Mercredi 25 Mars 2009, Salle R, 14h Differential Colour Structure: from edges to image statistics to visual categorisation Jan-Mark Geusebroek and Koen van de Sande ISLA, University of Amsterdam Abstract: Colour is an intriguing source of information in images. Many aspects of physics and human vision are inextricably linked in local image patches. This talk aims to shed light on the aspects of physics and the differential observation of colour images. A natural starting point is to investigate the physical formation process of images. Visual appearance depends on the illuminant position and intensity, the incidental viewpoint of the camera, material properties of the objects, and the composition of the scene resulting in occlusions and clutter. We follow the physics of light, as it is emitted from the source, reflected by the materials in the scene, and recorded by the camera (or human eye alike). By modeling the image observation by a linear diffusion process, we end up with a scale-space theory of colour image formation. This theory includes and explains many properties of vision, like receptive fields, colour edge detection, colour scale-space blurring, colour constancy, and last but not least colour SIFT descriptors. Further combining colour scale-space theory with natural image statistics yields a solid basis for compact local statistics of images, allowing to capture gist of scene like information. We will show how colour information can be exploited in visual categorisation. So far, intensity-based descriptors have been widely used. To increase illumination invariance and discriminative power, colour descriptors have been proposed only recently. As many descriptors exist, a structured overview is required of colour invariant descriptors in the context of image categorisation. Therefore, we have studied 1. the invariance properties and 2. the distinctiveness of colour descriptors in a structured way. The invariance properties of colour descriptors are shown analytically using a taxonomy based on invariance properties with respect to photometric transformations. The distinctiveness of colour descriptors is assessed experimentally by means of the PASCAL Visual Object Classification challenge and the TRECvid video retrieval benchmark.