
Static Analysis by Abstract Interpretation of Embedded Critical Software

Julien Bertrane
ENS∗

Patrick Cousot
ENS∗ & CIMS§

Radhia Cousot
CNRS & ENS∗

Jérôme Feret
INRIA & ENS∗

Laurent Mauborgne
IMDEA∗∗

Antoine Miné
CNRS & ENS∗

Xavier Rival
INRIA & ENS∗

Abstract

Formal methods are increasingly used to help ensuring the
correctness of complex, critical embedded software systems.
We show how sound semantic static analyses based on Ab-
stract Interpretation may be used to check properties at var-
ious levels of a software design: from high level models to low
level binary code. After a short introduction to the Abstract
Interpretation theory, we present a few current applications:
checking for run-time errors at the C level, translation val-
idation from C to assembly, and analyzing SAO models of
communicating synchronous systems with imperfect clocks.
We conclude by briefly proposing some requirements to ap-
ply Abstract Interpretation to modeling languages such as
UML.

keywords: Abstract interpretation, Critical software, Em-
bedded systems, Static analysis, System design, System
modeling, System verification.

1 Introduction

Ensuring the correctness of software systems constitutes a
large part of software development budgets. It is particu-
larly important for critical embedded systems, such as found
in automotive, aerospace and medical applications, as the
slightest programming “bug” may have catastrophic finan-
cial and even human cost. In this article, we build a case
for using static analysis based on Abstract Interpretation to
help ensuring software correctness.

We illustrate a possible use for static analysis in Fig. 1. In
this drastically simplified workflow inspired from a real in-
dustrial case [27], an engineer (not necessarily a programmer)
models a control system using the SAO graphical language,
a precursor and similar tool as SCADE [14] — a SimulinkTM

fragment similar to SAO is also shown in Fig. 2. It is then au-
tomatically translated to the programming language C and
then compiled to produce the actual binary software exe-
cuted by the device. Validation includes testing, which re-
quires executing (part of) the binary with some monitoring
and is able to check a wide range of properties (including
functional ones) but is costly and never achieves a full cover-
age of all possible executions (path- and data-coverage). For-
mal methods can also be employed. In particular, semantic-

(∗)École Normale Supérieure, 45, rue d’Ulm, Paris, France,
@L e . ra f.rs ntstF si

(§)Courant Institute of Mathematical Sciences, NYU, New York, NY
(∗∗)Fundación IMDEA Software, 28660-Boadilla del Monte, Madrid,
Spain, er onu ne @o gdmgumr ra ei. abtal .

a
V

i
d

t

i
o
n

a

l

S
A
O

B

N
I

code

execution

generation

compilation

C

test

translation

validation

modeling

static analysis

static analysis

static analysis

Figure 1: Example workflow for designing an embedded ap-
plication.

based static analysis, which always terminates and covers all
executions, albeit in an over-approximated way. For example
it can detect dead code (never executed) or dead data struc-
tures (constructed but never used) but cannot always prove
their absence. Moreover, static analysis can be applied at
many levels: machine-readable specification, program source
or binary. The higher level the better, as it provides purer in-
formation to the tool and its feedback is easier to understand
to the designer. However, higher levels abstract away some
aspects of computations, which makes it impossible to check
some properties of actual executions. For instance, SAO and
SCADE have real arithmetics and do not specify how actual
numerical computations are performed nor the type of num-
bers, so that a static analysis of numeric overflows (as done
by Astrée [1, 11, 5], Sec. 3) or of the precision of floating-
point computations (as done by Fluctuat [17]) is done at the
C level — a static analysis of real expressions at the SCADE
level may however be used to determine its numerically most
precise float compilation to C [20]. Likewise, neither SAO nor
C make any guarantee about the worst-case execution time,
so, such an analysis (as done by AbsInt’s aiT [18]) is done at
the binary level and for a specific processor. A SAO model
can also be enriched with non-software elements, such as real-

1

ACM SIGSOFT Software Engineering Notes Page 1 January 2011 Volume 36 Number 1

DOI: 10.1145/1921532.1921553 http://doi.acm.org/10.1145/1921532.1921553

http://www.astree.ens.fr/

j

Switch

-

a b

i

z-1
Unit delay

z-1

B

+
++

t

x(n)

Unit delay

Switch

Switch

Figure 2: A second-order digital filter.

time clocks and communication lines with delays, to enable
a static analysis taking time into account (Sec. 5). Finally,
static analysis can also improve the confidence in compil-
ers and code generators: translation validation (Sec. 4) can
check whether the source and output are equivalent, at least
with respect to a class of properties, so that the analysis for
such properties at a higher level needs not be redone at the
lowest level (which is often more difficult).

Ideally, a static analyzer should extract automatically pre-
cise properties from a complete mathematical specification of
the analyzed system. Most properties are however undecid-
able, so, we resort to abstraction, i.e., the analyzer explores
machine-representable supersets of actual behaviors of the
system using tractable algorithms. As a consequence, the
analyzer may consider spurious behaviors and miss proper-
ties, but the analysis is sound: all the properties that are
found (absence of run-time errors, worst-case execution time,
etc.) are indeed true for all executions. A specificity of static
analysis is that it works directly on the concrete system that
is input to compilers or code generators, and the abstracted
system is derived automatically according to built-in abstrac-
tion mechanisms; no abstract system need to be provided —
which would pose the question of whether it indeed corre-
sponds to the concrete one. We use the Abstract Interpre-
tation framework [8], a general theory of the approximation
of semantics, to design static analyzers that are sound by
construction. There is no silver bullet: each static analyzer
should be tailored to a specific class of properties and pro-
grams to achieve both precision (low rate of missed prop-
erties) and efficiency. Thankfully, Abstract Interpretation
provides a growing library of ready-to-use abstractions, and
the mean to design new ones in a principled way.

After a short formal introduction to Abstract Interpreta-
tion theory in Sec. 2, this article describes more informally
several static analysis applications: checking for run-time
errors with Astrée (Sec. 3), translation validation from
C to assembly (Sec. 4), and analyzing communicating syn-
chronous systems with imperfect clocks (Sec. 5). Section 6
concludes and suggests the application of Abstract Interpre-
tation to modeling languages such as UML.

2 Abstract Interpretation

We provide a succinct introduction to Abstract Interpreta-
tion, more details are provided e.g. in [3].

2.1 Small-Step Operational Semantics

In order to analyze the behavior of a computer system during
execution, we start by providing a model of computations,
that is, an operational semantics. An example of operational
semantics for UML-Statecharts is [31].

Such an operational semantics of a given program can be
described as a transition system 〈S, I, E , t〉. S is a set of
states, including initial states I ⊆ S and bad or erroneous
states E ⊆ S. t ⊆ S × S is a transition relation between a
state s ∈ S and its possible successors: for any state s′ ∈ S,
t(s, s′) is true if, and only if, s′ is a potential successor of s.
The blocking states have no successor B , {s ∈ S | ∀s′ ∈ S :
¬t(s, s′)}.

2.2 Big-Step Operational Semantics

The big-step operational semantics of 〈S, I, E , t〉 is 〈S, I,
E , t?〉 where t? ,

⋃
n>0 t

n is the reflexive transitive closure
of t,(1) t0 , 1S , {〈s, s〉 | s ∈ S} is the identity relation on
S, tn+1 , tn ◦ t where ◦ is the composition of relations.(2)

We have t? = T (t?) where T (r) , 1S ∪ r ◦ t since a state
s′ is reachable from s in n > 0 steps if and only if n = 0 and
s = s′ or n > 0 and s′ is reachable from a successor of s in
n−1 steps. Moreover if T (r) = 1S ∪ t ◦ r ⊆ r then t? ⊆ r. It
follows that t? = lfp

⊆
T , by definition of the ⊆-least fixpoint

lfp
⊆
T of T .(3)

Because all non-trivial properties of programs are undecid-
able, t? = lfp

⊆
T is not computable for infinite state transi-

tion systems 〈S, I, E , t〉 (except for trivial programs t and
specifications E).

2.3 Specification

A typical verification problem is to prove that no execution
starting in an initial state can reach a bad state (e.g. where
the next execution step would raise an error). The correct-
ness condition is ∀s ∈ I : ∀s′ ∈ S : t?(s, s′) =⇒ s′ 6∈ E that
is no state s′ reachable from the initial states s is a bad state.
For example, E can be the set of blocking states in order to
specify the absence of deadlocks. Error-freedom can also be
written R ⊆ S \ E where R , {s′ | ∃s ∈ I : t?(s, s′)}
is the set of states reachable from the initial states and
X \ Y , {x ∈ X | x 6∈ Y }.

(1)It follows that t?(s, s′) = ∃n > 0 : ∃s0, . . . , sn : s = s0 ∧ t(s0, s1) ∧
. . . ∧ t(sn−1, sn) ∧ sn = s′, including the case s = s′ for n = 0.

(2)◦ is the composition of relations that is r1 ◦ r2 , {〈x, x′′〉 | ∃x′ : 〈x,
x′〉 ∈ r1 ∧ 〈x′, x′′〉 ∈ r2}.

(3)The v-least fixpoint lfp
v
f of an increasing map f on a poset

partially ordered by v is defined by f(lfp
v
f) = lfp

v
f and f(x) v x

implies lfp
v
f v x.

2

ACM SIGSOFT Software Engineering Notes Page 2 January 2011 Volume 36 Number 1

DOI: 10.1145/1921532.1921553 http://doi.acm.org/10.1145/1921532.1921553

http://www.astree.ens.fr/

Define F (X) , I ∪ post[t]X where post[r]X , r(X) ,
{s′ | ∃s ∈ X : r(s, s′)} is the image of the set X by the
relation r. We have F ∈ ℘(S)→ ℘(S)(4) is additive(5) hence
strict(6) and increasing.(7) We have R = F (R) since a state
is reachable iff it is an initial state or the successor of a reach-
able state. If F (X) ⊆ X then X contains the initial states
I and, transitively, any of its successors so R ⊆ X. This
implies that R = lfp

⊆
F , which is not computable either.

2.4 Abstraction

2.4.1 Intervals

Let us start with the simple example of abstracting a set
V ⊆ Z of integers (e.g. the set of possible values of an integer
variable) by an interval of values αi(V) , [minV,maxV]
(where min Z , max ∅ , −∞ and max Z , min ∅ , +∞).
In particular for the empty set ∅, αi(∅) = [+∞,−∞]. In
general, this is obviously an over-approximation since the
interval αi(V) may contain spurious values not in V . So
from z 6∈ αi(V) we can conclude z 6∈ V whereas knowing that
z ∈ αi(V) in the abstract, we do not know whether z ∈ V
or z 6∈ V in the concrete since z might be a spurious value.
The concretization is γi([`, h]) , {z ∈ Z | ` 6 z 6 h}. Let
us define the abstract domain of intervals V]i , {[`, h] | ` ∈
Z∪{−∞}∧h ∈ Z∪{+∞}∧ ` 6 h}∪{[+∞,−∞]}. We have
∀V ∈ ℘(Z) : ∀[`, h] ∈ V]i : αi(V) ⊆ [`, h] ⇐⇒ V ⊆ γi([`, h])
and so, by definition, the pair 〈α, γ〉 is a Galois connection,(8)

written 〈℘(Z), ⊆〉 −−−→←−−−
αi

γi 〈V]i , ⊆〉.

2.4.2 Cartesian Abstraction

A set V ⊆ Zn of vectors of n > 1 integer values (e.g. the set
of possible values of n integer variables) can be abstracted
by projection along each component αC(V) ,

∏n
i=1{z |

∃z1, . . . , zi−1, zi+1, . . . , zn ∈ Z : 〈z1, . . . , zi−1, z, zi+1, . . . ,
vn〉 ∈ V }. The concretization is γC(〈V1, . . . , Vn〉) , {〈z1,
. . . , zn〉 |

∧n
i=1 zi ∈ Vi} so that 〈℘(Zn), ⊆〉 −−−−→←−−−−

αC

γC 〈℘(Z)n, ⊆̇〉
where ⊆̇ is the componentwise ordering.(9) Composed with
the interval abstraction, this specifies the interval analysis of
[8] such that αi◦C(V) , 〈αi(V1), . . . , αi(Vn)〉 where 〈V1, . . . ,

Vn〉 , αC(V) which implies 〈℘(Zn), ⊆〉 −−−−−→←−−−−−
αi◦C

γi◦C 〈V]i
n
, ⊆̇〉.

This abstraction forgets about relationships between values
of variables (such as whether variables have equal values).
To abstract relations between values X, Y , . . . of numeri-
cal variables, more refined abstractions must be used such as

(4)℘(X) = {Y | Y ⊆ X} is the set of all subsets Y of a set X.
(5)F is additive iff F (

S
i∈∆Xi) =

S
i∈∆ F (Xi).

(6)F is strict whenever F (∅) = ∅.
(7)F is increasing whenever X ⊆ Y implies F (X) ⊆ F (Y).
(8)By definition, 〈C, �〉 −−−→←−−−α

γ
〈A, v〉 if and only if 〈C, �〉 and 〈A,

v〉 are posets, α ∈ C → A, γ ∈ A → C and ∀x ∈ C, y ∈ A : α(x) v
y ⇐⇒ x � γ(y). ⇐= implies soundness in that y is an abstract over-
approximation of the concrete x and =⇒ implies that α(x) is the best
abstraction of x in that it is more precise than any other sound abstrac-
tion y.

(9)The componentwise ordering is: 〈V1, . . . , Vn〉 ⊆̇ 〈V ′1 , . . . , V ′n〉 if
and only if

Vn
i=1(Vi ⊆ V ′i).

AIAA Infotech@Aerospace 2010, Atlanta, georgia, 04/20/2010 © P Cousot et Al.2 2 2

Figure 3: A set and its interval and octagonal abstractions.

octagons [25] that infer relations of the form ±X ± Y ≤ c
(where c is a constant automatically inferred by the static
analysis), see Fig. 3.

2.4.3 Transformers

Transformers, that is, relations between states, can also be
abstracted. Consider for example the abstraction of a rela-
tion r ⊆ S ×S by its right image αI(r) , r(I) , post[r]I ,
{x′ | ∃x ∈ I : r(x, x′)} of a given set I ⊆ S (e.g. of initial
states). For example, the reachable states of 〈S, I, E , t〉 are
R = αI(t?) so reachability is an abstraction of the big-step
semantics. We have:

αI(r) ⊆̇ R
⇔ {x′ | ∃x ∈ I : r(x, x′)} ⊆ R Hdef. αII
⇔ ∀x′ ∈ S : (∃x ∈ I : r(x, x′)) =⇒ x′ ∈ R Hdef. ⊆I
⇔ ∀x′ ∈ S : ∀x ∈ I : r(x, x′) =⇒ x′ ∈ R HgeneralizationI
⇔ ∀x, x′ ∈ S : r(x, x′) =⇒ (x ∈ I =⇒ x′ ∈ R) Hdef. =⇒ I
⇔ r ⊆ {〈x, x′〉 | x ∈ I =⇒ x′ ∈ R} Hdef. ⊆I
⇔ r ⊆ γI(R)

Hby defining γI(R) , {〈x, x′〉 | x ∈ I =⇒ x′ ∈ R}I

which is the characteristic property of the Galois connection
〈℘(S × S), ⊆〉 −−−→←−−−

αI

γI 〈℘(S), ⊆〉.

2.4.4 Fixpoint Abstraction

For reachability, we haveR = αI(t?) = αI(lfp
⊆
T) = lfp

⊆
F

so that the abstraction αI(lfp
⊆
T) of the concrete fixpoint

lfp
⊆
T can be calculated as an abstract fixpoint lfp

⊆
F not

referring at all to the concrete world. This follows from a
general result sketched below and the observation that:

αI ◦ T (r)

= αI(1S ∪ r ◦ t) Hdef. ◦ and T I
= αI(1S) ∪ αI(r ◦ t) Hdef. αII
= I ∪ {x′ | ∃x ∈ I : (r ◦ t)(x, x′)} Hdef. 1S and αII
= I ∪ {x′ | ∃x ∈ I : ∃x′′ : r(x, x′′) ∧ t(x′′, x′)} Hdef. ◦I
= I ∪ {x′ | ∃x′′ ∈ {x′′ | ∃x ∈ I : r(x, x′′)} : t(x′′, x′)} Hdef. ∃, ∈I
= I ∪ {x′ | ∃x′′ ∈ αI(r) : t(x′′, x′)} Hdef. αII
= I ∪ post[t](αI(r)) Hdef. post[t]I
= F ◦ αI(r) Hdef. F and ◦I

The above calculus also shows how to calculate the ab-
stract transformer F knowing the concrete transformer T ,

3

ACM SIGSOFT Software Engineering Notes Page 3 January 2011 Volume 36 Number 1

DOI: 10.1145/1921532.1921553 http://doi.acm.org/10.1145/1921532.1921553

which is the idea of the calculational design of static analyz-
ers [7].

More generally, under suitable hypotheses of existence of
joins in posets and fixpoints [8, 7], if f ∈ C → C, 〈C, �
〉 −−−→←−−−α

γ
〈A], v〉 and f] ∈ A] → A] satisfy α ◦ f = f] ◦ α,

then α(lfp
�
f) = lfp

v
f].

Faced with undecidable problems, α(lfp
�
f) is often non-

computable, in which case it must be over-approximated
α(lfp

�
f) v lfp

v
f], which follows from the local condition

α ◦ f v̇ f] ◦ α.(10) This is the case for example for interval
analysis [8].

2.4.5 Fixpoint Approximation

Under suitable hypotheses of existence of joins in posets and
fixpoints [8, 7], fixpoints can be computed iteratively. For ex-
ample, R =

⋃n
i=0 F

n(∅)(11) with the intuition that the reach-
able states are reachable in either 0, 1, 2, . . . , n, . . . compu-
tation steps. However, in general, convergence of the iterates
to a fixpoint may require infinitely many iterations (for unde-
cidable problems) or suffer a combinatorial explosion in time
and memory (for finite but complex problems). But for rare
cases where the fixpoint can be computed directly (e.g. by
elimination), convergence must in general be accelerated, e.g.
using a widening O [8] at the prejudice of precision. A näıve
example of widening for intervals is [`i, hi]O[`i+1, hi+1] ,
[if `i+1 < `i then −∞ else `i, if hi+1 > hi then +∞ else `i]
so that unstable bounds are pushed to infinity, which en-
forces rapid although imprecise convergence. A narrowing
can then be used to remove some of the infinite bounds [8].

2.4.6 Design of a Static Analyzer

The design of a static analyzer for a (specification or pro-
gramming) language starts with the definition of its seman-
tics and the properties of interest for each program of the
language, often in the form of fixpoints lfp

�
F correspond-

ing to an abstraction of the notion of computation (e.g.
reachability). F is then designed by induction on the lan-
guage syntax. Then, an abstraction α is defined, which
is a complex task, hence must be done by composition of
simpler abstractions, using standard composition methods
such as the reduced product α(X) ,

∧m
i=1 αi(X) combin-

ing different abstractions αi(X) [9] and standard abstrac-
tions (some already implemented in libraries [22]). The
static analyzer is then designed by induction on the language
syntax. It reads a program, computes the abstract trans-
former F] (designed to satisfy α ◦ F v F] ◦ α) for that
program, over-approximates the abstract fixpoint lfp

v
F]

by an iterative computation with convergence acceleration
with widening/narrowing. This ensures that the result A
(e.g. an abstract invariant for reachability) is sound (i.e.
α(lfp

�
F) v lfp

v
F] v A). The result A is then used for

(10)The pointwise ordering is f v̇ g if and only if ∀x : f(x) v g(x).
(11)The powers of a function f are: f0 is the identity, f1 , f , and
fn+1 = f ◦ fn.

verification purposes (e.g. to prove the absence of run-time
errors).

3 Checking Run-Time Errors with
Astrée

We now describe a first concrete application of Abstract In-
terpretation: the static analyzer Astrée [4] that checks for
run-time errors in embedded C programs and has been suc-
cessfully used in aeronautics [13] and aerospace [6]. It started
in 2001 as an academic project [11] and is industrialized by
AbsInt Angewandte Informatik [1] since 2009.

3.1 Semantics

3.1.1 Operational Semantics of C

Astrée accepts a fairly large subset of C, excluding dy-
namic memory allocation, recursivity, and parallelism, that
are often unused (even forbidden) in embedded code. The
language syntax and concrete semantics are based on the
C99 norm [21], supplemented with the IEEE 754-1985 norm
[19] for floating-point computations. However, the C99 norm
leaves many aspects of the semantics unspecified and lets
implementations decide. As embedded software are rarely
strictly conforming but rely instead on platform-specific fea-
tures, Astrée also takes them into account and provides
options for the user to tune some semantic aspects (e.g. the
bit-size, alignment, and byte order of data-types).

3.1.2 Run-Time Errors

Astrée checks for run-time errors, that is, operations that
are either undefined on the user-defined platform (e.g. out-of-
bound array accesses) or have unintended results (e.g. wrap-
around after integer overflows). The property to verify (ab-
sence of run-time errors) is thus implicit and derived from the
program’s own source. More precisely, Astrée checks over-
flows in unsigned and signed integer and float arithmetics and
casts, divisions by zero, out-of-bound array accesses, NULL,
dangling, out-of-bound and misaligned pointer dereferences,
and assertion failures (in calls to the assert C function).

Astrée does not stop at the first encountered error but
instead continues the analysis for all executions that have
a well-defined semantics (e.g. integer overflows with wrap-
around). Thus, if there are no alarms, or if all executions
leading to alarms can be proved by other means to be spuri-
ous, then the program is indeed free from run-time errors.

3.2 Analyzed Codes

Although Astrée accepts a large variety of C codes, it can-
not analyze most of them precisely and efficiently. It is
mainly specialized, by its choice of abstractions, to analyze
control/command synchronous programs automatically gen-
erated from higher level specifications. Once generated, such
codes have the following structure:

4

ACM SIGSOFT Software Engineering Notes Page 4 January 2011 Volume 36 Number 1

DOI: 10.1145/1921532.1921553 http://doi.acm.org/10.1145/1921532.1921553

http://www.astree.ens.fr/
http://www.astree.ens.fr/
http://www.astree.ens.fr/
http://www.astree.ens.fr/
http://www.astree.ens.fr/
http://www.astree.ens.fr/
http://www.astree.ens.fr/
http://www.astree.ens.fr/

initialize state variables

loop for 10 h

read inputs from sensors

update state and compute output

write outputs to actuators

wait for next clock tick (10 ms)

(where the read, update and write instructions may be scat-
tered in the source or encapsulated within functions) and fea-
ture a large number of global variables (the state), floating-
point computations, few nested loops, and a limited number
of recurring code patterns (a few macros widely instanti-
ated).

Programs analyzed by Astrée should be stand-alone, i.e.,
have no undefined symbols. Nevertheless, programs are run
within an environment and typically fetch external data, e.g.
sensor values, through memory-mapped registers. Astrée
allows specifying these memory locations as “volatile” with
a range of expected values (or possibly the full range of the
type, including special NaN or ±∞ float values). The analy-
sis naturally considers all possible sequences of inputs in the
specified ranges.

3.3 Design of Astrée

Astrée is an abstract interpreter: it traverses the program
by structural induction on its syntax, iterating loops and
stepping into functions, to collect an abstraction of all pos-
sible execution traces. The analysis is thus fully flow- and
context-sensitive. Its termination is guaranteed by the use of
widening operators O [8] to accelerate loops and the absence
of recursion.

3.3.1 Abstractions

Astrée does not use a single abstraction, but rather many
abstractions (more than 20) that can be switched on and off.

For instance, expressing the absence of many run-time er-
rors requires information on variable bounds, and so, As-
trée implements the interval domain [8] based on interval
arithmetics [26].(12) However, discovering precise bounds of-
ten requires stronger properties, especially for loops that re-
quires invariant relations between variables (e.g. between the
loop index and other variables used in the loop body). Hence,
Astrée uses relational domains, such as octagons [25] that
infer relations of the form ±X ± Y ≤ c, and boolean deci-
sion trees that handle disjunctions precisely — for instance
(B ∧X > 1) ∨ (¬B ∧X < −1).

Beside these classic, general-purpose domains, Astrée
features domain-specific abstractions, tailored to its use in
control/command software. Examples include a domain to
handle digital filters [15], as presented in Fig. 2, a domain
of geometric-arithmetic deviations [16] X ≤ α(1 + β)clock

used to bound the accumulation of floating-point rounding

(12)However interval arithmetics is used statically (at compile-time)
with a widening to accelerate convergence of iterative fixpoint compu-
tations, not at all dynamically (at run-time) as in the traditional use
of interval arithmetics to evaluate expressions of numerical programs.

errors in the main loop, and a domain to handle quaternion
computations.(13)

In addition to numerical domains, a specific memory do-
main [24] has been developed to abstract structures and ar-
rays in a field-sensitive way, and to handle pointers and type-
unsafe C constructions (such as type-punning, physical casts,
or union types). Finally, an abstraction of execution traces
[29] partitions the reachable states with respect to the his-
tory of computation and permits some path-sensitivity.

The various abstractions are independent modules, each
with its own private abstract representation of properties and
algorithms, that communicate using a sophisticated commu-
nication network [10] approximating the classic notion of re-
duced product [9].

3.3.2 Ensuring Precision and Efficiency

A key to the efficiency of Astrée is its parsimonious and
localized use of carefully limited abstract domains. One ex-
ample is the use of octagons [25] which are less expressive but
cheaper than general polyhedra [12] (cubic versus exponen-
tial cost). Moreover, relational domains, such as octagons
and boolean trees, do not relate all variables together, but
are limited to small packs of variables. Likewise, trace par-
titioning is only performed on limited portions of the source
code, after which all partitions are merged together. Code
portions and variable packs are determined automatically by
simple, syntax-directed pre-analyses. Finally, domains only
communicate a selected portion of the information they infer
to other domains — a fully reduced product would not scale
up given the amount of information inferred by the many
domains.

A key to the precision of Astrée is its design by refine-
ment, which is made easy by its very modular design. We
actually started from a simple interval-based analyzer and
improved it until it reached zero alarms on a first family
of realistic code [4], then considered other, more complex,
codes. When encountering a new kind of codes, the analy-
sis generally terminates quickly but with some false alarms,
which must be investigated by hand to find the cause of
imprecision. The analysis can then be improved in various
ways, from easiest and most common, to most time consum-
ing but thankfully seldom required. Often, it is sufficient to
tune some parameters of the abstractions that are exposed
through around 150 command-line options (such as iteration
strategies, domain aggressiveness, pack size, etc.), which any
trained end-user can do. When Astrée already contains a
domain able to infer the missing information, a solution is to
update the pre-analysis of variable packs and code portions
where the domain is activated — this happened, in particu-
lar, once while analyzing programs in the same application
domain but with a new code generator [3]. The regularity of
automatically generated code is very helpful to design robust
full-scale pre-analyses by generalisation of test cases. When

(13)In mechanics, quaternions extend the complex numbers to desig-
nate rotations in the 3-dimensional space.

5

ACM SIGSOFT Software Engineering Notes Page 5 January 2011 Volume 36 Number 1

DOI: 10.1145/1921532.1921553 http://doi.acm.org/10.1145/1921532.1921553

http://www.astree.ens.fr/
http://www.astree.ens.fr/
http://www.astree.ens.fr/
http://www.astree.ens.fr/
http://www.astree.ens.fr/
http://www.astree.ens.fr/
http://www.astree.ens.fr/
http://www.astree.ens.fr/
http://www.astree.ens.fr/
http://www.astree.ens.fr/
http://www.astree.ens.fr/
http://www.astree.ens.fr/

the information is inferred but fails to be exploited, new com-
munication channels between domains can be opened. These
two cases require minor modifications to the analyzer source.
When all fails, it is always possible to design and implement
a new abstract domain focusing on the missing properties,
but this is a research-grade activity. This last case happened
when extending Astrée from aeronautic to space applica-
tions [6]: the later required a domain to handle quaternion
computations, which were absent in the former application.

3.4 Applications

A first application of Astrée was the proof of absence of run-
time errors in two families of industrial embedded avionic
control/command software generated from SAO specifica-
tions [13]. Programs in the first family have around 100 K
code lines and 10 K global variables (half of which are floats)
and can be analyzed in around 2 h on a 64-bit 2.66 GHz intel
workstation using a single core. Programs in the second fam-
ily control more modern systems and are both more complex
and longer: up to 1 M code lines. They are analyzed in 50 h.
Both analyses give zero false alarms.

A second application was the analysis of space software
[6] or, more precisely, a 14 K lines C code generated from a
SCADE [14] model designed by Astrium ST. After special-
ization required by a change of application domain and code
generator, the code could be analyzed in 1 h, with zero false
alarm.

Since its industrialization by AbsInt, Astrée is being
adapted to handle code generated by dSPACE TargetLink (a
popular code generator for MATLAB, Simulink and State-
flow) with encouraging preliminary results [23].

4 Translation Validation

The analysis described in Sec. 3 is performed at the source
level, thus its results hold true at the assembly level only
if the compilation of the C code is semantically correct.
In some application domains, such as avionics, certification
rules state that the development process should be certified
and that the final version of the software should be certi-
fied [30]. From this point of view, the analysis of the C code
cannot be considered a sufficient guarantee, as the use of an
incorrect compiler may ruin the whole certification effort.

While analysis of the target code is adequate for some
applications such as worst-case execution time [18], higher
level properties such as absence of run-time errors are easier
to reason about at the C level, since many simple C oper-
ations turn into complex pieces of assembly code, as is the
case for floating point conversions or code in which the notion
of error has disappeared (such as memory accesses). Thus,
it is preferable to exploit the results obtained at the source
level in order to cope with the target code certification in a
more efficient way. A first approach relies on the translation
of invariants obtained in Sec. 3 into assembly level proper-
ties, which can be checked using an independent analysis, yet

that approach is hard to scale, as the analysis of low level
operations is often complex. A second technique proceeds
by an automatic proof of equivalence (also known as trans-
lation validation) of both programs. Note that translation
validation is closely linked to the proof of absence of run-
time errors at the source level: indeed, semantic equivalence
can only be guaranteed on safe executions, whereas unsafe
runs typically have undefined semantics.

Both techniques can be formalized in the Abstract Inter-
pretation framework [28], since the compiler semantic effect
reduces to a classic fixpoint transfer, where C computation
steps are translated into assembly computation steps. Such
a formalization allows for the translation certification to in-
terface well with the C code analysis.

The Lcertify tool was developed as a library of data-
structures and algorithms for translation validation, follow-
ing the framework exposed in [28]. It comes with a C front-
end, but it can also be used with a custom front-end, adapted
to a user-specific imperative language, as used for some ap-
plications. At the assembly level, it takes 32-bit PowerPC bi-
naries. It can certify the compilation of industrial-size codes
in a few minutes including disassembly.

5 Imperfectly-Clocked Synchronous
Systems

5.1 Proving Temporal Specifications

The analysis presented in Sec. 4 allows binaries obtained
through the process explained in Fig. 1 to be proved safe
with respect to specifications expressed at the C language
level or at the assembly language level. This is a huge part
of the control units of embedded systems which are then cer-
tified. On the other hand, the temporal specifications are
rather expressed at SAO level, where the synchronous hy-
pothesis and the syntax make them easier to define and read.
As many systems are designed in a distributed way, this im-
plies studying multi-clock, inherently asynchronous systems.
These systems are luckily not arbitrary asynchronous sys-
tems but rather imperfectly-clocked, meaning that we have
some information about their physical clocks and their com-
munication channels that may be enough to prove the desired
specification. A typical specification for a clock is that its pe-
riod (the time between two consecutive clock ticks) is equal
to some fixed value δ with a possible imprecision of x%.

A particular case is redundant sub-systems. The whole
system is made safer by detecting the failures of one of the
redundant units and by considering only the results of other
equivalent units. The synchronous language community pro-
posed safe ways to handle this case, we thus developed ab-
stract domains that can be very precise on the code produced
following these guidelines.

6

ACM SIGSOFT Software Engineering Notes Page 6 January 2011 Volume 36 Number 1

DOI: 10.1145/1921532.1921553 http://doi.acm.org/10.1145/1921532.1921553

http://www.astree.ens.fr/
http://www.astree.ens.fr/
http://www.astree.ens.fr/

5.2 Continuous-Time Semantics and Tem-
poral Abstract Domains

We consider a continuous-time semantics since it allows ab-
stract domains to compute a precise fixpoint abstracting this
semantics. This is because the mathematical properties of
continuous spaces are richer than those of discrete ones, and
maybe also because these systems are actually designed in a
continuous world through differential equations.

By defining an universal constraint on a time interval [a; b]
and a Boolean x, denoted ∀〈a; b〉 : x, we can describe signals
that take the value x during the whole time interval [a; b].
Similarly, an existential constraint, denoted ∃[a; b] : x, de-
scribes signals that take the value x at least once during [a; b].
This abstract information can be propagated abstractly in
an efficient way. For example, the effect of a negation oper-
ation on a ∀〈a; b〉 : x signal turns it into ∀〈a; b〉 : ¬x. In a
more complex way, yet at the cost of only two additions, a
communication channel transmitting information in a serial
way with at least α and at most β delay, submitted with a
∃[a; b] : x constraint results in ∃[a+ α; b+ β] : x.

By considering conjunctions of these elements, we may ex-
press temporal properties. This abstract domain thus plays
a similar role as the one of the interval domain presented in
Sec. 2 for the analysis of the code of one unit only.

Additional domains on time properties were defined in [2].
This temporal aspect does not only enable proving tempo-
ral properties, but also allows the automatic definition of a
reduced product [9], the time becoming a common language
between them.

5.3 Implementation and Experiments

Relaxing the synchrony hypothesis allows the certification of
a bigger subset of the whole embedded system, at the price of
a much more complex analysis that actually depends on the
imprecision of the clocks and the communication systems. A
prototype static analyzer has been developed according to
these ideas and was able to prove some temporal properties
of redundant SAO systems with a voting system arbitrat-
ing among them. Furthermore, when the analyzer cannot
prove the specification, looking at the abstract fixpoint is
sometimes sufficient to devise an erroneous trace. When this
is not the case, it may be due false alarms that might be
removed by creating more precise abstract domains. Inci-
dentally, by trying the prototype on systems with different
parameters, interesting information can be obtained, such as
the minimal synchrony for the stabilization of the values read
by sensors such that the specification is proved.

6 Conclusion

We have shown that static analysis by Abstract Interpreta-
tion can be applied from the design to the implementation
of software systems. Each level of description of the system
must be checked, and the translation from one level to an-

other one must be validated, since the different levels can
significantly differ in their description of the target system.

A modeling language like UML describes nothing but dif-
ferent abstractions of the target system, at different levels
of abstraction, and so, Abstract Interpretation is certainly
applicable both to formalize these abstractions and to de-
velop static analysis techniques at each level of abstraction.
However, modeling languages are usually not formalized and
subject to multiple, if not contradictory, interpretations. As
with any formal method, the first task towards the use of
Abstract Interpretation on UML would therefore be to pro-
vide a rigorous mathematical definition of the meaning of the
data, business, object, and component modeling, and their
diagramatic representations. It will then be possible to de-
fine in what sense modeling languages do abstract the design
process and ultimately the target system. Then, the devel-
opment of tools, going beyond mere syntactic checks, will be
possible.

Acknowledgments. We thank Isabelle Perseil for her kind
invitation to the UML&FM 2010 workshop.

References

[1] AbsInt, Angewandte Informatik. Astrée run-time error
analyzer. http://www.absint.com/astree/.

[2] Bertrane, J. Proving the properties of communicating
imperfectly-clocked synchronous systems. In Proceedings of
the Thirteenth International Symposium on Static Analysis
(SAS 06) (Seoul, 29–31 Aug. 2006), K. Yi, Ed., vol. 4134 of
LNCS, Springer, pp. 370–386.

[3] Bertrane, J., Cousot, P., Cousot, R., Feret, J.,
Mauborgne, L., Miné, A., and Rival, X. Static analysis
and verification of aerospace software by abstract interpreta-
tion. In AIAA Infotech@Aerospace (I@A 2010), AIAA-2010-
3385. AIAA (American Institute of Aeronautics and Astro-
nautics), Apr. 2010, pp. 1–38.

[4] Blanchet, B., Cousot, P., Cousot, R., Feret, J.,
Mauborgne, L., Miné, A., Monniaux, D., and Rival,
X. Design and implementation of a special-purpose static
program analyzer for safety-critical real-time embedded soft-
ware, invited chapter. In The Essence of Computation: Com-
plexity, Analysis, Transformation. Essays Dedicated to Neil
D. Jones, T. Mogensen, D. Schmidt, and I. Sudborough,
Eds., LNCS 2566. Springer, 2002, pp. 85–108.

[5] Blanchet, B., Cousot, P., Cousot, R., Feret, J.,
Mauborgne, L., Miné, A., Monniaux, D., and Rival,
X. A static analyzer for large safety-critical software. In
Proc. ACM SIGPLAN ’2003 Conf. PLDI (San Diego, 2003),
ACM Press, pp. 196–207.

[6] Bouissou, O., Conquet, E., Cousot, P., Cousot, R.,
Feret, J., Goubault, E., Ghorbal, K., Lesens, D.,
Mauborgne, L., Miné, A., Putot, S., Rival, X., and
Turin, M. Space software validation using abstract inter-
pretation. In Proc. of the Int. Space System Engineering
Conference, Data Systems In Aerospace (DASIA’09) (Istan-
bul, Turkey, 26–29 May 2009), ESA publications, pp. 1–7.

7

ACM SIGSOFT Software Engineering Notes Page 7 January 2011 Volume 36 Number 1

DOI: 10.1145/1921532.1921553 http://doi.acm.org/10.1145/1921532.1921553

http://www.absint.com/astree/

[7] Cousot, P. The calculational design of a generic abstract
interpreter. In Calculational System Design, M. Broy and
R. Steinbrüggen, Eds. NATO ASI Series F. IOS Press, Am-
sterdam, 1999.

[8] Cousot, P., and Cousot, R. Abstract interpretation: a
unified lattice model for static analysis of programs by con-
struction or approximation of fixpoints. In Conf. Rec. of the
4th ACM Symp. on Principles of Programming Languages
(POPL’77) (Jan. 1977), pp. 238–252.

[9] Cousot, P., and Cousot, R. Systematic design of program
analysis frameworks. In Conference Record of the Sixth An-
nual ACM SIGPLAN-SIGACT Symposium on Principles of
Programming Languages (San Antonio, Texas, 1979), ACM
Press, pp. 269–282.

[10] Cousot, P., Cousot, R., Feret, J., Mauborgne, L.,
Miné, A., Monniaux, D., and Rival, X. Combination
of abstractions in the Astrée static analyzer. In Proc.
of the 11th Annual Asian Computing Science Conference
(ASIAN’06) (Tokyo, Japan, 6–8 Dec. 2006), M. Okada and
I. Satoh, Eds., vol. 4435 of LNCS, Springer, pp. 272–300.

[11] Cousot, P., Cousot, R., Feret, J., Mauborgne, L.,
Miné, A., and Rival, X. The Astrée static analyzer.
http://www.astree.ens.fr.

[12] Cousot, P., and Halbwachs, N. Automatic discovery of
linear restraints among variables of a program. In Conf.
Rec. of the 5th Annual ACM SIGPLAN-SIGACT Symp. on
Principles of Programming Languages (POPL’78) (Tucson,
USA, 1978), ACM Press, pp. 84–97.

[13] Delmas, D., and Souyris, J. Astrée: from research to
industry. In Proc. of the 14th Int. Static Analysis Sympo-
sium (SAS’07), G. Filé and H. Riis-Nielson, Eds., vol. 4634
of LNCS. Springer, Kongens Lyngby, Denmark, 22–24 Aug.
2007, pp. 437–451.

[14] Esterel Technologies. Scade suiteTM, the standard
for the development of safety-critical embedded software in
the avionics industry. http://www.esterel-technologies.

com/.

[15] Feret, J. Static analysis of digital filters. In Proc. of the
13th European Symp. on Programming Languages and Sys-
tems (ESOP’04) (27 Mar.–4 Apr. 2004), D. Schmidt, Ed.,
vol. 2986 of LNCS, Springer, pp. 33–48.

[16] Feret, J. The arithmetic-geometric progression abstract do-
main. In Proc. of the 6th Int. Conf. on Verification, Model
Checking and Abstract Interpretation (VMCAI’05) (Paris,
France, 17–19 Jan. 2005), R. Cousot, Ed., vol. 3385 of LNCS,
Springer, pp. 42–58.

[17] Goubault, E. Static analyses of floating-point operations.
In Proc. of the 8th Int. Static Analysis Symposium (SAS’01)
(2001), vol. 2126 of LNCS, Springer, pp. 234–259.

[18] Heckmann, R., and Ferdinand, C. Worst-case execu-
tion time prediction by static program analysis. In Proc. of
the 18th Int. Parallel and Distributed Processing Symposium
(IPDPS’04) (2004), IEEE Computer Society, pp. 26–30.

[19] IEEE Computer Society. IEEE standard for binary
floating-point arithmetic. Tech. rep., ANSI/IEEE Std. 745-
1985, 1985.

[20] Ioualalen, A. SARDANA: an abstract interpretation based
tool for Optimization of numerical expressions in LUSTRE

programs. In Tools for Automatic Program AnalysiS (TAPAS
2010), Perpignan, France (17 Sep. 2010).

[21] ISO/IEC JTC1/SC22/WG14 Working Group. C stan-
dard. Tech. Rep. 1124, ISO & IEC, 2007.

[22] Jeannet, B., and Miné, A. Apron: A library of numer-
ical abstract domains for static analysis. Computer Aided
Verification, CAV’2009 5643 of LNCS (2009), 661–667.

[23] Kästner, D., Wilhelm, S., Nenova, S., Cousot, P.,
Cousot, R., Feret, J., Mauborgne, L., Miné, A., and
Rival, X. Astrée: Proving the absence of rutime er-
rors. In Proc. of Embedded Real-Time Software and Systems
(ERTS’10) (Toulouse, France, May 2010), pp. 1–5. (to ap-
pear).

[24] Miné, A. Field-sensitive value analysis of embedded C pro-
grams with union types and pointer arithmetics. In Proc.
of the ACM SIGPLAN-SIGBED Conf. on Languages, Com-
pilers, and Tools for Embedded Systems (LCTES’06) (June
2006), ACM Press, pp. 54–63.

[25] Miné, A. The octagon abstract domain. Higher-Order and
Symbolic Computation 19 (2006), 31–100.

[26] Moore, R. E. Interval Analysis. Prentice Hall, Englewood
Cliffs N. J., USA, 1966.

[27] Randimbivololona, F., Souyris, J., Baudin, P.,
Pacalet, A., Raguideau, J., and Schoen, D. Applying
formal proof techniques to avionics software: A pragmatic
approach. In Proc. of the World Congress on Formal Meth-
ods (FM’99) (1999), vol. 1709 of LNCS, Springer, pp. 1798–
1815.

[28] Rival, X. Symbolic transfer functions-based approaches
to certified compilation. In Conf. Rec. of the 31st Annual
ACM SIGPLAN-SIGACT Symp. on Principles of Program-
ming Languages (POPL’04) (Venice, Italy, Jan. 2004), ACM
Press, pp. 1–13.

[29] Rival, X., and Mauborgne, L. The trace partitioning
abstract domain. ACM Trans. Program. Lang. Syst. 29, 5
(2007).

[30] Technical Commission on Aviation, R. DO-178B. Tech.
rep., Software Considerations in Airborne Systems and
Equipment Certification, 1999.

[31] von der Beeck, M. A formal semantics of uml-rt. In
Model Driven Engineering Languages and Systems, 9th In-
ternational Conference, MoDELS 2006, Genova, Italy, Octo-
ber 1-6, 2006, Proceedings (2006), O.Nierstrasz, J. Whittle,
D. Harel, and G. Reggio, Eds., vol. 4199 of LNCS, Springer,
pp. 768–782.

8

ACM SIGSOFT Software Engineering Notes Page 8 January 2011 Volume 36 Number 1

DOI: 10.1145/1921532.1921553 http://doi.acm.org/10.1145/1921532.1921553

http://www.astree.ens.fr
http://www.esterel-technologies.com/
http://www.esterel-technologies.com/

	Introduction
	Abstract Interpretation
	Small-Step Operational Semantics
	Big-Step Operational Semantics
	Specification
	Abstraction
	Intervals
	Cartesian Abstraction
	Transformers
	Fixpoint Abstraction
	Fixpoint Approximation
	Design of a Static Analyzer

	Checking Run-Time Errors with Astrée
	Semantics
	Operational Semantics of C
	Run-Time Errors

	Analyzed Codes
	Design of Astrée
	Abstractions
	Ensuring Precision and Efficiency

	Applications

	Translation Validation
	Imperfectly-Clocked Synchronous Systems
	Proving Temporal Specifications
	Continuous-Time Semantics and Temporal Abstract Domains
	Implementation and Experiments

	Conclusion

