IV — Secure Function Evaluation
and Secure 2-Party Computation

David Pointcheval
Ecole normale supérieure/PSL, CNRS & INRIA

s | PSL>%

ENS/PSL/CNRS/INRIA Cascade David Pointcheval 1/33

IIIiiIHHiHIIHIII

Secure Function Evaluation
Introduction
Examples
Malicious Setting
Oblivious Transfer
Definition
Examples
Garbled Circuits
Introduction
Garbled Circuits

Correctness

ENS/PSL/CNRS/INRIA Cascade David Pointcheval

2/33

Secure Function Evaluation

Secure Function Evaluation

Introduction

ENS/PSL/CNRS/INRIA Cascade David Pointcheval 3/33

Secure Function Evaluation

Multi-Party Computation
n players P; want to jointly evaluate y; = fi(x1,...,xn),
for public functions f; so that

e Xx; is the private input of P;

e P; eventually learns y; = fi(x1,...,Xn)

e ...and nothing else about x; for j # i

Security Notions
e Privacy
e Correctness

e Fairness (much harder to get)

ENS/PSL/CNRS/INRIA Cascade David Pointcheval 4/33

Secure Function Evaluation

t-Privacy
If t parties collude, they cannot learn more on the other inputs
than from their own/known inputs and outputs

Note that the knowledge of y; can leak some information on the x;'s.

Security Models

e Honest-but-curious: all the players follow the protocol honestly,
but the adversary knows all the inputs/outputs from t users

e Malicious users: the adversary controls a fixed set of t players

e Dynamic adversary: the adversary dynamically chooses the (up to)
t players it controls

ENS/PSL/CNRS/INRIA Cascade David Pointcheval 5/33

Secure Function Evaluation

Examples

ENS/PSL/CNRS/INRIA Cascade David Pointcheval 6/33

Electronic Voting

Private Evaluation of the Sum
For all i+ x; € {0,1} and fi(x1,...,xn) = >_; %

Example (Homomorphic Encryption)
e Pj encrypts C; = E(x;)
with an additively homomorphic encryption scheme
e They all compute C = E(D_ x;)
e They jointly decrypt C to get y = >_ x;
using a distributed decryption

ENS/PSL/CNRS/INRIA Cascade David Pointcheval 7/33

Electronic Voting

Privacy: Limitations
In case of unanimity (i.e. > x; = n), one learns all the x;'s,
even in the honest-but-curious setting

This is not a weakness of the protocol, but of the functionality:
one should just reveal the winner

Replay Attacks
A malicious adversary could try to amplify P;’s vote, replaying its
message C1 by t corrupted players: this can leak P;'s vote x1

This can be avoided with non-malleable encryption

ENS/PSL/CNRS/INRIA Cascade David Pointcheval 8/33

Secure 2-Party Computation

The 2-party particular case: on Alice's input x and Bob's input y, Alice
gets f(x, y) and Bob gets g(x,y), but nothing else

Equality Test
Alice owns a value x and Bob owns a value y,
in the end, they both learn whether x = y or not

Yao Millionaires’ Problem
Alice owns an integer x and Bob owns an integer vy,
in the end, they both learn whether x < y or not

ENS/PSL/CNRS/INRIA Cascade David Pointcheval 9/33

Equality Test

Alice owns a value x € [A, B] and Bob owns a value y € [A, B],
in the end, they both learn whether x = y or not

With Homomorphic Encryption

e Alice encrypts C = E(x)
with an additively homomorphic encryption scheme

e Bob computes C' = E(r(x — y)), for a random element r
plus the randomization of the ciphertext

e Alice computes C"” = E(rr’(x — y)), for a random element r’
plus the randomization of the ciphertext

e They jointly decrypt C”: the value is 0 iff x = y (or random)

ENS/PSL/CNRS/INRIA Cascade David Pointcheval 10/33

Yao Millionaires’ Problem

Alice owns an integer x € [0,2"[and Bob owns an integer y € [0, 2",
in the end, they both learn whether x < y or not

Theorem [Lin-Tzeng — 2005]

Given X = Xp—1...X0,Y = ¥n—1--- Y0 € {0,1}", and denoting

Te={1...xxi=1} T)={yp1...yin1llyi =0}

x>y« TiNT)#0

x>y << 3dli<n(x;>y)NNj>i,x=y)
— Jli<n(x=1) Ay —0) (Vj > i, xi=y)
— Fi<n(yi=0)A(Xo-1---Xi = Yn-1...Yi+11)

—= |TinT)| =1

ENS/PSL/CNRS/INRIA Cascade David Pointcheval 11/33

Yao Millionaires’ Problem

We fill and order the sets by length: T! = {X;} and 7__)9 = {Y;} where
e if x; =0, X; = 2", otherwise X; = x,_1...x € [0,2"7[
o ify; =1, Y; =2"+1, otherwise Y; = y,_1...yj+11 € [0,2"7]
x>y<=3dli<nX =Y,
With Homomorphic Encryption
e Alice encrypts C; = E(X;)
with an additively homomorphic encryption scheme
e Bob computes C/ = E(ri(X; — Y;)), for random elements r;
randomizes them, and sends them in random order
e Alice computes C/ = E(rir!(X; — Y;)), for random elements r/
randomizes them, and sends them in random order

e They jointly decrypt the C/’s: one value is 0 iff x > y

ENS/PSL/CNRS/INRIA Cascade David Pointcheval 12/33

Secure Function Evaluation

Malicious Setting

ENS/PSL/CNRS/INRIA Cascade David Pointcheval 13/33

GMW Compiler

GMW Compiler [Goldreich-Micali-Wigderson — STOC 1987]
e Commitment of the inputs
e Secure coin tossing

e Zero-knowledge proofs of correct behavior

ENS/PSL/CNRS/INRIA Cascade David Pointcheval 14/33

Oblivious Transfer

Oblivious Transfer

Definition

ENS/PSL/CNRS/INRIA Cascade David Pointcheval 15/33

Secure 2-Party Computation

The 2-party particular case: on Alice's input x and Bob's input y, Alice
gets f(x, y) and Bob gets g(x,y), but nothing else

Oblivious Transfer [Rabin — 1981]

Alice owns two values xp, x; and Bob owns a bit b € {0,1},

so that in the end, Bob learns x, and Alice gets nothing:

x = (x0,x1) and y = b, then g((xo,x1), b) = xp and f((x0,x1),b) = L
[Kilian — STOC 1988]

Oblivious Transfer is equivalent to Secure 2-Party Computation

From an Oblivious Transfer Protocol,
one can implement any 2-Party Secure Function Evaluation

ENS/PSL/CNRS/INRIA Cascade David Pointcheval 16/33

Oblivious Transfer

Examples

ENS/PSL/CNRS/INRIA Cascade David Pointcheval 17/33

Oblivious Transfer

Example (Bellare-Micali’s Construction — 1992)

In a discrete logarithm setting (G, g, p), for xg,x1 € G

Alice chooses ¢ & G and sends it to Bob
Bob chooses k & Zp, sets pky, < gk and pkq_p, < c/pkp,
and sends (pkg, pk;) to Alice
Alice checks pkg - pk; = ¢
and encrypts x; under pk; (for i = 0,1) with ElGamal:
Ci < g" and C! < x; - pk, for r; E Zp

Bob can decrypt (Cp, C;) using k

Because of the random ¢ (unknown discrete logarithm),

Bob should not be able to infer any information about x;_p

This is provably secure in the honest-but-curious setting
ENS/PSL/CNRS/INRIA Cascade David Pointcheval 18/33

Oblivious Transfer

Example (Naor-Pinkas Construction — 2000)
In a discrete logarithm setting (G, g, p), for xg,x1 € G
e Bob chooses r, s, t bil Zp, sets X < g", Y < g°, Zp <+ g"°,
Z1_p < gt and sends (X, Y, Zp, Z1) to Alice
e Alice checks Zy # Z1, and re-randomizes the tuples:
To < (X, Y, =Yg, 7l = 7 Xw) and
Ty (X, Y] = Yugh, ZI = 7 X"), for ug, vo, uy, vi & Z,p
e Alice encrypts x; under T;: C; =Y/ and C! = x; - Z!
e Bob can decrypt (Cp, C]) using r

The re-randomization keeps the DH-tuple Ty,
but perfectly removes information in T1_p

This is provably secure in the malicious setting
ENS/PSL/CNRS/INRIA Cascade David Pointcheval 19/33

Garbled Circuits

Garbled Circuits

Introduction

ENS/PSL/CNRS/INRIA Cascade David Pointcheval 20/33

Boolean C

Boolean circuit, Alice's inputs (x1, x2, x3), and Bob's inputs (y1, y2, y3):

X1

X3
y3
s
x> |
Y2 -

Y1

They both learn z in the end, but nothing else

ENS/PSL/CNRS/INRIA Cascade David Pointcheval 21/33

Garbled Circuits

Garbled Circuits

ENS/PSL/CNRS/INRIA Cascade David Pointcheval 22/33

Garbled Circuit

Alice converts the circuit into a generic circuit: 1-input or 2-input gates

A = -1 O- not
B = U and
0 1
0 1
€ = or
1 1 1
% D = |0 1| |line
va j 0 1
E = or
> 11
% j N [
D a— 0 1
7 b 0 1
G = . or
ENS/PSL/CNRS/INRIA Cascade David Pointcheval L i 23/33

Garbled Gates

Alice generates the garbled gates
1-Input Garbled Gate

For the gate A (not): 4 random secret keys 13, I3, O3, O}
A= [1 O]: C3 = Encrypt(l3, 0%) Ci = Encrypt(/3, 03)

2-Input Garbled Gate

For the gate B (and): 8 random secret keys /3, I3, JS, J5, 0%, Of

B = [g (1)] : C% = Encrypt(13]|J%, 0%) C&' = Encrypt(/3]|J5, O%)

C1O — Encrypt(13]|3, O8) B! — Encrypt(13]1 5, O3)

ENS/PSL/CNRS/INRIA Cascade David Pointcheval 24/33

Alice’s Inputs

Alice publishes the ciphertexts in random order for each gate

Alice publishes the keys corresponding to her inputs:

e for x;, she sends /I
o for x, she sends Jg

e for x3, she sends J©

ENS/PSL/CNRS/INRIA Cascade David Pointcheval 25/33

Bob’s Inputs

Y1 YA

A= [1 0} : CS = Encrypt(/3,0%) Ck = Encrypt(/}, 09%)

Oblivious Transfer

Alice owns /3, I} and Bob owns y; € {0,1}

e Using an OT, Bob gets I}, while Alice learns nothing
e From the ciphertexts (C54)5, Bob gets O%*

ENS/PSL/CNRS/INRIA Cascade David Pointcheval 26/33

Bob’s Inputs
e
yB
y2

B — [g ﬂ - CY = Encrypt(/3]/J3, 0%) €3 = Encrypt(/3]|J%, 03)

Céo = Encrypt(léHJg, O,g) Cél = Encrypt(léHJ,lg, 0113)

Oblivious Transfer

Alice owns /3, I, and Bob owns y, € {0,1}

e Using an OT, Bob gets /2, while Alice learns nothing
e Bob additionally knows Jz

e From the ciphertexts (C’éb/)bb/, Bob gets OF

ENS/PSL/CNRS/INRIA Cascade David Pointcheval 27/33

Internal Garbled Gates

Internal Garbled Gate

For the gate E (or): 2 new random secret keys O2, OL
while 12 « 09, IL + O}, J2 + 0%, JL + O}

1
E= [(1) il CY = Encrypt(12]|42,02) C¥ = Encrypt(/2||J¢, OL)

€1 — Encrypt(12]1J2, 0F) CE* = Encrypt(/2.J2. O}

ENS/PSL/CNRS/INRIA Cascade David Pointcheval 28/33

Evaluation of Internal Gates

01
= [0 3] e —eneomoig op et~ enemmiz o8

C = Encrypt(I2]12, OF) CE = Encrypt(1]|J2, OF)

Evaluation of Gate E
Bob knows /#* = O}* and J£# = OFF
From the ciphertexts (C/_éb')bb/, Bob gets OfF

ENS/PSL/CNRS/INRIA Cascade David Pointcheval 29/33

Output Garbled Gates

Output Garbled Gate

For the gate G (or): 12 <+ O2, IE « O}, J% + 02, JL + Ot

1
o [(1) 1]:C80:E””ypt(’3”J°’0> Cg = Encrypt(1g]1J&. 1)

CE = Encrypt(/¢][J2,1) C&' = Encrypt(lg||Jg, 1)

ENS/PSL/CNRS/INRIA Cascade David Pointcheval 30/33

Evaluation of Internal Gates

01
T [1 1] : C° = Enarypt(lg]| S5, 0) - C&" = Encrypt(/¢]| U5, 1)

CY = Encrypt(1]|42,1) CE = Encrypt(/E||JE, 1)
Evaluation of Gate G
Bob knows /% = OfF and JI = OF

From the ciphertexts (C2”'),p, Bob gets z € {0,1}
Bob can then transmit z to Alice

ENS/PSL/CNRS/INRIA Cascade David Pointcheval 31/33

Outline

Garbled Circuits

Correctness

ENS/PSL/CNRS/INRIA Cascade David Pointcheval 32/33

Honest-but-Curious and Malicious

The previous construction assumes that

e Bob extracts the correct plaintext among the multiple candidates
— Redundancy is added to the plaintext
(or authenticated encryption)

They have to trust each other

e Alice correctly builds garbled gates: the ciphertexts are correct
— Cut-and-choose technique
e Alice plays the oblivious transfer protocols with correct inputs
= Inputs are committed, checked during the cut-and-choose,
and ZK proofs are done during the OT
e Bob sends back the correct value z
—> Random tags are appended to the final results 0 and 1

that Bob cannot guess
ENS/PSL/CNRS/INRIA Cascade David Pointcheval 33/33

	Main Part
	Secure Function Evaluation
	Introduction
	Examples
	Malicious Setting

	Oblivious Transfer
	Definition
	Examples

	Garbled Circuits
	Introduction
	Garbled Circuits
	Correctness

