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Abstract. In this paper we introduce two notions of security: multi-user indistin-
guishability and multi-user non-malleability. We believe that they encompass the correct
requirements for public key encryption schemes in the context of multicast communica-
tions. A precise and non-trivial analysis proves that they are equivalent to the former
single-user notions, provided the number of participants is polynomial. We also intro-
duce a new definition for non-malleability which is simpler than those currently in use.
We believe that our results are of practical significance: especially they support the use
of PKCS#1 v.2 based on OAEP in the multicast setting.
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1 Introduction

1.1 Motivation

With the growth of wide area networks, cryptographic tools often have to coexist
and perform related computations. This may raise new security concerns. For
example, broadcast encryption has been the subject of several specific attacks,
notably directed against low-exponent RSA [20]. Basically, if e is the common
public exponent, then e encryptions of a given message under different public
keys lead to an easy recovery of the plaintext. Further results by H̊astad [14, 22]
and Coppersmith [6, 7] proved that “time stamp” variants of broadcast, attach-
ing time to the message before encryption, can be successfully cryptanalyzed
with e encrypted messages. So far, most known attacks against RSA assume
that related plaintexts have been encrypted to different destinations, which en-
ables an eavesdropper to take advantage of the strong dependences between the
RSA permutations, although each one is individually one-way.

Despite these attacks, RSA with small exponents is the de facto standard
and multicast encryption is performed in many products by encapsulating a
symmetric key within several RSA encryptions together with side data which
are specific to each receiver. This is precisely the context that we wish to address
and we believe that the related security issues needed to be cleared up in order
to ensure confidence in standard designs that allow multicast encryption such
as PKCS#1. Thus, albeit technical, our research is of practical significance.

1.2 Notions of security for encryption

In this paper, we wish to propose notions of security that adequately prevent
the attacks just mentioned. Usually, a security level is analyzed in terms of
the goal and power of an adversary. The ultimate goal that can be achieved
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is called invertibility : given a public key and an encryption of m, retrieve the
whole plaintext m. The RSA assumption implies that the basic RSA encryption
scheme is non-invertible. As shown in the above example, the related notion
dramatically collapses in a broadcast attack. In a different context, stronger no-
tions of security, have been proposed. Goldwasser and Micali define semantic
security [13] (also called indistinguishability) as the inability for an adversary to
distinguish encryptions of two plaintexts. This requires probabilistic encryption,
where each plaintext has many corresponding ciphertexts, depending on a ran-
dom parameter. Recent successful attacks against RSA-like cryptosystems [8]
based on known plaintext relations stresses the need for proven schemes achiev-
ing semantic security.

Surprisingly, the relationship between broadcast attacks and the improved
notions of security has not been the subject of specific research, even if known
cryptanalyses seem to fail against semantic security. The motivation of this paper
is to investigate whether semantic security, contrary to invertibility, is robust in
scenarii involving a general notion of multicast. Our first result gives a positive
answer: if one can gain a bit of information by considering a specific set of
multicast encrypted messages, then at least one scheme used for encryption is not
semantically secure. The proof relies on the hybrid technique and is conceptually
simple. It is an independant work of Bellare, Boldyreva and Micali who adressed
the same problem [1].

Next, we develop a similar analysis with the notion of non-malleability, in-
troduced by Dolev, Dwork and Naor [11]. Informally, the notion asserts that,
given a ciphertext, it should be impossible to generate a different ciphertext
so that the respective plaintexts are related. The problem of encrypted bids is
a famous situation where an eavesdropper may try to under-bid a ciphertext
of an unknown amount s, without learning anything about s. This is precisely
what non-malleability tries to prevent. A broadcast scenario may be envisioned
where several recipients collect the bids over a network. The multicast notion
requires that the view of many encrypted messages under different public keys
gives no advantage in producing the encryption of a related plaintext. Again,
we prove that our new definition of multi-user non-malleability is equivalent to
the former single-user notion: no broadcast attack can be performed against a
non-malleable scheme. Here, the reduction is definitely much harder to obtain.
Due to the complex nature of the definitions, involving auxiliary distributions of
plaintexts and binary relations, both issued by the attacker, our previous natural
reduction cannot be applied. The major technical point of the proof relies on a
lemma embedding any distribution into the product of a 2 element-distribution
which leads to a simpler definition of non-malleability. We think that this lemma
may be of independent interest to cryptographers.

We now discuss the notion of security in terms of the adversary’s power.
Usually, an attacker is a probabilistic polynomial time Turing machine running
in two stages. Firstly, given a public key, it achieves a precomputation stage
and halts. From the output data, a challenge is randomly encrypted and given
to the attacker which performs a second stage of computation. The polynomial
strength of the attacker may be increased by providing him access to a decryption
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oracle. Whether the oracle is accessible during the first stage only or during
whole computation leads to three different scenarii. Under a chosen-plaintext
attack the adversary can obtain ciphertexts of his choice, which is meaningless
in the context of public key encryption. Under chosen ciphertext attack [17],
the adversary is allowed to use a decryption oracle during the precomputation
stage only. Lastly, under adaptive chosen ciphertext attack [19], the adversary
is allowed to use a decryption oracle during whole algorithm, with the trivial
restriction that the challenge cannot be asked to the oracle. The latter is the
ideal candidate that one should consider in order to provide the best arguments
for security. In our paper, whenever a theorem is stated, it is assumed that one
of the three contexts given above has been fixed and hence no decryption oracle
is mentioned; potential oracles are preferably viewed as internal parts of the
attacker.

1.3 Outline of the paper

The rest of the paper is organized as follows. Section 2 gives common defini-
tions and notations for encryption and probabilities. Sections 3 and 4 contain
our analysis of semantic security (which we call indistinguishability) and non-
malleability. Both introduce definitions of these notions in the context of multi-
cast. The conclusion follows in section 5.

2 Definitions and notations

A public key encryption scheme Π is a triplet (K, E ,D) consisting of three
probabilistic polynomial time algorithms.

– K is the key generation algorithm which, given a security parameter k (usu-
ally viewed as a unary input 1k) produces from its random source ω a pair
(pk, sk) of public and secret keys.

– E is the probabilistic encryption algorithm which, given the security param-
eter k, defines a message spaceM such that: for each string x fromM, and
for each valid public key pk, Epk(x) is a string y, called the encryption of x
under pk.

– D is the (deterministic) decryption algorithm. It is required that for every
message x in M and for every pair (pk, sk) output by K, Dsk(Epk(x)) = x.
In all other cases, the output of D is any element ofM∪{⊥}. A ciphertext
whose decryption is ⊥ is said to be invalid.

A real-valued function f(n) is negligible if for any integer k, |f(n)| < n−k for
sufficiently large n.

Given a distribution δ over a finite space Ω, we let Prδ[E] be the probability
of an event E. When δ is omitted, it is implicitly assumed that δ is the uniform
distribution. The support of δ is the set of elements from Ω whose probability
is non zero. Often, a random variable is conveniently defined by the output
distribution of a probabilistic Turing machine. We let y ← TM(x) be the result
y by running TM on input x and random source ω. If S is a finite set then
y ← S is the operation of picking an element uniformly in S.
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When considering several encryption schemes Π1, .., Πn and their related
algorithms, we will denote by Kn, En and Dn the algorithms that given an input
vector of n adequate data, output a vector of dimension n whose distribution is
given by the product of the output distributions of K1 × .. × Kn, E1 × .. × En

and D1× ..×Dn respectively. We insist that all encryption schemes need not be
identical.

Our multicast notion enlarges the intuitive definition of broadcast when a
unique plaintext is encrypted. In this paper, we consider a multicast communi-
cation as a set of encryptions of suitably related plaintexts under different public
keys. For example the reader might consider messages containing the name of
the recipient followed by a possibly common text. Formally, a broadcast distribu-
tion of plaintexts is any diagonal distribution whose support is inMn whereas a
multicast distribution of plaintexts is any distribution whose support is inMn.

3 Indistinguishability

3.1 Single-user encryption schemes

Secure encryption should preserve privacy even in the critical context where the
messages are taken from a small set of plaintexts: it should be impossible for an
eavesdropper to distinguish encryptions of distinct values. Such a requirement is
captured by the notion of indistinguishability, also known as semantic security
[13, 15]. Examples, secure against chosen plaintext attack, include El Gamal [12]
(based on the decisional Diffie-Hellman assumption [10]), Naccache-Stern [16]
(based on higher residues) and Okamoto-Uchiyama [18] (based on factorization).
Our definition exactly follows [2] and uses the same notations. Indistinguisha-
bility is defined by the advantage of an adversary A = (A1, A2) performing a
sequence of two algorithms.

In a first step, algorithm A1 is run on input of the public key pk and outputs
two plaintexts messages x0 and x1 plus a string s encoding information to be
handled to A2. Next a message from {x0, x1} is chosen at random and encrypted
into a challenge ciphertext y. In a second step, A2 is given the input (y, s) and
has to guess the bit of the plaintext being encrypted. The advantage of A is
measured by the probability that it outputs the correct bit of the challenge. The
scheme is indistinguishable if no adversary obtains an advantage significantly
greater than one would obtain by flipping a coin. The formal definition follows:

Definition 1. Single-user indistinguishability.
Let Π = (K, E ,D) be an encryption scheme with a security parameter k and let
A = (A1, A2) be an adversary. For k ∈

�
, we define the advantage:

AdvA,Π(k) = 2 Pr
[

(pk, sk)← K(1k); (x0, x1, s)← A1(pk); b← {0, 1};

y ← Epk(x
b) : A2(s, y) = b

]

− 1

We say that Π is single-user indistinguishable (S-IND) if for every polynomial
time adversary A, AdvA,Π(k) is negligible.
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3.2 Multicast encryption schemes

In the context of multicast, the usual notion of indistinguishability does not,
by itself, guarantee that no bit of information is leaked when putting together
the encryptions of related messages under different public keys. Our definition
captures this stronger notion of security by giving the adversary the ability
to choose two vectors of plaintexts whose coordinates are plaintext messages
possibly related or even identical. Next, one of the two vectors is chosen at
random and is encrypted coordinatewise with the different public keys. The
final goal of the adversary is to guess which one was encrypted. This is easily
done if a boolean function distinguishes the two vectors of plaintexts and is
computable from the encrypted data. Again our formal definition is in terms
of the advantage of an adversary playing the game just given. In the following,
underlined variables denote vectors of size n; the ith coordinate refers to the ith

cryptosystem.

Definition 2. Multi-user indistinguishability.
Let Π = (K, E ,D) be an encryption scheme with a security parameter k and let
A = (A1, A2) be an adversary. For k, n ∈

�
, we define the advantage:

AdvA,Π(k, n) = 2 Pr
[

(pk, sk)← Kn(1k); (x0, x1, s)← A1(pk); b← {0, 1};

y ← Epk(x
b) : A2(s, y) = b

]

− 1

We say that Π is multi-user indistinguishable (M-IND) if for every polynomial
time adversary A, AdvA,Π(k, n) is negligible.

3.3 Results

As expected, any multi-user indistinguishable encryption scheme Π is also single-
user indistinguishable. Indeed, if an adversary distinguishes Epk(m

0) from Epk

(m1) then it obviously distinguishes two encrypted vectors whose first coordinate
is the encryption of m0 and m1 under the public key pk. Also note that the usual
definition of (single-user) indistinguishability, expressed in [2], is the particular
case of multi-user indistinguishability where n = 1. The following result achieves
equivalence.

Theorem 3. S-IND⇒M-IND.
If encryption scheme Π is single-user indistinguishable, then it is multi-user
indistinguishable.

Proof. Let A be an adversary attacking Π in the sense of M-IND. We build n
adversaries Bi = (Bi,1, Bi,2)1≤i≤n, as follows:

AlgorithmBi,1(pki):
pk ← (pk1, .., pki, .., pkn)
(x0, x1, s)← A1(pk)
return(x0

i , x
1
i , s)

AlgorithmBi,2(yi, s):
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b′ ← {0, 1}
y ← (y1, .., yi, .., yn) with yj = Epkj

(xb′

j ) if j < i

yj = Epkj
(xb′

j ) if j > i
b′′ ← A2(y, s)
return b′′

In a first step Bi,1 extends pki to a vector of public keys pk, using (n−1) times the
algorithm K. Then A1 is run with the input pk. The ith pair of plaintext messages
output by A1 is returned, which completes the first part of the algorithm. We
note b the unknown bit of the challenge, i.e. yi = Epki

(xb
i). In a second step, Bi,2

extends its input yi to a hybrid vector y: the first coordinates of y come from the
encryption of xb′

whereas the last coordinates of y come from the encryption of
xb′

. Bit b′′ output by running A2 on y is returned as an answer to the challenge.
We now compute the advantage of Bi for pk, x0, x1 and s fixed. Let d be

a random bit and let Pri (respectively Pr′i) be the probability that the initial
adversary A2 successfully guesses the plaintext of the left (respectively right)
part of a hybrid ciphertext formed with i coordinates from xd followed by (n− i)
coordinates from xd:

Pri = Pr
[

d← {0, 1}; c← Epk(a
d
1, .., a

d
i , a

d
i+1, .., a

d
n); d′ ← A2(c, s) : d′ = d

]

Pr′i = Pr
[

d← {0, 1}; c← Epk(a
d
1, .., a

d
i , a

d
i+1, .., a

d
n); d′ ← A2(c, s) : d′ 6= d

]

Note that,
Pri + Pr′i = 1 (1)

We apply Bayes’ theorem, considering the value of the bit b′ randomly chosen
in the algorithm Bi,2:

Pr
[

b← {0, 1}; yi ← Epki
(xb

i); b′′ ← Bi,2(yi, s) : b′′ = b
]

= 1
2
Pr

[

b← {0, 1}; yi ← Epki
(xb

i); b′′ ← Bi,2(yi, s) : b′′ = b | b′ = b
]

+1
2
Pr

[

b← {0, 1}; yi ← Epki
(xb

i); b′′ ← Bi,2(yi, s) : b′′ = b | b′ 6= b
]

= 1
2
Pri +

1
2
Pr′i−1 (2)

It follows from (1) and (2) that the advantage of Bi is:

AdvBi,Π = 2
(

1
2
Pri +

1
2
Pr′i−1

)

− 1 = Pri−Pri−1

Middle terms cancel in the sum, so that:

n
∑

i=1

AdvBi,Π = Prn−Pr0 = AdvA,Π

Consequently, if i is uniformly chosen at random in {1, .., n}, we obtain a re-
duction from a multi-distinguisher attacker A with advantage ε, to a single-
distinguisher attacker B with advantage ε/n. ut
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4 Non-malleability

4.1 Single-user non-malleability

The notion of non-malleability was introduced in [11] and formalized in a dif-
ferent manner in [2]. The main idea is that, given an encrypted message y, an
adversary is unable to output a ciphertext y′ whose decryption is related to the
decryption of y. More precisely, this goes along an interactive experiment with
an adversary A = (A1, A2) which is described below.

The Turing machine A1 is run with input of a public key pk and outputs
the description of a probabilistic polynomial time Turing machine M , and a
string s for further computation. The output of M defines a distribution of
plaintext messages whose support is a set |M | ⊂ M. In the following M refers
to the Turing machine as well as its output distribution. Then a message x is
randomly chosen by running M and its encryption is given to A2. The goal of
A2 is to output a binary relation R over |M |×M and a ciphertext y ′ 6= y whose
decryption x′ is related to x according to R. The scheme is non-malleable if for
any adversary the probability that R(x, x′) holds is not significantly better than
the probability that R(x̃, x′) for a random x̃ from M .

For notational convenience we have simplified the definition given in [2]. In
the original paper, the goal of the adversary was to output a vector y′ of t − 1
ciphertexts related to y according to a relation R of arity t. In this case, it is
required that no coordinate of y′ is equal to y. It was also proven that both
definitions were not equivalent. The former could not be reduced to the latter.
In the rest of our paper we will only represent elements y ′ with one coordinate so
that no confusion arises with vectors from the broadcast notation. But one can
also build a similar theory of multi-user non-malleability for relations of arity t
by considering the modified ciphertext as a vector of ciphertext vectors y′ and
an appropriate binary relation over |M | ×Mn×(t−1).

Recently, it was shown by Bellare and Sahai [4] that non-malleability (in
any attack model) was equivalent to indistinguishability where the adversary
gets the additional power of “parallel ciphertext attack” (i.e. non adaptive ci-
phertext attack after seeing the challenge encryption). Consequently, our first
result may apply to this notion. However, we followed the standard definition of
non-malleability and proved it may be simplified.

4.2 Multi-user non-malleability

Scenarii where it is unclear whether single-non-malleability is enough to ensure
a satisfactory notion of security can be envisioned: for example, the view of
different encryptions under several public keys might give the opportunity for
an adversary to flip one of the encrypted message into its opposite. It is also
not clear that encrypted messages sent to different users may not be exchanged.
Thus, if one wishes to cover the standard context of multicast it is natural to give
an extended notion of security for non-malleability which we now undertake.

The adversary is given n public keys and outputs a probabilistic polynomial
time Turing machine M plus a string s. By running M on a random source
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we require that its output defines a distribution of plaintext messages whose
support |M | is inMn. Then, a vector x is randomly chosen by running M , and
its coordinatewise encryption according to the different public keys is given to
A2. The goal of A2 is to output a vector of ciphertexts y′ and a relation R over
|M | × Mn. A is successful if R relates the corresponding decrypted messages.
The formal definition is given below.

Remark. The exact support |M | of M may not be computable in polynomial
time. It is therefore only required that the relation R is defined on a subset of
Mn ×Mn and covers |M | ×Mn.

Definition 4. Multi-user non-malleability.
Let Π = (K, E ,D) be an encryption scheme with security parameter k and let
A = (A1, A2) be an adversary. For k, n ∈

�
, we define the advantage:

AdvA,Π(k, n) = |SuccA,Π(k, n)− SuccA,Π,$(k, n)| ,

where

SuccA,Π(k, n) =Pr
[

(pk, sk)←Kn(1k); (M, s)←A1(pk); x←M ; y←Epk(x);

(R, y′)←A2(M, s, y); x′←Dsk(y
′) : ⊥6∈ x′ ∧ R(x, x′)

]

SuccA,Π,$(k, n)=Pr
[

(pk, sk)←Kn(1k); (M, s)←A1(pk); x, x̃←M ; y←Epk(x);

(R, y′)←A2(M, s, y); x′←Dsk(y
′) : ⊥6∈ x′ ∧ R(x̃′, x′)

]

with x̃′
i =

{

xi if y′
i = yi

x̃i if y′
i 6= yi

, for each i in {1, .., n}

We say that Π is multi-user non-malleable (M-NM) if for every polynomial time
adversary A whose output is a distribution of plaintexts M and a relation R
both computable in polynomial time then AdvA,Π is negligible.

The motivation to introduce a new variable x̃′ was to restrict the domain
of the random variable x̃ for the coordinates left unchanged by A2. This is the
condition in dimension n of the requirement y′ 6= y in dimension 1, defined in [2].
This rule makes the adversary gain no advantage in partially copying a vector
of ciphertexts and outputting a relation whose value is true on domains of the
form ((x0, .., ∗), (x0, .., ∗)).

The usual notion of (single-user) non-malleability is the particular case where
n is fixed to 1.

4.3 Results

The next result is the main technical achievement of our paper and leads to a
simplified definition of non-malleability. It claims that the distribution of plain-
texts M can be restricted to an atomic form.

Lemma 5. Atomic non-malleability.
Let Π be an encryption scheme and let A be an adversary attacking Π in the
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sense of M-NM. Then there exists another adversary B attacking Π, in the
sense of M-NM such that the distribution of plaintexts that B outputs is always
a uniform distribution of two vectors of plaintexts. Moreover, the running time
of B is that of A plus the running time of the Turing machine M output by A.

Proof. The adversary B = (B1, B2) is defined as follows:

Algorithm B1(pk) Algorithm B2(y, s)
(M, s)← A1(pk) (R, y′)← A2(y, s)
a0 ←M ; a1 ←M return (R, y′)
return ({a0, a1}, s)

Here the description of B2 is identical to A2 except that the relation R is re-
stricted to the set {a0, a1} ×Mn instead of M ×Mn. We first claim that the
input distribution of the ciphertexts is the same for A2 and B2. Indeed, using
Bayes’ theorem and since x has equal probability 1/2 of being a0 or a1, it results
that for all X in M :

Pr [a0, a1 ←M ; x← {a0, a1} : x = X]

= 1
2
Pr

[

a0 ←M : a0 = X] + 1
2
Pr[a1 ←M : a1 = X

]

= Pr [x←M : x = X]

Consequently, SuccB,Π = SuccA,Π . Next, in order to express SuccB,Π,$ we decore-
late x̃ from x, considering its two possible values among {a0, a1}. Using the
notations from definition 3, it holds:

Pr
[

a0, a1 ←M ; x, x̃← {a0, a1} : R(x̃′, x′)
]

= 1
2
Pr [a0, a1 ←M ; x, x̃← {a0, a1} : R(x̃′, x′) | x̃ = x]

+1
2
Pr [a0, a1 ←M ; x, x̃← {a0, a1} : R(x̃′, x′) | x̃ 6= x]

= 1
2
Pr [a0, a1 ←M ; x← {a0, a1} : R(x, x′)]

+1
2
Pr

[

ã0, a1 ←M : R(ã0′, a1′)
]

So, SuccB,Π,$ = 1
2
SuccB,Π + 1

2
SuccA,Π,$ and AdvB,Π = SuccB,Π − SuccB,Π,$ =

1
2
SuccB,Π −

1
2
SuccA,Π,$. With the previous result, we conclude

AdvB,Π =
1

2
AdvA,Π

ut

It is easily seen that the definition of single-user non-malleability is the restricted
case of the multi-user non-malleability for n = 1. The equivalence follows from
the next result.

Theorem 6. S-NM⇒M-NM. If encryption scheme Π is single-user non-malle-
able, then it is multi-user non-malleable.
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Proof. Let A = (A1, A2) be an adversary attacking Π in the sense of multi-user
non-malleability with an advantage ε. Without loss of generality, as was shown in
Lemma 1, we assume that A1 outputs a uniform distribution M of two plaintext
vectors a0 and a1. We will build n Turing machine B1, .., Bn attacking Π in the
sense of single-user non-malleability. For any i ∈ {1, .., n}, the description of
Bi = (Bi,1, Bi,2) is as follows:

Algorithm Bi,1(pki):
pk ← (pk1, .., pki, .., pkn)
(M, s)← A1(pk)
return Mi = {a0

i , a
1
i }

Algorithm Bi,2(ci, s):
b′ ← {0, 1}
c← (c1, .., ci, .., cn) with cj = Epkj

(ab′

j ) if j < i

cj = Epkj
(ab′

j ) if j > i
(c′, R)← A2(c, s)
Ri(a

k
i , u) ⇐⇒ R(ak, v) with vi = u

vj = Dskj
(c′j) if j 6= i

return (c′i, Ri)

As in the previous construction, the first part of the algorithm extends the
input pki into a vector pk and calls the attacker A1 on this data. Without loss
of generality, as was shown in Lemma 1, A1 outputs a distribution M of two
plaintexts a0 and a1. Then both ith coordinates are returned. The algorithm Bi,2

takes as input the ciphertext ci of a plaintext ab
i where b is an unknown bit. We

focus on the way the binary relation Ri over {a0
i , a

1
i }×M is built from the initial

relation R over {a0, a1} ×M
n. Since the expression of the advantage of A only

depends on the decryption of c, we let the ith coordinate free and fix the others to
the decrypted coordinates of c thanks to the knowledge of the related secret keys.
Thus Ri is the section of R on this particular sub-space. Note that, the exact
definition of Ri may be ambiguous in the case where a0

i = a1
i and a0 6= a1. Here,

it is clear that any attacker (even infinitely powerful) obtains a null advantage
since the encryption of ab

i is perfectly independent of the bit b. Thus in this
specific case, the definition of Ri has little importance, and for convenience, it is
defined by choosing b randomly so that the following computations remain true.

We now fix pk, a0 and a1. The main goal is to analyze the behavior of
the adversary A2 when its input is a hybrid vector of ciphertexts from a0 and
a1. Let Pri (respectively Pr′i) be the probability that A2 successfully outputs
a ciphertext related to the first (respectively last) part of the initial hybrid
plaintext.

Pri = Pr
[

b←{0,1}; c←Epk(a
b
1,..,a

b
i ,a

b
i+1,..,a

b
n); (c′,R)←A2(c,s) : R(ab,Dsk(c

′))
]

Pr′i = Pr
[

b←{0,1}; c←Epk(a
b
1,..,a

b
i ,a

b
i+1,..,a

b
n); (c′,R)←A2(c,s) : R(ab,Dsk(c

′))
]

Remark: If a0
i = a1

i then ab
i can be linked identically to the left part or the right

part of the hybrid, hence Pri = Pri−1 and Pr′i = Pr′i−1.
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It follows from the above definitions that Prn = Pr′0 and Pr′n = Pr0.
The success of the attacker Bi is:

SuccBi,Π

= Pr
[

b,b′←{0,1}; c←(c1,.., ci,..,cn); (c′,R)←A2(c,s) : R(ab,Dpk(c
′))

]

= 1
2
Pr

[

b,b′←{0,1}; c←(c1,..,cn); (c′,R)←A2(c,s) : R(ab,Dpk(c
′)) | b′ = b

]

+1
2
Pr

[

b,b′←{0,1}; c←(c1,..,cn); (c′,R)←A2(c,s) : R(ab,Dpk(c
′)) | b′ 6= b

]

= 1
2
Pri + 1

2
Pr′i−1

The average success Succ is obtained by considering the four possible values of
the B-bit b′ and the random bit b̃ relatively to the challenge bit b. Since b shares
the vector c into a left part of i − 1 encrypted coordinates from b′ and a right
part of (n − 1− i) encrypted coordinates from b′, whether b is equal to b′ or b′

leads to an hybrid vector c whose frontier is at position i or i− 1. In each case,
whether the random bit b̃ is the left or the right part of the hybrid vector c,
leads to one of the expressions Pr or Pr′.

Let the distribution: δ =
{

b,b′,b̃← {0,1}; c← (c1,..,ci,..,cn); (c′,R)← A2(c,s)
}

.

SuccBi,Π,$

= Prδ

[

R(ab̃,Dpk(c
′))

]

= 1
4
Prδ

[

R(ab̃,Dpk(c
′)) | b̃=b ∧ b′=b

]

+ 1
4
Prδ

[

R(ab̃,Dpk(c
′)) | b̃=b ∧ b′ 6=b

]

+1
4
Prδ

[

R(ab̃,Dpk(c
′)) | b̃ 6=b ∧ b′=b

]

+ 1
4
Prδ

[

R(ab̃,Dpk(c
′)) | b̃ 6=b ∧ b′ 6=b

]

= 1
4
Pri + 1

4
Pr′i−1 + 1

4
Pr′i +

1
4
Pr′i−1

It follows that the advantage of Bi is:

AdvBi
= SuccBi,Π − SuccBi,Π,$ = 1

4
Pri +

1
4
Pr′i−1−

1
4
Pr′i−

1
4
Pri−1

Remark: if a0
i = a1

i then from the previous remark AdvBi
= 0 as expected.

Finally the sum is:

n
∑

i=1

AdvBi
= 1

4
(Prn + Pr′0−Pr′n−Pr0) = 1

2
(Prn−Pr0) = AdvA

Thus, if i is randomly choosen in the set {1, .., n}, one obtains a reduction from
a global adversary with advantage ε to an adversary with advantage ε/n against
a single cryptosystem. ut

Consequences of the results. In the case of adaptive chosen ciphertext attacks,
it was proved by Bellare et al. [2] that both notions of indistinguishability and
non-malleability are equivalent, and hence are also equivalent to the multi-user
notions of security. Thus, our results show that some recent encryption schemes
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achieve a high level of multicast security requirement. In the random oracle
model, one can mention the RSA-base OAEP [3] from Bellare and Rogaway. It
was recently adopted as a standard of encryption in the PKCS#1 [21, 5] spec-
ifications. In the standard model of proofs, only the Cramer-Shoup scheme [9]
achieves proven security and practical effectiveness. Finally, we point out some
practical and straightforward applications of multi-user secure encryption. This
includes pay-per-view television, where a part of the bandwith is used to broad-
cast encrypted keys to each user. Secure electronic mail such as PGP is also
given better confidence especially when adressing several recipients. One may
also envision secure election protocols with a large number of independent au-
thorities generally resulting in many related encrypted plaintexts. Lastly, multi-
party computations usually use the assumption of a broadcast channel and thus
should benefit from our multicast notions of secutity.

5 Conclusion

We have extended the applicability of two powerful notions of security: indistin-
guishability and non-malleability. Every known attack is now covered by our new
multicast security definitions. Furthermore, the reductions that we have shown
have linear coefficients in the number of users. As a consequence, we believe
that proven encryptions schemes with common single-user security parameters
are ready to be safely spread over the Internet.
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