Security Proofs for Signature Schemes

David Pointcheval David.Pointcheval@ens.fr

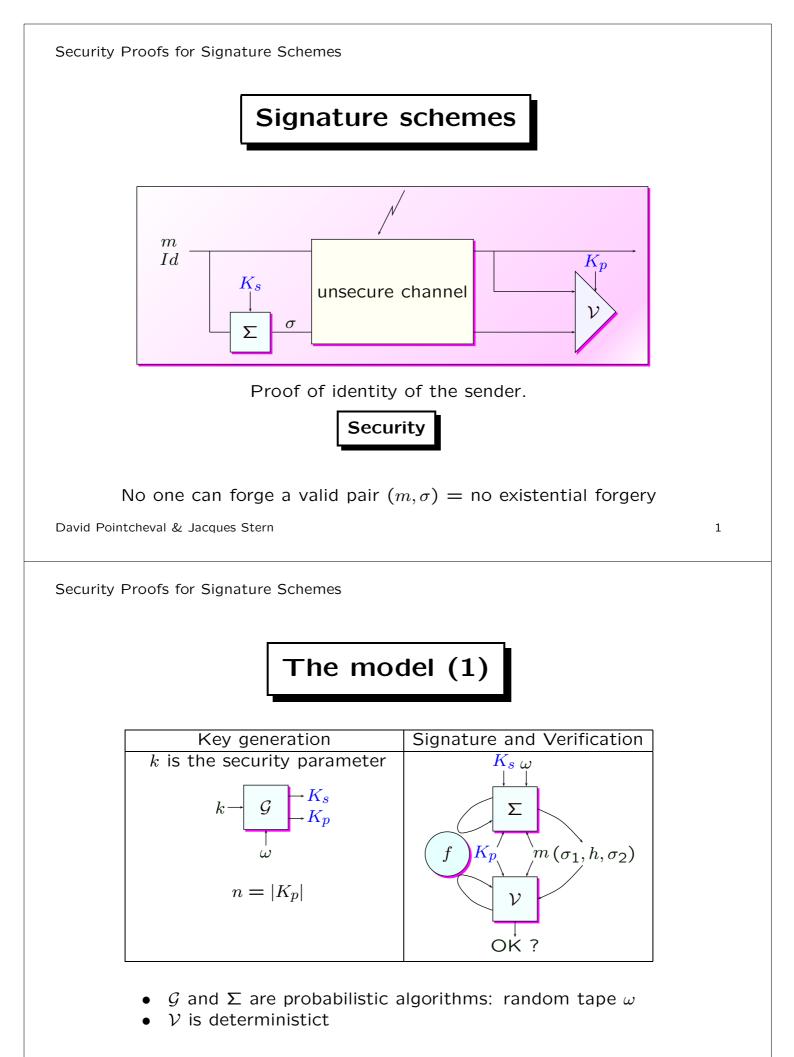
Jacques Stern Jacques.Stern@ens.fr

Laboratoire d'Informatique École Normale Supérieure 45, rue d'Ulm 75230 PARIS CEDEX 05

Security Proofs for Signature Schemes

Summary

- Introduction
 - Model
 - Assumptions
 - Attacks
 - Motivation
- Forking lemma
- El Gamal
- Modified El Gamal
 - No-message attacks
 - Adaptively chosen message attacks
- Conclusion

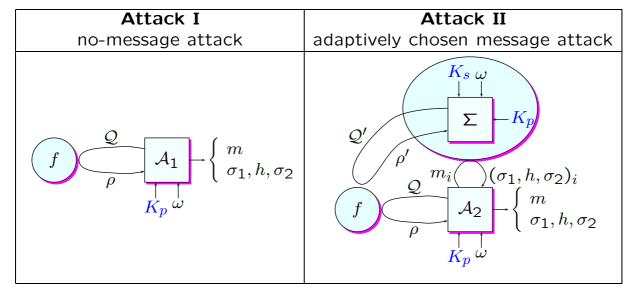


Security Proofs for Signature Schemes					
The model (2)					
• Σ and \mathcal{V} both use a hash function f with $f \in_R \{0, 1\}^{\ell} \to \{0, 1\}^k$, seen as a random oracle. (refer to Bellare & Rogaway ACM CCCS'93)					
\longrightarrow validates cryptodesign (refer to Vaudenay's attack on DSS)					
• Signatures are of the following form: $(m, \sigma_1, f(m, \sigma_1), \sigma_2)$					
David Pointcheval & Jacques Stern 3					
Security Proofs for Signature Schemes					
Assumptions					
• $k(n) \gg \log n$					
• Existential forgery: there is an attacker \mathcal{A} which outputs proper signatures with probability $\varepsilon \geq \frac{1}{poly(n)}$ for infinitely many n 's					

Attacks

We will consider only

- No-message attacks
- Adaptively chosen message attacks



David Pointcheval & Jacques Stern

Security Proofs for Signature Schemes

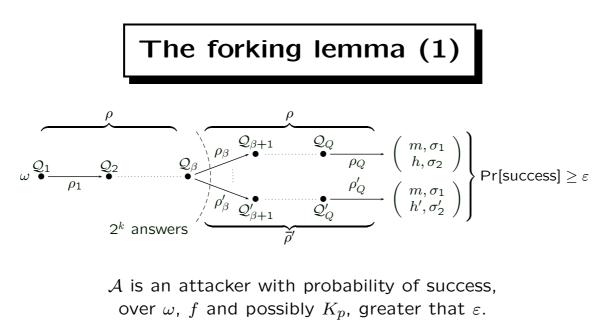
Motivation

To provide proofs of security for signature schemes relatively to well-established difficult problems: Existential forgery under such attacks is equivalent to difficult problems.

- \mathcal{G} : N = pq such that |N| = nsecrete key: $s \in_R \mathbb{Z}/N\mathbb{Z}$ public key: $v = s^2 \mod N$
- $\Sigma : r_1, \dots, r_k \in_R \mathbb{Z}/N\mathbb{Z}$ $x_i = r_i^2 \mod N \qquad : \sigma_1 = (x_1, \dots, x_k)$ $e_1 \dots e_k = f(m, \sigma_1)$ $y_i = r_i \cdot s^{e_i} \mod N \qquad : \sigma_2 = (y_1, \dots, y_k)$ Signature: $(m, (x_1, ..., x_k), e_1 ... e_k, (y_1, ..., y_k))$ $\mathcal{V} \quad : \quad y_i^2 \stackrel{?}{=} x_i v^{e_i} \bmod N$ $e_1 \dots e_k \stackrel{?}{=} f(m, (x_1, \dots, x_k))$

David Pointcheval & Jacques Stern

Security Proofs for Signature Schemes



- Oracle replay: play the attack with random ω and f • select β at random
 - replay the attack with the same ω and same $\beta - 1$ first answers, others are given at random

David Pointcheval & Jacques Stern

Application with Fiat-Shamir

In order to factor N:

- create a key pair (s, v) with $v = s^2 \mod N$.
- apply the forking lemma to get $(m, \sigma_1, h, \sigma_2)$ and $(m, \sigma_1, h', \sigma'_2)$. with $h \neq h'$ if h and h' differ at i, say $h_i = 0$ and $h'_i = 1$ then $y_i^2 = x_i$ and $(y'_i)^2 = x_i v$ hence $(y'_i y_i^{-1})^2 = v \mod N$

Since algorithm cannot distinguish s from other roots, we can factor.

Conclusion: existential forgery of the Fiat-Shamir signature scheme, under a no-message attack, is equivalent to the factorization.

David Pointcheval & Jacques Stern

Security Proofs for Signature Schemes

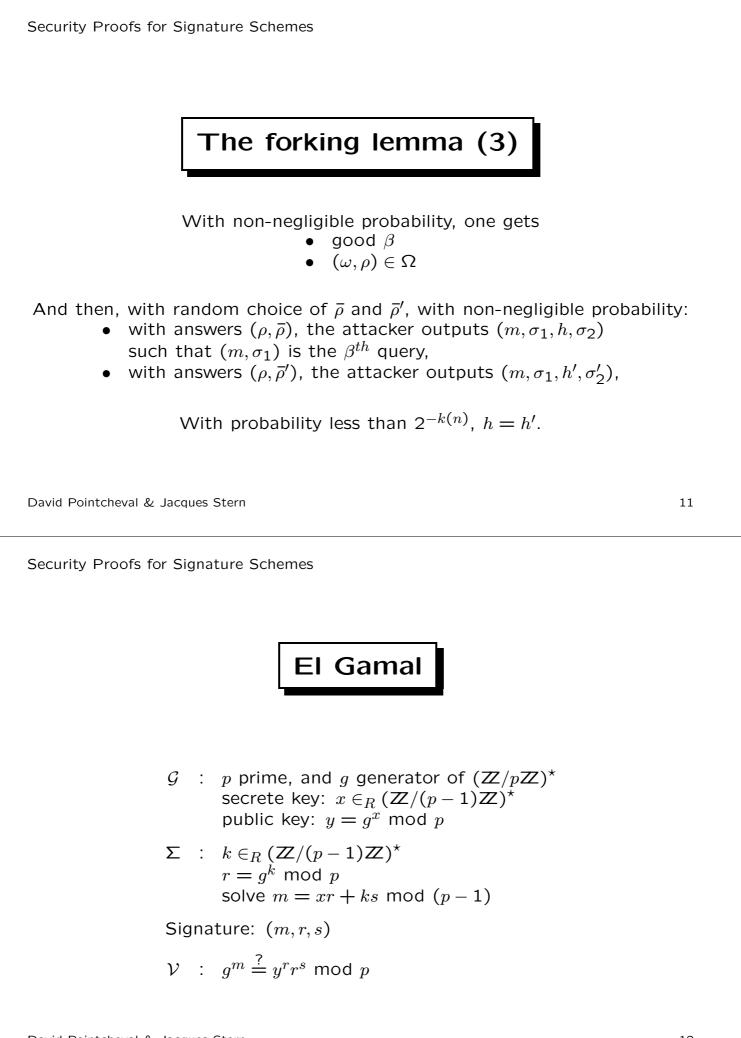
The forking lemma (2)

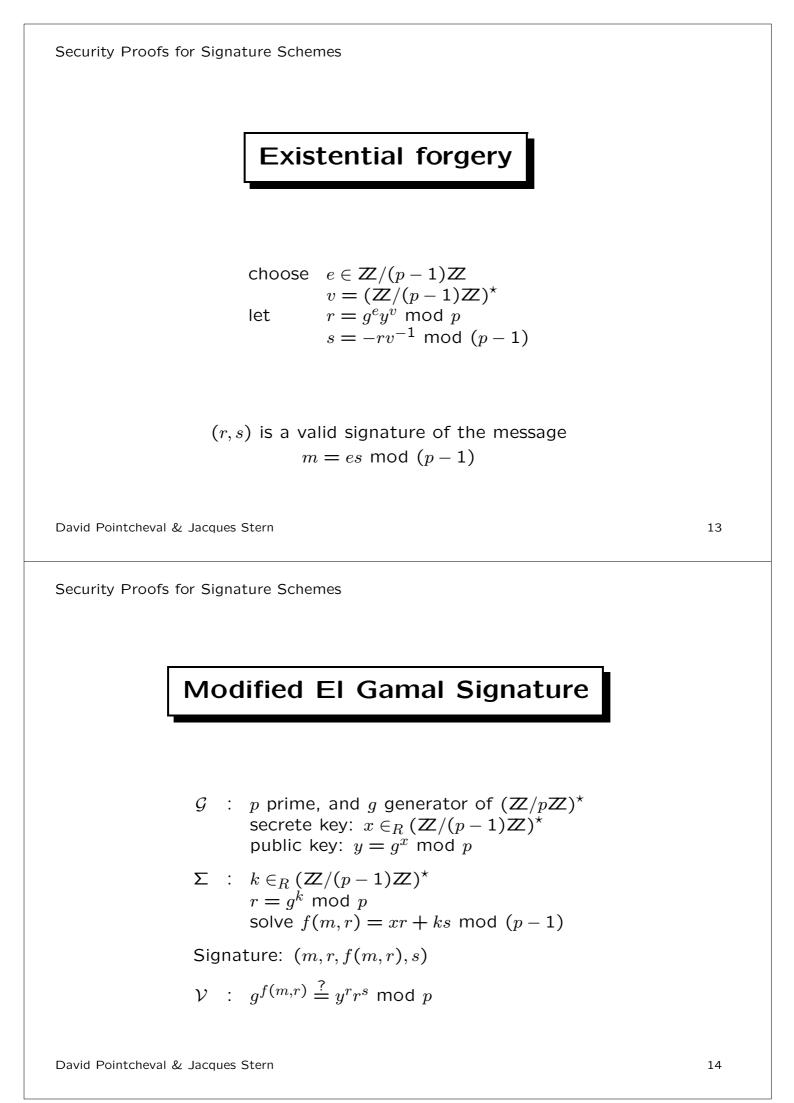
The probabilistic lemma

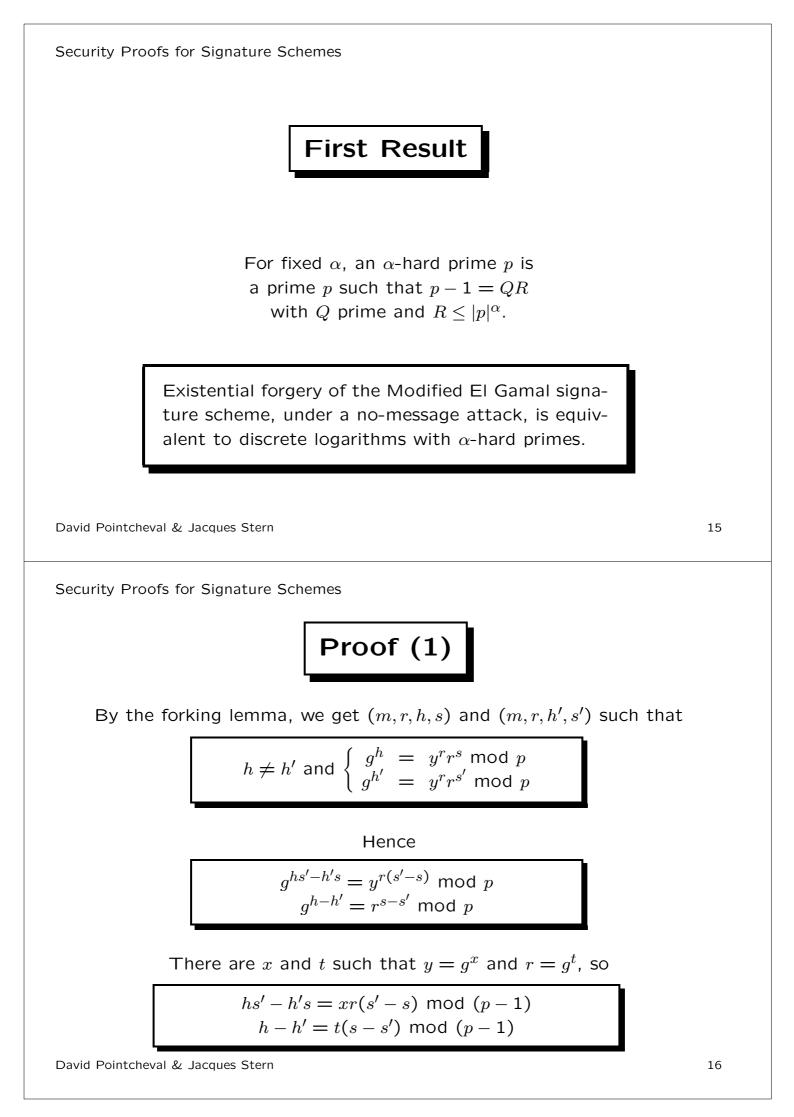
Let $A \subset X \times Y$ such that $\Pr[A(x, y)] \ge \varepsilon$ Then there exists $U \subset X$ such that

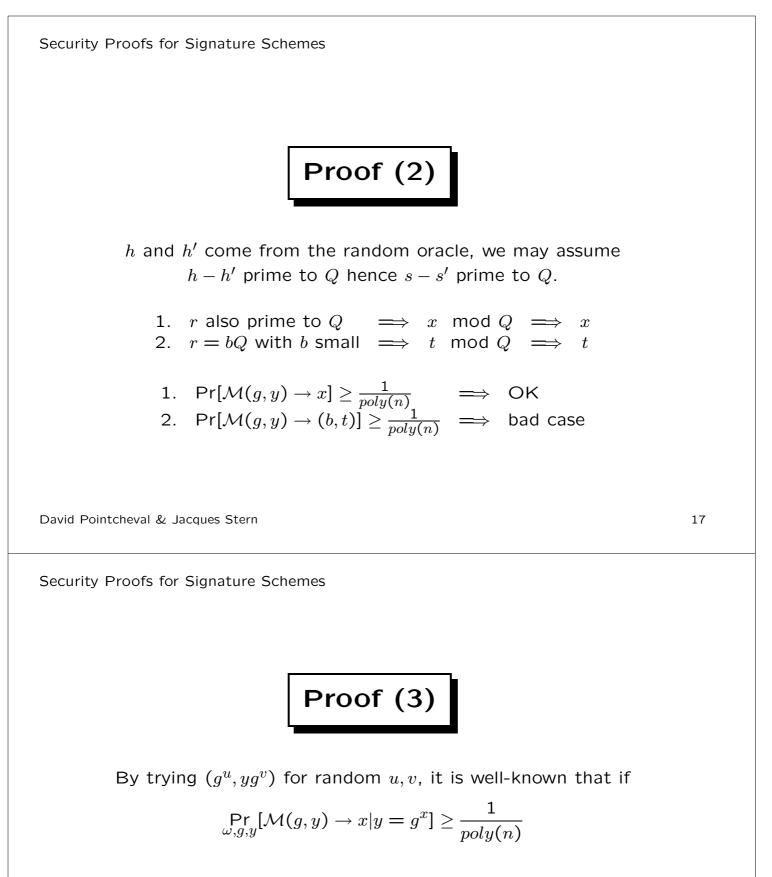
• $\Pr[x \in U] \ge \frac{\varepsilon}{2}$

- whenever $a \in U$, $\Pr[A(a, y)] \geq \frac{\varepsilon}{2}$
- there is a query index β such that $\Pr[\text{success and } \beta] \geq \varepsilon/Q$
- using the previous lemma, we get a set Ω such that • $\Pr[(u, a) \in \Omega] > c/2\Omega$
 - $\Pr[(\omega, \rho) \in \Omega] \ge \varepsilon/2Q$
 - whenever $(\omega, \rho) \in \Omega$, $\Pr_{\overline{\rho}}[$ success and $\beta] \geq \varepsilon/2Q$



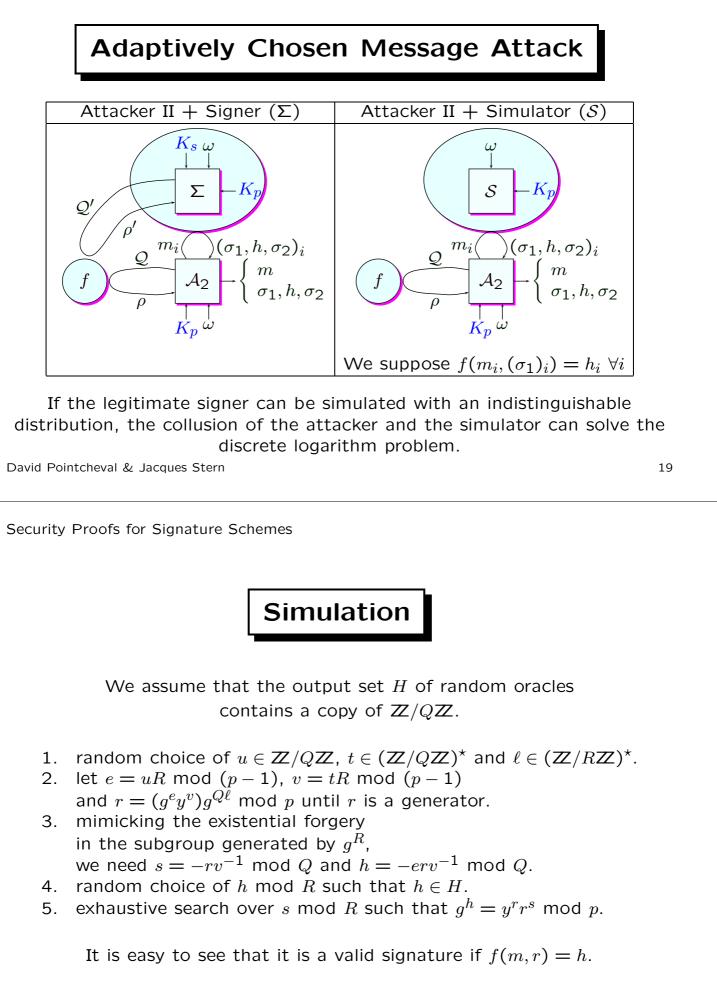






then we obtain a polynomial probabilistic Turing machine \mathcal{M}' such that for every (g, y),

$$\Pr_{\omega}[\mathcal{M}'(g,y) \to x | y = g^x] \ge \frac{1}{poly(n)}$$



Security	Proofs	for	Signature	Schemes
Security	110015	101	Signature	Schemes

Main Result

Consider an adaptively chosen message attack in the random oracle model.

Existential forgery of the Modified El Gamal signature scheme is equivalent to discrete logarithms with α -hard primes.

David Pointcheval & Jacques Stern

Security Proofs for Signature Schemes

Conclusion

The forking lemma provides easy proofs of security for

- 1. the Fiat-Shamir signature scheme
- 2. the Schnorr signature scheme
- 3. ... the transformation of any honest verifier zero-knowledge identification scheme
- 4. the modified El Gamal signature scheme

under an adaptively chosen message attack in the random oracle model.