
A Static Analyzer for Large Safety-Critical Software

Bruno Blanchet ∗§ Patrick Cousot § Radhia Cousot ∗¶ Jérôme Feret §

Laurent Mauborgne § Antoine Miné § David Monniaux ∗§ Xavier Rival §

ABSTRACT
We show that abstract interpretation-based static program
analysis can be made efficient and precise enough to formally
verify a class of properties for a family of large programs
with few or no false alarms. This is achieved by refinement
of a general purpose static analyzer and later adaptation to
particular programs of the family by the end-user through
parameterization. This is applied to the proof of soundness
of data manipulation operations at the machine level for
periodic synchronous safety critical embedded software.

The main novelties are the design principle of static ana-
lyzers by refinement and adaptation through parameteriza-
tion (Sect. 3 and 8), the symbolic manipulation of expres-
sions to improve the precision of abstract transfer functions
(Sect. 7.3), the octagon (Sect. 7.2.2), ellipsoid (Sect. 7.2.3),
and boolean relations (Sect. 7.2.4) abstract domains, all with
sound handling of rounding errors in floating point compu-
tations, widening strategies (with thresholds: Sect. 8.1.2,
delayed: Sect. 8.1.3) and the automatic determination of
the parameters (parameterized packing, Sect. 8.2).

Categories and Subject Descriptors
D.2.4 [Software Engineering]: Program Verification—for-

mal methods, validation, assertion checkers; D.3.1 [Program-

ming Languages]: Formal Definitions and Theory—se-

mantics; F.3.1 [Logics and Meanings of Programs]:
Specifying and Verifying and Reasoning about Programs—
Mechanical verification, assertions, invariants; F.3.2 [Logics

and Meanings of Programs]: Semantics of Programming
Languages—Denotational semantics, Program analysis.

General Terms
Algorithms, Design, Experimentation, Theory, Verification.

1. INTRODUCTION
Critical software systems (as found in industrial plants,

automotive, and aerospace applications) should never fail.
Ensuring that such software does not fail is usually done by

∗ CNRS (Centre National de la Recherche Scientifique)
§ École normale supérieure. First-name.Last-name@ens.fr
¶ École polytechnique. First-name.Last-name@polytechnique.fr

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. To copy otherwise, to republish, to post on servers or to redistribute
to lists, requires prior specific permission and/or a fee.
Copyright 2002 ACM X-XXXXX-XX-X/XX/XX ...$5.00.

testing, which is expensive for complex systems with high re-
liability requirements, and anyway fails to prove the impos-
sibility of failure. Formal methods, such as model-checking,
theorem proving, and static analysis, can help.

The definition of “failure” itself is difficult, in particular
in the absence of a formal specification. In this paper, we
chose to focus on a particular aspect found in all specifica-
tions for critical software, that is, ensuring that the critical
software never executes an instruction with “undefined” or
“fatal error” behavior, such as out-of-bounds accesses to ar-
rays or improper arithmetic operations (such as overflows or
division by zero). Such conditions ensure that the program
is written according to its intended semantics, for example
the critical system will never abort its execution. These cor-
rectness conditions are automatically extractable from the
source code, thus avoiding the need for a costly formal spec-
ification. Our goal is to prove automatically that the soft-
ware never executes such erroneous instructions or, at least,
to give a very small list of program points that may possibly
behave in undesirable ways.

In this paper, we describe our implementation and exper-
imental studies of static analysis by abstract interpretation
over a family of critical software systems, and we discuss the
main technical choices and possible improvements.

2. REQUIREMENTS
When dealing with undecidable questions on program ex-

ecution, the verification problem must reconcile correctness

(which excludes non exhaustive methods such as simula-
tion or test), automation (which excludes model-checking
with manual production of a program model and deductive
methods where provers must be manually assisted), preci-

sion (which excludes general analyzers which would produce
too many false alarms), scalability (for software of a few hun-
dred thousand lines), and efficiency (with minimal space
and time requirements allowing for rapid verification dur-
ing the software production process which excludes a costly
iterative refinement process).

Industrialized general-purpose static analyzers satisfy all
criteria but precision and efficiency. Traditionally, static
analysis is made efficient by allowing correct but somewhat
imprecise answers to undecidable questions. In many usage
contexts, imprecision is acceptable provided all answers are
sound and the imprecision rate remains low (typically 5 to
15%). This is the case for program optimization (such as
static elimination of run-time array bound checks), program
transformation (such as partial evaluation), etc.

In the context of program verification, where human in-

teraction must be reduced to a strict minimum, false alarms
are undesirable. A 5% rate of false alarms on a program of
a few hundred thousand lines would require several person-
years effort to manually prove that no error is possible. For-
tunately, the abstract interpretation theory shows that for
any finite class of programs, it is possible to achieve full pre-
cision and great efficiency [5] by discovering an appropriate
abstract domain. The challenge is to show that this theoret-
ical result can be made practical by considering infinite but
specific classes of programs and properties to get efficient
analyzers producing few or no false alarms. A first experi-
ence on smaller programs of a few thousand lines was quite
encouraging [3] and the purpose of this paper is to report on
a real-life application showing that the approach does scale
up.

3. DESIGN PRINCIPLE
The problem is to find an abstract domain that yields an

efficient and precise static analyzer for the given family of
programs. Our approach is in two phases, an initial design

phase by specialists in charge of designing a parameterizable
analyzer followed by an adaptation phase by end-users in
charge of adapting the analyzer for (existing and future)
programs in the considered family by an appropriate choice
of the parameters of the abstract domain and the iteration
strategy.

3.1 Initial Design by Refinement
Starting from an existing analyzer [3], the initial design

phase is an iterative manual refinement of the analyzer. We
have chosen to start from a program in the considered fam-
ily that has been running for 10 years without any run-time
error, so that all alarms are, in principle, due to the im-
precision of the analysis. So the analyzer can be iteratively
refined for this example until all alarms are eliminated.

Each refinement step starts with a static analysis of the
program, which yields false alarms. Then a manual back-
ward inspection of the program starting from sample false
alarms leads to the understanding of the origin of the im-
precision of the analysis. There can be two different reasons
for the lack of precision:

• Some local invariants are expressible in the current ver-
sion of the abstract domain but were missed either:
– because some abstract transfer function (see Sect. 6.2)
was too coarse, in which case it must be rewritten closer to
the best abstraction of the concrete transfer function [7] (see
Sect. 7.3),
– or because a widening (see Sect. 6.3) was too coarse,
in which case the iteration strategy must be refined (see
Sect. 8.1);

• Some local invariants are necessary in the correctness
proof but are not expressible in the current version of the
abstract domain. To express these local invariants, a new
abstract domain has to be designed by specialists and incor-
porated in the analyzer as an approximation of the reduced
product [7] of this new component with the other already
existing domains (see Sect. 8.2).

When this new refinement of the analyzer has been imple-
mented, it is tested on typical examples and then on the full
program to verify that some false alarms have been elim-
inated. In general the same cause of imprecision appears
several times in the program; furthermore, one single cause
of imprecision at some program point later often leads to

many false alarms in the code reachable from that program
point, so a single refinement typically eliminates a few dozen
if not hundreds of false alarms.

This process is to be repeated until there is no or very few
false alarms left.

3.2 Adaptation by Parameterization
The analyzer can then be used by casual end-users in

charge of proving programs in the family. The necessary
adaptation of the analyzer to a particular program in the
family is by appropriate choice of some parameters. An ex-
ample provided in the preliminary experience [3] was the
widening with thresholds. Another example is relational do-
mains (such as octagons [21]) which cannot be applied to all
global variables simultaneously because the corresponding
analysis would be too expensive; it is possible to have the
user supply for each program point groups of variables on
which the relational analysis should be independently ap-
plied.

In practice we have discovered that the parameterization
can be largely automated (and indeed it is fully automated
for octagons as explained in Sect. 8). In this way the effort
to manually adapt the analyzer for a particular program in
the family is reduced to a minimum.

3.3 Analysis of the Alarms
We implemented and used a slicer [22] to help in the

alarm inspection process. If the slicing criterion is an alarm
point, the extracted slice contains the computations that
led to the alarm. However the classical data and control
dependence-based backward slicing turned out to yield pro-
hibitively large slices. Therefore we designed more restric-
tive ways to close the program dependences involved in the
computation of a slice (following closely what we used to do
manually): we restrict the data dependences to those defined
by some variables: in practice we are not interested in the
computation of the variables for which the analyzer already
provides a value close to end-user specifications, and we can
consider only the variables we lack information about (inte-
ger or floating point variables that may contain large values
or boolean variables that may take any value according to
the invariant).

In the future we plan to design more adapted forms of
slicing: an abstract slice would contain the computations
that lead to an alarm point and a meaningful fragment of
the invariant so as to make the alarm diagnosis easier.

4. THE CONSIDERED FAMILY OF PROGRAMS
The considered programs in the family are automatically

generated using a proprietary tool from a high-level specifi-
cation familiar to control engineers, such as systems of dif-
ferential equations or synchronous operator networks (block
diagrams), which is equivalent to the use of synchronous
languages (like Lustre [15]). Such synchronous data-flow
specifications are quite common in real-world safety-critical
control systems ranging from letter sorting machine con-
trol to safety control and monitoring systems for nuclear
plants and “fly-by-wire” systems. Periodic synchronous pro-
gramming perfectly matches the need for the real-time in-
tegration of differential equations by forward, fixed step nu-
merical methods. Periodic synchronous programs have the
form:

declare volatile input, state and output variables;

initialize state variables;
loop {indefinitely}

– read volatile input variables,
– compute output and state variables,
– write to volatile output variables;

wait for next clock tick;
end loop

Our analysis proves that no exception can be raised and that
all data manipulation operations are sound. The bounded
execution time of the loop body can also be checked by static
analysis [11] to prove that the real-time clock interrupt does
occur at idle time.

We operate on the C language source code of those sys-
tems, ranging from a few thousand lines to 132,000 lines of
C source code (75 kLOC after preprocessing and simplifi-
cation as in Sect. 5.1). We take into account all machine-
dependent aspects of the semantics of C (as described in
[3]) as well as the periodic synchronous programming as-
pects (for the wait). We use additional specifications to
describe the material environment with which the software
interacts (essentially ranges of values for a few hardware
registers containing volatile input variables and a maximal
execution time to limit the possible number of iterations in
the external loop1).

The source codes we were interested in use only a reduced
subset of the C programming language, both in the automat-
ically generated glue code and the handwritten pieces. As it
is often the case with critical systems, there is no dynamic
memory allocation and the use of pointers is restricted to
call-by-reference. On the other hand, an important charac-
teristic of those programs is that the number of global and
static

2 variables is roughly linear in the length of the code.
Moreover the analysis must take values of all variables into
account and the abstraction cannot ignore any part of the
program without generating false alarms. It was therefore
a grand challenge to design an analysis that is precise and
does scale up.

5. THE STRUCTURE OF THE ANALYZER
The analyzer is implemented in Objective Caml [18]. It

operates in two phases: the preprocessing and parsing phase
followed by the analysis phase.

5.1 The Preprocessing Phase
The source code is first pre-processed using a standard

C preprocessor, then parsed using a C99-compatible parser.
Optionally, a simple linker allows programs consisting of sev-
eral source files to be processed.

The program is then type-checked and compiled to an
intermediate representation, a simplified version of the ab-
stract syntax tree with all types explicit and variables given
unique identifiers. Unsupported constructs are rejected at
this point with an error message.

Syntactically constant expressions are evaluated and re-
placed by their value. Unused global variables are then
deleted. This phase is important since the analyzed pro-

1Most physical systems cannot run for ever and some event coun-
ters in their control programs are bounded because of this physical
limitation.
2In the C programming language, a static variable has limited
lexical scope yet is persistent with program lifetime. Semantically,
it is the same as a global variable with a fresh name.

grams use large arrays representing hardware features with
constant subscripts; those arrays are thus optimized away.

Finally the preprocessing phase includes preparatory work
for trace partitioning (see Sect. 8.1.4) and parameterized
packing (as described in Sect. 8.2).

5.2 The Analysis Phase
The analysis phase computes the reachable states in the

considered abstract domain. This abstraction is formalized
by a concretization function γ [6, 7, 8]. The computation of
the abstraction of the reachable states called abstract execu-

tion is performed compositionally, by induction on the ab-
stract syntax, and driven by the iterator described in next
Sect. 6. When finished, the iterator emits warnings to alarm
on potential errors.

6. THE ITERATOR
Before starting the abstract execution, the abstract in-

terpreter creates the global and static variables of the
program (the stack-allocated variables are created and de-
stroyed on-the-fly). The iterator is then run.

6.1 General Structure
The abstract execution starts at a user-supplied entry

point for the program, such as the main function. Each pro-
gram construct is then interpreted by the iterator according
to the semantics of C as well as some information about the
target environment (some orders of evaluation left unspeci-
fied by the C norm, the sizes of the arithmetic types, etc.,
see [3]).

The iterator transforms the C instructions into directives
for the abstract domain that represents the memory state
of the program (see Sect. 7.1), that is, the static and stack-
allocated variables.

The iterator operates in two modes: the iteration mode

and the checking mode. The iteration mode is used to gen-
erate invariants; no warning is displayed when some possible
errors are detected. When in checking mode, the iterator is-
sues a warning for each operator application that may give
an error on the concrete level (that is to say, the program
is interrupted, such as when dividing by zero, or the com-
puted result does not obey the end-user specification for
this operator, such as when integers wrap-around due to an
overflow). In all cases, the analysis goes on with an abstract
over-approximation of the concrete results that do not result
in the immediate termination of the program.

Tracing facilities with various degrees of detail are also
available. For example the loop invariants which are gener-
ated by the analyzer can be saved for examination.

6.2 Primitives
Whether in iteration or checking mode, the iterator starts

with an abstract environment E] at the beginning of a state-
ment S in the program and outputs an abstract environment
JSK](E]) abstracting JSK(γ(E])) where JSK is the collecting
semantics of S [6], as follows:

• Tests: let us consider a conditional

S = if (c) { S1 } else { S2 }
(an absent else branch is considered as an empty execu-
tion sequence). The condition c can be assumed to have
no side effect and no function call, which can be handled
by first performing program transformations. The iterator

computes:

JSK](E]) = JS1K
](guard](E]

, c)) t] JS2K
](guard](E]

,¬c))

where the abstract domain implements:
– t] an approximation of the union ∪ of sets of environ-
ments;
– guard](E], c) as an approximation of γ(E]) ∩ JcK where
JcK is the collecting semantics of the condition c, that is,
the set of environments satisfying c. In practice, the ab-
stract domain only implements guard] for atomic conditions
and compound ones are handled by structural induction.
Each arithmetic abstract domain is supposed to implement
for each comparison operator op a function op] such that
op](a]

1, a
]
2) is either ⊥, in which case there is no a1 ∈ γ(a]

1)

and a2 ∈ γ(a]
2) such that a1 op a2, or (b]

1, b
]
2) such that for

all a1 ∈ γ(a]
1) and a2 ∈ γ(a]

2) such that a1 op a2, a1 ∈ γ(b]
1)

and a2 ∈ γ(b]
2).

Given an atomic condition of the form e1 op e2 and an
abstract environment E], we consider several cases:
∗ if e1 is a variable v1 and e2 is another variable v2, then

if op](e1, e2) = ⊥ we return ⊥, if it is (a]
1, a

]
2) we return

E][v1 7→ a
]
1, v2 7→ a

]
2].

∗ if e1 (resp. e2) is a variable v1, then if op](e1, e2) = ⊥
we return ⊥, if it is (a]

1, a
]
2) we return E][v1 7→ a

]
1] (resp.

mutatis mutandis);
∗ otherwise: if op](e1, e2) = ⊥ we return ⊥, otherwise E];
This implements a limited form of backward analysis, which
can be made more precise using symbolic rearrangements,
as with octagons (see Sect. 7.2.2).

• Loops are by far the most delicate construct to analyze.
The analysis of the loop:

while (c) { body }
is done in two phases:
– Let us denote by E

]
0 the environment before the loop.

First, a loop invariant is computed for the head of the loop.
It is an upper approximation (see Sect. 6.3) of the least

invariant of F where F (E) = γ(E]
0) ∪ JbodyK(E ∩ JcK). This

fixpoint computation is done in iteration mode and requires
a widening (see Sect. 6.3).
– If in checking mode, we run in checking mode the loop
body starting from the loop invariant.

• Sequences i1;i2: first i1 is analyzed, then i2, so that:

Ji1;i2K
](E]) = Ji2K

] ◦ Ji1K
](E]) .

• Function calls are analyzed by abstract execution of the
function body in the context of the point of call, creating
temporary variables for the parameters and the return value.
Since the considered programs do not use recursion, this
gives a context-sensitive polyvariant analysis equivalent to
inlining.

• Assignments are passed to the abstract domain.
• Return statement : We implemented the return state-

ment by carrying over an abstract environment represent-
ing the accumulated return values (and environments, if the
function has side effects).

6.3 Least Fixpoint Approximation with Widening
The analysis of loops involves the iterative computation of

an invariant E] that is such that F](E]) v E] where F] is
an abstraction of the concrete monotonic transfer function
F of the test and loop body. In abstract domains with in-
finite height, this is done by widening iterations computing

a finite sequence E
]
0 = ⊥, . . . , E

]
n+1 = E]

n

`
F](E]

n), . . . ,

E
]
N of successive abstract elements, until finding an invari-

ant E
]
N . The widening operator

`
should be sound (that

is the concretization of x
`

y should overapproximate the
concretizations of x and y) and ensure the termination in
finite time [6, 8] (see an example in Sect. 8.1.2).

In general, this invariant is not the strongest one express-
ible in the abstract domain. This invariant is then made
more and more precise by narrowing iterations: E

]
N , . . . ,

E
]
n+1 = E]

n

a
F](E]

n) where the narrowing operator
a

is
sound (the concretization of x

a
y is an upper approxima-

tion of the greatest lower bound of x and y) and ensures
termination [6, 8].

7. THE ABSTRACT DOMAINS
The elements of an abstract domain abstract concrete

predicates, that is, properties or sets of program states. The
operations of an abstract domain are transfer functions ab-
stracting predicate transformers corresponding to all basic
operations in the program [6]. The analyzer is fully paramet-
ric in the abstract domain (this is implemented using an Ob-
jective Caml functor). Presently the analyzer uses the mem-

ory abstract domain of Sect. 7.1, which abstracts sets of pro-
gram data states containing data structures such as simple
variables, arrays and records. This abstract domain is itself
parametric in the arithmetic abstract domains (Sect. 7.2)
abstracting properties of sets of (tuples of) booleans, integer
or floating-point values. Finally, the precision of the abstract
transfer functions can be significantly improved thanks to
symbolic manipulations of the program expressions preserv-
ing their abstract semantics (Sect. 7.3).

7.1 The Memory Abstract Domain
When a C program is executed, all data structures (simple

variables, arrays, records, etc) are mapped to a collection of
memory cells containing concrete values. The memory ab-

stract domain is an abstraction of sets of such concrete mem-
ory states. Its elements, called abstract environments, map
variables to abstract cells. The arithmetic abstract domains
operate on the abstract value of one cell for non-relational
ones (Sect. 7.2.1) and on several abstract cells for relational
ones (Sect. 7.2.2, 7.2.3 and 7.2.4). An abstract value in a
abstract cell is therefore the reduction of the abstract values
provided by each different basic abstract domain (that is an
approximation of their reduced product [7]).

7.1.1 Abstract Environments
An abstract environment is a collection of abstract cells,

which can be of the following four types:
• An atomic cell represents a variable of a simple type

(enumeration, integer, or float) by an element of the arith-
metic abstract domain. Enumeration types, including the
booleans, are considered to be integers.

• An expanded array cell represents a program array us-
ing one cell for each element of the array. Formally the
abstraction is component-wise, α(∅) = ⊥ (where ⊥ repre-
sents non-accessibility of dead code) and:

α({(vi
1, . . . , v

i
n) | i ∈ ∆}) = (

⋃

i∈∆ vi
1, . . . ,

⋃

i∈∆ vi
n) .

Each element of the array is thus abstracted separately.
• A shrunk array cell represents a program array using a

single cell. Formally the abstraction is α(∅) = ⊥ and:

α({(vi
1, . . . , v

i
n) | i ∈ ∆}) =

⋃n
j=1

⋃

i∈∆ vi
j .

All elements of the array are thus “shrunk” together. We use
this representation for large arrays where all that matters is
the range of the stored data.

• A record cell represents a program record (struct) us-
ing one cell for each field of the record.

7.1.2 Fast implementation of abstract environments
A naive implementation of abstract environments may use

an array. We experimented with in-place and functional ar-
rays and found this approach very slow. The main reason
is that least upper bound and widening operations are ex-
pensive, because they operate in time linear in the number
of abstract cells; since both the number of global variables
(whence of abstract cells) and the number of tests are lin-
ear in the length of the code, this yields a quadratic time
behavior.

A simple yet interesting remark is that in most cases, least
upper bound and widening operations are applied between
abstract environments that are identical on almost all ab-
stract cells: branches of tests will modify only a limited sub-
set of the abstract cells; iterations will stabilize to a fixpoint.
It is therefore desirable that those operations should have a
complexity proportional to the number of differing cells be-
tween both abstract environments. We chose to implement
abstract environments using functional maps implemented
as balanced binary trees, with short-cut evaluation when
computing the least upper bound or widening of identical
subtrees [3, §6.2].

On a 10,000-line example we tried [3], the execution time
was divided by seven, and we are confident that the ex-
ecution times would have been prohibitive for the longer
examples.

An additional benefit is that this implementation tech-
nique both promotes and benefits from memory sharing
between different abstract values. This contributes to the
rather light memory consumption of our analyzer.

7.1.3 Operations on Abstract Environments
Operations on a C data structure are translated into op-

erations on cells of the current abstract environments. Most
translations are straightforward.

– Assignments: An assignment is of the form lval := rval,
where:

lval ::= variable

| lval [rval]
| lval.field

rval ::= lval

| op1(op, rval)
| op2(op, rval, rval)

The memory abstract domain converts this assignment into
an assignment for the arithmetic abstract domain of the
form:
cell set :=must/may rval ′ rval ′ ::= cell set

| op1(op, rval ′)
| op2(op, rval ′, rval ′)

The abstract value of an expression rval is computed
bottom-up by applying abstract counterparts of unary X] →
X] and binary X]×X] → X] C arithmetic, logical, and bit-
wise operators op.
Because the array subscript indices may not be fully known,
the exact alias set for the lvals cannot be computed, this
results in index sets and may aliases. Shrunk arrays also
result in may aliases.

– Guard: The translation of concrete to abstract guards
is not detailed since similar to the above case of assignments.

– Least upper bound, widening: Performed cell-wise be-
tween abstract environments.

7.2 Arithmetic Abstract Domains
The non-relational arithmetic abstract domains abstract

sets of numbers while the relational domains abstract sets of
tuples of numbers. The basic abstract domains we started
with [3] are the intervals and the clock abstract domain ab-
stracting time. They had to be significantly refined using
octagons (Sect. 7.2.2), ellipsoids (Sect. 7.2.3) and boolean
relations (Sect. 7.2.4).

7.2.1 Basic Abstract Domains
• The Interval Abstract Domain The first, and simplest,

implemented domain is the domain of intervals, for both
integer and floating-point values [6]. Special care has to be
taken in the case of floating-point values to always perform
rounding in the right direction and to handle special IEEE
[17] values such as infinities and NaN s (Not a Number).

• The Clocked Abstract Domain A simple analysis using
the intervals gives a large number of false warnings. A great
number of those warnings originate from possible overflows
in counters triggered by external events. Such errors can-
not happen in practice, because those events are counted at
most once per clock cycle, and the number of clock cycles
in a single execution is bounded by the maximal continuous
operating time of the system.
We therefore designed a parametric abstract domain. (In
our case, the parameter is the interval domain [3].) Let
X] be an abstract domain for a single scalar variable. The

elements of the clocked domain consist in triples in X]3. A
triple (v], v

]
−, v

]
+) represents the set of values x such that

x ∈ γ(v]), x − clock ∈ γ(v]
−) and x + clock ∈ γ(v]

+), where
clock is a special, hidden variable incremented each time the
analyzed program waits for the next clock signal.

7.2.2 The Octagon Abstract Domain
Consider the following program fragment:

R:=X−Z; L:=X; if (R>V) { L:=Z+V; }
At then end of this fragment, we have L ≤ X. In order

to prove this, the analyzer must discover that, when the
then branch is taken, we have R = X − Z and R > V, and
deduce from this that Z+V < X. This is possible only with a
relational domain able to capture simple linear inequalities
between variables.

Several such domains have been proposed, such as the
widespread polyhedron domain [10]. In our prototype, we
chose a relational abstract domain developed recently: the
octagon abstract domain [21, 20], which is less precise but
faster than the polyhedron domain: it can represent sets
of constraints of the form ±x ± y ≤ c, and it features a
cubic time and a quadratic space cost (w.r.t. the number
of variables), instead of exponential for polyhedra. Even
with this reduced cost, the huge number of live variables
prevents us from representing sets of concrete environments
as one big abstract state (as it was done for polyhedra in
[10]). Therefore we group variables into small packs and use
one octagon for each pack. The set of packs is a parameter
of the analysis which can be determined automatically (see
Sect. 8.2.1).

Another reason for choosing octagons is the lack of sup-
port for floating-point arithmetics in the polyhedra domain.

Designing relational domains for floating-point variables is
indeed a difficult task, not much studied until recently [19].
On one hand, the abstract domain must be sound with
respect to the concrete floating-point semantics (handling
rounding, NaN s, etc.); on the other hand it should use
floating-point numbers internally to manipulate abstract
data so that it is reasonably efficient. Because invariant
manipulations in relational domains rely on some properties
of the real field not true for floating-points (such as x+y ≤ c
and z − y ≤ d implies x + z ≤ c + d), it is natural to con-
sider that abstract values represent subsets of R

N (in the
relational invariant x + y ≤ c, the addition + is considered
in R, without rounding, overflow, etc.). Our solution sepa-
rates the problem in two. First, we design a sound abstract
domain for variables in the real field (our prototype uses
[20]). This is much easier for octagons than for polyhedra,
as most computations are simple (addition, multiplication
and division by 2). Then, each floating-point expression is
transformed into a sound approximate real expression tak-
ing rounding, overflow, etc. into account (we use the linear
forms described in Sect. 7.3) and evaluated by the abstract
domain.

Coming back to our example, it may seem that octagons
are not expressive enough to find the correct invariant as
Z + V < X is not representable in an octagon. However,
our assignment transfer function is smart enough to extract
from the environment the interval [c, d] where V ranges (with
d ≤ max R) and synthesize the invariant c ≤ L − Z ≤ d,
which is sufficient to prove that subsequent operations on L

will not overflow. Thus, there was no need for this family
of programs to use a more expressive and costly relational
domain.

We believe that this approach is general and can be
adapted to many programs by:

• adapting the determination of packs (see Sect. 8.2.1),
• choosing the right relational abstract domains on real

numbers,
• refining the abstract transfer functions.

7.2.3 The Ellipsoid Abstract Domain
In our examples, we have to analyze code of the form:

if (B){ Y:=i; X:=j; } else { X
′:=aX − bY + t; Y:=X; X:=X

′; }
where a and b are floating-point constants, i, j and t are
floating-point expressions, B is a boolean expression, and X,
X
′, and Y are variables. We assume we can compute bounds

to the expression t by the previously described analyses,
say |t| ≤ tM . The first branch is a reinitialization step,
the second branch consists in an affine transformation Φ.
Since this code is repeated inside loops, the analysis has
to find an invariant preserved by this code. The previously
described analyses fail to find such an invariant, and so yield
the imprecise result that X and Y may take any value.

To find an interval that contains the values of X and Y, we
have designed a new abstract domain based on ellipsoids,
that can capture the required invariant. More precisely, we
can show that:

Proposition 1 If 0 < b < 1, a2 − 4b < 0, and k ≥
(

tM

1−
√

b

)2

, then the constraint X2 − aXY + bY2 ≤ k is pre-

served by the affine transformation Φ.

The proof of this proposition follows by algebraic manip-
ulations using standard linear algebra techniques. In our

examples, the conditions on a and b required in Prop. 1 are
satisfied. We still have to propagate the invariant in the pro-
gram, and to take into account rounding errors that occur
in floating-point computations (and are not modeled in the
above proposition).

Having fixed two floating-point numbers a and b such that
0 < b < 1 and a2 − 4b < 0, we present a domain εa,b,
for describing ellipsoidal constraints. An element in εa,b

is a function r which maps a pair of variables (X, Y) to a
floating-point number r(X, Y), the element r means that for
all variables X and Y, X2 − aXY + bY2 ≤ r(X, Y).

We briefly describe some primitives and transfer functions
of our domain:

• Assignments. Let r ∈ εa,b be the abstract element de-
scribing some constraints before a statement X := e, our
goal is to compute the abstract element r′ describing the
constraints satisfied after this statement:

1. in case e is a variable Y, each constraint containing Y

gives a constraint for X: we take r′ such that r′(U, V) =
r(σU, σV) where σ is the substitution which substitutes
the variable Y for the variable X;

2. in case e is an expression of the form aY+ bZ+ t, we first
remove any constraint containing X, then we add a new
constraint for X and Y. So we take:

r
′ = r[(X, Y) 7→ δ(r(Y, Z)), (X,)|(, X) 7→ +∞] .

We have used the function δ defined as follows:

δ(k) =

((

√
b +

(

4f
|a|

√
b + b√

4b − a2

))

√
k + (1 + f)tM

)2

where f is the greatest relative error of a float with
respect to a real, f = 2−13 and t ∈ [−tM , tM]. Indeed,
we can show that, if Y2−aYZ+bZ2 ≤ k and X = aY−bZ+t,
then in exact real arithmetic X2−aXY+bY2 ≤ (

√
bk+tM)2,

and taking into account rounding errors, we get the above
formula for δ(k);

3. otherwise, we remove all constraints containing X by tak-
ing the top element r′ = r[(X,)|(, X) 7→ +∞].

• Union and widening are computed component-wise.
The widening uses thresholds as described in Sect. 8.1.2.

The abstract domain εa,b cannot compute accurate results
by itself, mainly because of inaccurate assignments. So we
use an approximate reduced product with the interval con-
straints. A refinement step consists in substituting in the
function r the image of a couple (X, Y) by the smallest el-
ement among r(X, Y) and the floating-point number k such
that k is the least upper bound to the evaluation of the ex-
pression X

2 − aXY + bY2 in the floating-point numbers when
considering the computed interval constraints. These refine-
ment steps are performed:

• before computing the union between two abstract ele-
ments r1 and r2, we reduce each constraint ri(X, Y) such that
ri(X, Y) = +∞ and r2−i(X, Y) 6= +∞ (where i ∈ {1; 2});

• before computing the widening between two abstract
elements r1 and r2, we reduce each constraint r2(X, Y) such
that r2(X, Y) = +∞ and r1(X, Y) 6= +∞;

• before an assignment of the form X
′ := aX − bY + t, we

refine the constraints r(X, Y).
These refinements steps are especially useful in handling a
reinitialization iteration.

Another refinement consists in taking into account the
equality relations between variables that are satisfied before

an assignment of the form X′ := aX − bY + t to synthesize
constraints not only between X

′ and X, but also between X
′

and any variable equal to X.
Ellipsoidal constraints are then used to reduce the in-

tervals of variables: after each assignment A of the form

X′ := aX − bY + t, we use the fact that |X′| ≤ 2
√

b
√

r′(X′,X)

4b−a2
,

where r′ is the abstract element describing ellipsoidal con-
straints just after the assignment A.

7.2.4 The Boolean Relation Abstract Domain
Apart from numerical variables, the code uses also a

great deal of boolean values, and no classical numerical do-
main deals precisely enough with booleans. In particular,
booleans can be used in the control flow and we need to re-
late the value of the booleans to some numerical variables.
Here is an example:

B:= (X=0); if (¬ B) { Y:=1/X; }
We found also more complex examples where a numeri-
cal variable could depend on whether a boolean value had
changed or not. In order to deal precisely with those exam-
ples, we implemented a simple relational domain consisting
in a decision tree with leaf an arithmetic abstract domain3.
The decision trees are reduced by ordering boolean variables
(as in [4]) and by performing some opportunistic sharing of
subtrees.

The only problem with this approach is that the size of
decision trees can be exponential in the number of boolean
variables, and the code contains thousands of global ones.
So we extracted a set of variable packs, and related the
variables in the packs only, as explained in Sect. 8.2.2.

7.3 Symbolic Manipulation of Expressions
One problem of non-relational abstract domains is that

they perform poorly when the variables in an expression are
not independent. Consider, for instance, the simple assign-
ment X := X − 0.2 ∗ X performed in the interval domain in
the environment X ∈ [0, 1]. Bottom-up evaluation will give
X− 0.2 ∗ X ⇒ [0, 1]− 0.2 ∗ [0, 1] ⇒ [0, 1]− [0, 0.2] ⇒ [−0.2, 1].
However, because the same X is used on both sides of the −
operator, the precise result should have been [0, 0.8].

In order to solve this problem, we perform some simple
algebraic simplifications on expressions before feeding them
to the abstract domain. Our approach is to linearize each
expression e, that is to say, transform it into a linear form
on V with interval coefficients: JeK =

∑N
i=1[αi, βi]vi +[α, β].

JeK is computed by recurrence on the structure of e. Linear
operators on linear forms (addition, subtraction, multiplica-
tion and division by a constant interval) are straightforward.
For instance, JX−0.2∗XK = 0.8∗X, which will be evaluated to
[0, 0.8] in the interval domain. Non-linear operators (multi-
plication of two linear forms, division by a linear form, non-
arithmetic operators) are dealt by evaluating one or both
linear form argument into an interval.

Although the above symbolic manipulation is correct in
the real field, it does not match the semantics of C expres-
sions for two reasons:

• Floating-point computations incur rounding;
• Errors (division by zero, overflow, etc.) may occur.
Thankfully, the systems we consider conform to the IEEE

754 norm [17] that describes rounding very well. Thus, it

3The arithmetic abstract domain is generic. In practice, the in-
terval domain was sufficient.

is easy to modify the recursive construction of linear forms
from expressions to add the error contribution for each oper-
ator. It can be an absolute error interval, or a relative error
expressed as a linear form. We chose relative error which
are more easily implemented and turned out to be precise
enough.

To address the second problem, we first evaluate the ex-
pression in the abstract interval domain and proceed with
the linearization to refine the result only if no possible arith-
metic error was reported. We are then guaranteed that the
simplified linear form has the same semantics as the initial
expression.

8. ADAPTATION VIA PARAMETERIZATION
In order to adapt the analyzer to a particular program

of the considered family, it may be necessary to provide in-
formation to help the analysis. A classical idea is to have
users provide assertions (which can be proved to be invari-
ants and therefore ultimately suppressed). Another idea is
to use parameterized abstract domains in the static program
analyzer. Then the static analysis can be adapted to a par-
ticular program by an appropriate choice of the parameters.
We provide several examples in this section. Moreover we
show how the analyzer itself can be used in order to help or
even automatize the appropriate choice of these parameters.

8.1 Parameterized Iteration Strategies

8.1.1 Loop Unrolling
In many cases, the analysis of loops is made more precise

by treating the first iteration of the loop separately from
the following ones; this is simply a semantic loop unrolling

transformation: a while loop may be expanded as follows:

if (condition) { body ; while (condition) { body } }
The above transformation can be iterated n times, where the
concerned loops and the unrolling factor n are user-defined
parameters. In general, the larger the n, the more precise
the analysis, and the longer the analysis time.

8.1.2 Widening with Thresholds
The widening with threshold

`
T for the interval analysis

of Sect. 7.2.1 is parameterized by a threshold set T that is
a finite set of numbers containing −∞ and +∞ and defined
such that:

[a, b]
`

T [a′
, b

′] = [if a′ < a then max{` ∈ T | ` ≤ a′} else a,
if b′ > b then min{h ∈ T | h ≥ b′} else b]

In order to illustrate the benefits of this parameterization
(see others in [3]), let x0 be the initial value of a variable
X subject to assignments of the form X := αi ∗ X + βi, i ∈
∆ in the main loop, where the αi, βi, i ∈ ∆ are floating
point constants such that 0 ≤ αi < 1. Let be any M such

that M ≥ max{|x0|, |βi|
1−αi

, i ∈ ∆}. We have M ≥ |x0| and

M ≥ αiM + |βi| and so all possible sequences x0 = x0,
xn+1 = αix

n +βi, i ∈ ∆ of values of variable X are bounded
since ∀n ≥ 0 : |xn| ≤ M . Discovering M may be difficult in
particular if the constants αi, βi, i ∈ ∆ depend on complex
boolean conditions.

As long as the set T of thresholds contains some number
greater or equal to the minimum M , the interval analysis of
X with thresholds T will prove that the value of X is bounded
at run-time since some element of T will be an admissible

M . In practice we have chosen T as an exponential series.
Which particular one is unimportant since it must only con-
tain numbers which are large enough to capture stability
and are small enough to capture hardware defined bounds.

8.1.3 Delayed Widening
When widening the previous iterate by the result of the

transfer function on that iterate at each step as in Sect. 6.3,
some values which can become stable after two steps of
widening may not stabilize. Consider the example:

X := Y + γ; Y := α ∗ X + δ

This should be equivalent to Y := α ∗ Y + β (with
β = δ + αγ), and so a widening with thresholds should find
a stable interval. But if we perform a widening with thresh-
olds at each step, each time we widen Y, X is increased to
a value surpassing the threshold for Y, and so X is widened
to the next stage, which in turn increases Y further and the
next widening stage increases the value of Y. This eventually
results in top abstract values for X and Y.

In practice, we first do N0 iterations with unions, then we
do widenings unless a variable which was not stable becomes
stable (this is the case of Y here when the threshold is big
enough as described in Sect. 8.1.2). We add a fairness con-
dition to ensure termination even in the pathological cases
where a variable becomes stable every few iterations.

8.1.4 Trace Partitioning
In the abstract execution of the program, when a test

is met, both branches are executed and then the abstract
environments computed by each branch are merged. As de-
scribed in [3] we can get a more precise analysis by delaying
this merging.

This means that
if (c) { S1 } else { S2 } rest

is analyzed as if it were

if (c) { S1; rest } else { S2; rest } .

A similar technique holds for the unrolled iterations of loops.
As this process is quite costly, the analyzer performs this

trace partitioning in a few end-user selected functions, and
the traces are merged at the return point of the function.
Informally, in our case, those functions that need partition-
ing are those who iterate simultaneously over arrays a[]

and b[] such that a[i] and b[i] are linked by an impor-
tant numerical constraint which does not hold in general for
a[i] and b[j] where i 6= j. This solution was simpler than
adding complex invariants to the abstract domain.

8.2 Parameterized Abstract Domains
Recall that our relational domains (octagons of Sect. 7.2.2,

and decision trees of Sect. 7.2.4) operate on small packs of
variables for efficiency reasons. This packing is determined
syntactically before the analysis. The packing strategy is a
parameter of the analysis; it gives a trade-off between accu-
racy (more, bigger packs) and speed (fewer, smaller packs).
The strategy must also be adapted to the family of programs
to be analyzed.

8.2.1 Parameterized Packing for Octagons
We determine a set of packs of variables and use one oc-

tagon for each pack. Packs are determined once and for
all, before the analysis starts, by examining variables that
interact in linear assignments within small syntactic blocks

(curly-brace delimited blocks). One variable may appear in
several packs and we could do some information propagation
(i.e. reduction [7]) between octagons at analysis time, using
common variables as pivots; however, this precision gain was
not needed in our experiments. There is a great number of
packs, but each pack is small; it is our guess that our packing
strategy constructs, for our program family, a linear num-
ber of constant-sized octagons, effectively resulting in a cost
linear in the size of the program. Moreover, the octagon
packs are efficiently manipulated using functional maps, as
explained in Sect. 7.1.2, to achieve sub-linear time costs via

sharing of unmodified octagons.
Our current strategy is to create one pack for each syn-

tactic block in the source code and put in the pack all vari-
ables that appear in a linear assignment or test within the
associated block, ignoring what happens in sub-blocks of
the block. For example, on a program of 75 kLOC, 2,600
octagons were detected, each containing four variables on
average. Larger packs (resulting in increased cost and pre-
cision) could be created by considering variables appearing
in one or more levels of nested blocks; however, we found
that, in our program family, it does not improve precision.

Our analyzer outputs, as part of the result, whether each
octagon actually improved the precision of the analysis. It
is then possible to re-run the analysis using only packs that
were proven useful, thus greatly reducing the cost of the
analysis. (In our 75 kLOC example, only 400 out of the
2,600 original octagons were in fact useful.) Even when the
program or the analysis parameters are modified, it is per-
fectly safe to use an list of useful packs output by a previous
analysis. We experimented successfully with the following
method: generate at night an up-to-date list of good oc-
tagons by a full, lengthy analysis and work the following
day using this list to cut analysis costs.

8.2.2 Parameterized Packing for Boolean Relations
In order to determine useful packs for the boolean rela-

tions of Sect. 7.2.4, we used the following strategy: each
time a numerical variable assignment depends on a boolean,
or a boolean assignment depends on a numerical variable,
we put both variables in a tentative pack. If, later, we find
a place where the numerical variable is inside a branch de-
pending on the boolean, we mark the pack as confirmed. In
order to deal with complex boolean dependences, if we find
an assignment b:=expr where expr is a boolean expression,
we add b to all packs containing a variable in expr. In the
end, we just keep the confirmed packs.

At first, we restrained the boolean expressions used to
extend the packs to simple boolean variables (we just con-
sidered b:=b’) and the packs contained at most four boolean
variables and dozens of false alarms were removed. But we
discovered that more false alarms could be removed if we ex-
tended those assignments to more general expressions. The
problem was that packs could then contain up to 36 boolean
variables, which gave very bad performance. So we added
a parameter to restrict arbitrarily the number of boolean
variables in a pack. With that strategy (which limits the
number of boolean variables in a pack to three) we got an
efficient and precise analysis of boolean behavior.

9. EXPERIMENTAL RESULTS
The main program we are interested in is 132,000 lines of

C with macros (75 kLOC after preprocessing and simplifi-

0

1000

2000

3000

4000

5000

6000

7000

8000

0 10 20 30 40 50 60 70 80

tim
e

(s
)

kLOC

benchmarks

Figure 1: Total analysis time for the family of pro-

grams

0

10

20

30

40

50

60

70

80

10 20 30 40 50 60 70 80

tim
e

(s
)

kLOC

O(n log n)
benchmarks

Figure 2: Total analysis time per iteration for the

family of programs

cation as in Sect. 5.1) and has about 10,000 global/static
variables (over 21,000 after array expansion as in Sect. 7.1).
We had 1,200 false alarms with the existing analyzer [3] we
started with. The refinements of the analyzer described in
this paper reduces the number of alarms to 25, only 5 on
more recent versions of the analyzed program. Fig. 1 and 2
respectively give the total analysis time and the time per
fixpoint iteration of the main loop for a family of related
programs.

The memory consumption of the analyzer is reasonable
(450 Mb for the full-sized program). Several parameters,
for instance the size of the octagon packs (8.2.1), allow for
a space-precision trade-off.

The strategy outlined at the end of 8.2.1 of reusing results
from preceding analysis to reduce the number of octagons
reduces, on the largest example code, memory consumption
from 550 Mb to 150 Mb and time from 1 h 40 min to 45 min.

10. RELATED WORK
Let us discuss briefly some other proof methods that could

be considered.
Automated static proof of software run-time properties

is a recurrent research subject since a few decades. Most
fully automatic methods, such as software model-checking

[16], do not proceed directly on the software but on a finite

model, with a small enough state space, which is impossi-
ble in our case since sharp data properties must be taken
into account. Moreover most modeling languages (such as
Promela for Spin [16]) concentrate on aspects of software
systems to trace logical design errors, which in our case has
already been performed at earlier stages of the software de-
velopment, whereas we concentrate on abstruse machine im-
plementation aspects of the software.

Proof assistants face semantic problems. The prover
has to take the machine-level semantics into account (e.g.,
floating-point arithmetic with rounding errors as opposed
to real numbers). The meticulous and precise design of ab-
stract transfer functions for all considered abstract domains
represents a very important part of our work, which can
hardly be automated by lack of formal semantics of pro-
gramming languages.4 In addition, the prover needs to op-
erate on the C source code, not on some model written in a
prototyping language.

Predicate abstraction, which consists in specifying an ab-
straction by providing the atomic elements of the abstract
domain in logical form [14], would certainly have been the
best candidate. Moreover most implementations incorpo-
rate an automatic refinement process by success and fail-
ure [1] whereas we successively refined our abstract domains
manually, by experimentation. A number of difficulties seem
to be insurmountable to automate this design process in the
present state of the art of deductive methods, in addition to
the semantic problems shared by proof assistants:

• State Explosion Problem: to get an idea of the size of
the necessary state space, we have dumped the main loop
invariant (a textual file over 4.5 Mb).

The main loop invariant includes 7,000 boolean interval
assertions (x ∈ [0, 1]), 10,500 constant interval assertions
(x ∈ [a, a]), 1,900 interval assertions (x ∈ [a, b]), 22,600
clock assertions (see Sect. 7.2.1), 5,000 constant octagonal
assertions (x = a), 19,100 additive octagonal assertions
(a ≤ x + y ≤ b), 19,200 subtractive octagonal assertions
(a ≤ x−y ≤ b, see Sect. 7.2.2), 100 boolean relations (see
Sect. 7.2.4) and 50 ellipsoidal assertions (see Sect. 7.2.3)5,
all these involving, e.g., over 16,000 floating point con-
stants at most 550 of them appearing in the program text.

Obviously some of these atomic predicates might be su-
perfluous but on one hand it it is hard to say which ones
and on the other hand this does not count all other pred-
icates that may be indispensable at some program point
to be locally precise. In order to allow for the reuse of
boolean model-checkers, the conjunction of true atomic
predicates is usually encoded as a boolean vector over
boolean variables associated to each predicate [14] (the
disjunctive completion of this abstract domain can also
be used to get more precision [1], but this would intro-
duce an extra exponential factor). Model-checking state
graphs corresponding to several tenths of thousands of
boolean variables (not counting hundreds of thousands of
program points) is presently inappropriate.

4For example ESC is simply unsound with respect to modular
arithmetics [12].
5Figures are rounded to the closest hundred. We get more asser-
tions than variables because in the 10,000 global variables arrays
are counted once whereas the element-wise abstraction yields as-
sertions on each array element. Boolean assertions are needed
since booleans are integers in C.

• Refinement Problem: predicate abstraction per se uses a
finite domain and is therefore provably less powerful than
our use of infinite abstract domains (see [9], the intuition
is that all inductive assertions have to be provided man-
ually). Therefore predicate abstraction is often accompa-
nied by a refinement process to cope with false alarms [1].
Under specific conditions, this refinement can be proved
equivalent to the use of an infinite abstract domain with
widening [2]. These specific conditions (essentially that
the widening is by constraint elimination) are not satis-
fied by the widening with thresholds of Sect. 8.1.2 and so
all possible intervals for all possible stages and all program
variables would have to be manually provided in the list
of atomic predicates, and similarly for octagons, which in-
troduces prohibitive human and computational costs for
end-users. Formally this refinement is a fixpoint com-
putation [5, 13] at the concrete semantics level, whence
introduces new elements in the abstract domain state by
state whereas, e.g., when introducing clocks from intervals
or ellipsoids from octagons we exactly look for an opposite
more synthetic point of view. Therefore the present state
of the art on counterexample-based refinement does not
cope with the design of adequate abstract domains.

11. CONCLUSION
In this experiment, we had to cope with stringent require-

ments. Industrial constraints prevented us from requiring
any change in the production chain of the code. For in-
stance, it was impossible to suggest changes to the library
functions that would offer the same functionality but would
make the code easier to analyze. Furthermore, the code
was mostly automatically generated from a high-level spec-
ification that we could not have access to, following rules of
separation of design and verification meant to prevent the
intrusion of unproved high-level assumptions into the verifi-
cation assumptions. It was therefore impossible to analyze
the high-level specification instead of analyzing the C code.

That the code was automatically generated had contrary
effects. On the one hand, the code fit into some narrow
subclass of the whole C language. On the other hand, it
used some idioms not commonly found in human-generated
code that may make the analysis more difficult; for instance,
where a human would have written a single test with a
boolean connective, the generated code would make one test,
store the result into a boolean variable, do something else
do the second test and then retrieve the result of the first
test. Also, the code maintains a considerable number of
state variables, a large number of these with local scope but
unlimited lifetime. The interactions between several com-
ponents are rather complex since the considered program
implement complex feedback loops across many interacting
components.

Despite those difficulties, we developed an analyzer with
a very high precision rate, yet operating with reasonable
computational power and time. Our main effort was to dis-
cover an appropriate abstraction [6, 5] which we did by man-
ual refinement through experimentation of an existing ana-
lyzer [3] and can be later adapted by end-users to particular
programs through parameterization (Sect. 7.3 and 8). To
achieve this, we had to develop two specialized abstract do-
mains (Sect. 7.2.3 and 7.2.4) and improve an existing domain
(Sect. 7.2.2). The question is now whether this intellectual
process could have been automated.

12. REFERENCES
[1] T. Ball, R. Majumdar, T. Millstein, and S. Rajamani.

Automatic predicate abstraction of C programs. PLDI.
ACM SIGPLAN Not. 36(5) (2001), 203–213.

[2] T. Ball, A. Podelski, and S. Rajamani. Relative
completeness of abstraction refinement for software model
checking. TACAS (2002), LNCS 2280, Springer, 158–172.

[3] B. Blanchet, P. Cousot, R. Cousot, J. Feret, L. Mauborgne,
A. Miné, D. Monniaux, and X. Rival. Design and
implementation of a special-purpose static program
analyzer for safety-critical real-time embedded software.
The Essence of Computation: Complexity, Analysis,
Transformation. Essays Dedicated to Neil D. Jones
(2002), LNCS 2566, Springer, 85–108.

[4] R. E. Bryant. Graph based algorithms for boolean function
manipulation. IEEE Trans. Comput. C-35 (1986),
677–691.

[5] P. Cousot. Partial completeness of abstract fixpoint
checking. SARA (2000), LNAI 1864, Springer, 1–25.

[6] P. Cousot and R. Cousot. Abstract interpretation: a
unified lattice model for static analysis of programs by
construction or approximation of fixpoints. 4th ACM
POPL (1977), 238–252.

[7] P. Cousot and R. Cousot. Systematic design of program
analysis frameworks. 6th ACM POPL (1979), 269–282.

[8] P. Cousot and R. Cousot. Abstract interpretation
frameworks. J. Logic and Comp. 2, 4 (1992), 511–547.

[9] P. Cousot and R. Cousot. Comparing the Galois
connection and widening/narrowing approaches to abstract
interpretation. PLILP (1992), LNCS 631, Springer,
269–295.

[10] P. Cousot and N. Halbwachs. Automatic discovery of linear
restraints among variables of a program. 5th ACM POPL
(1978), 84–97.

[11] C. Ferdinand, R. Heckmann, M. Langenbach, F. Martin,
M. Schmidt, H. Theiling, S. Thesing, and R. Wilhelm.
Reliable and precise WCET determination for a real-life
processor. ESOP (2001), LNCS 2211, Springer, 469–485.

[12] C. Flanagan, K. R. M. Leino, M. Lillibridge, G. Nelson,
J. Saxe, and R. Stata. Extended static checking for Java.
PLDI. ACM SIGPLAN Not. 37(5) (2002), 234–245.

[13] R. Giacobazzi and E. Quintarelli. Incompleteness,
counterexamples and refinements in abstract
model-checking. SAS (2001), LNCS 126, Springer,
356–373.

[14] S. Graf and H. Säıdi. Construction of abstract state graphs
with PVS. CAV (1997), LNCS 1254, Springer, 72–83.

[15] N. Halbwachs, P. Caspi, P. Raymond, and D. Pilaud. The
synchronous dataflow programming language Lustre.
Proc. of the IEEE 79, 9 (1991), 1305–1320.

[16] G. Holzmann. The model checker Spin. IEEE Trans.
Softw. Eng. 23, 5 (1997), 279–295.

[17] IEEE Computer Society. IEEE standard for binary
floating-point arithmetic, 1985.

[18] X. Leroy, D. Doligez, J. Garrigue, D. Rémy, and
J. Vouillon. The Objective Caml system, documentation
and user’s manual (release 3.06). Tech. rep., INRIA,
Rocquencourt, France, 2002.
http://caml.inria.fr/ocaml/.

[19] M. Martel. Static analysis of the numerical stability of
loops. SAS (2002), LNCS 2477, Springer, 133–150.

[20] A. Miné. The octagon abstract domain library.
http://www.di.ens.fr/~mine/oct/.

[21] A. Miné. The octagon abstract domain. IEEE AST in
WCRE (2001), 310–319.

[22] M. Weiser. Program slicing. 5th IEEE ICSE (1981),
439–449.

