic capa-
bilities are essential to address the key challenges of em-
bedded software like software defined radio, the future ar-
chitecture of mobile phones and base stations. In contrast
with most existing work, either based on middleware/OS or
asynchronous process calculi approaches, our contribution is
based on a synchronous programming language. There are
several advantages: first the synchrony yields a clean par-
allel composition operation; and second it is a conservative
higher-order extension of Lustre, meaning that the first-
order part share the same semantics as Lustre, and can
thus be compiled into sequential imperative code.

Future work is plethoric: the build of a compiler based
on the existing Lucid Synchrone implementation is under
way. Extending and adapting classical program analyzes,
such as causality analysis, to the language has also to be
considered. Finally, we shall investigate clock-driven dis-
tribution techniques for programs. This will allow us to
obtain automatically, from a unique and centralized higher-
order data-flow program, a distributed program exchanging
dynamically code over communication channels, with guar-
antees on the reaction time, on the maximal size of the com-
munication buffers, and on the size of the memory necessary
to run each distributed fragment of the program.

7. REFERENCES
[1] J. Armstrong, R. Virding, C. Wikström, and

M. Williams. Concurrent Programming in Erlang.
Prentice Hall, 2nd edition, 1996.

[2] A. Benveniste, P. Caspi, S. Edwards, N. Halbwachs,
P. Le Guernic, and R. de Simone. The synchronous
languages 12 years later. Proceedings of the IEEE,
91(1), January 2003.

[3] A. Benveniste, P. Le Guernic, and Ch. Jacquemot.
Synchronous programming with events and relations:
the SIGNAL language and its semantics. Science of
Computer Programming, 16:103–149, 1991.

[4] S. Blust. SDR forum roles and global work focus on
radio software download. IEICE Trans. on
Communications, E85-B(12):2581–2587, December
2002.

[5] G. Boudol. ULM: A core programming model for
global computing. In European Symposium on
Programming, ESOP’04, volume 2986 of LNCS,
Barcelona, Spain, April 2004. Springer-Verlag.

[6] F. Boussinot and R. de Simone. The SL synchronous
language. IEEE Trans. on Software Engineering,
22(4):256–266, April 1996.

[7] F. Boussinot and J.-F. Susini. The Sugarcubes tool
box: A reactive Java framework. Software-Practice
and Experience, 28(14):1531–1550, December 1998.

[8] E. Bruneton, T. Coupaye, M. Leclercq, V. Quéma,
and J.-B. Stefani. An open component model and its
support in Java. In Int. Symposium on Component
Based Software Engineering, CBSE’04, volume 3054 of
LNCS, Edinburgh, Scotland, May 2004.

[9] P. Caspi. Clocks in dataflow languages. Theoretical
Computer Science, 94:125–140, 1992.

[10] P. Caspi, A. Girault, and D. Pilaud. Automatic
distribution of reactive systems for asynchronous
networks of processors. IEEE Trans. on Software
Engineering, 25(3):416–427, May/June 1999.

[11] P. Caspi and M. Pouzet. Synchronous Kahn Networks.
In ACM SIGPLAN Int. Conference on Functional
Programming, Philadelphia, USA, May 1996.

[12] J.-L. Colaço and M. Pouzet. Type-based Initialization
of a Synchronous Data-flow Language. In Synchronous
Languages, Applications, and Programming, SLAP’02,
volume 65.5 of ENTCS, Elsevier, 2002.

[13] J.-L. Colaço and M. Pouzet. Clocks as first class
abstract types. In Third Int. Conference on Embedded
Software, EMSOFT’03, Philadelphia, USA, October
2003.

[14] P. Cuoq and M. Pouzet. Modular causality in a
synchronous stream language. In European Symposium
on Programming, ESOP’01, Genova, Italy, April 2001.

[15] C. Fournet and G. Gonthier. The reflexive chemical
abstract machine and the join-calculus. In 23th ACM
Symposium on Principles of Programming Languages,
POPL’96. ACM, 1996.

[16] P. Le Guernic, A. Benveniste, P. Bournai, and
T. Gautier. Signal: A data-flow oriented language for
signal processing. IEEE-ASSP, 34(2):362–374, 1986.

[17] N. Halbwachs, P. Caspi, P. Raymond, and D. Pilaud.
The synchronous data-flow programming language
Lustre. Proceedings of the IEEE, 79(9):1305–1320,
September 1991.

[18] N. Halbwachs, P. Raymond, and C. Ratel. Generating
efficient code from data-flow programs. In Third Int.
Symposium on Programming Language
Implementation and Logic Programming, PLILP’91,
Passau, Germany, August 1991.

[19] G. Kahn. The semantics of a simple language for
parallel programming. In IFIP World Congress. North
Holland, Amsterdam, 1974.

[20] L.B. Michael, M. Mihaljević, S. Haruyama, and
R. Kohno. Security issues for software defined radio:
Design of a secure download system. IEICE Trans. on
Communications, E85-B(12):2588–2600, December
2002.

[21] R. Milner. A theory of type polymorphism in
programming. Journal of Computer and System
Science, 17:348–375, 1978.

[22] R. Milner. Communicating and Mobile Systems: The
Pi-Calculus. Cambridge University Press, May 1999.

[23] J. Mitola. The software radio architecture. IEEE
Communications Magazine, 33(5):26–38, May 1995.

[24] K. Moessner, S. Hope, P. Cook, W. Tuttlebee, and
R. Tafazolli. The RMA – a framework for
reconfiguration of SDR equipment. IEICE Trans. on
Communications, E85-B(12):2573–2580, December
2002.

[25] M. Pouzet. Lucid Synchrone, version 2. Tutorial and
reference manual. UPMC, LIP6, May 2001.
http://www-spi.lip6.fr/lucid-synchrone.

[26] D. Sangiorgi and D. Walker. Pi-Calculus: A Theory of
Mobile Processes. Cambridge University Press, 2001.

http://www-spi.lip6.fr/lucid-synchrone

	Introduction
	Motivations and overview
	The need for better modularity
	The need for dynamicity
	Stream functions vs streams of functions
	Instantiating a non constant stream of functions
	Free variables


	Synchronous semantics
	Types and clocks
	Typing
	Initial conditions, instantiation and generalization

	Clock calculus

	Related work
	Conclusion and future work
	REFERENCES 

