
Form Methods Syst Des (2009) 35: 229–264
DOI 10.1007/s10703-009-0089-6

Why does ASTRÉE scale up?

Patrick Cousot · Radhia Cousot · Jérôme Feret ·
Laurent Mauborgne · Antoine Miné · Xavier Rival

Published online: 11 November 2009
© Springer Science+Business Media, LLC 2009

Abstract ASTRÉE was the first static analyzer able to prove automatically the total absence
of runtime errors of actual industrial programs of hundreds of thousand lines. What makes
ASTRÉE such an innovative tool is its scalability, while retaining the required precision,
when it is used to analyze a specific class of programs: that of reactive control-command
software. In this paper, we discuss the important choice of algorithms and data-structures
we made to achieve this goal. However, what really made this task possible was the ability
to also take semantic decisions, without compromising soundness, thanks to the abstract
interpretation framework. We discuss the way the precision of the semantics was tuned in
ASTRÉE in order to scale up, the differences with some more academic approaches and
some of the dead-ends we explored. In particular, we show a development process which
was not specific to the particular usage ASTRÉE was built for, hoping that it might prove
helpful in building other scalable static analyzers.

This work was supported by the INRIA project-team ABSTRACTION common to the CNRS and the
École Normale Supérieure.

P. Cousot (�) · R. Cousot · J. Feret · L. Mauborgne · A. Miné · X. Rival
École Normale Supérieure, 45 rue d’Ulm, 75230 Paris Cedex 05, France
e-mail: Patrick.Cousot@ens.fr

R. Cousot
e-mail: Radhia.Cousot@ens.fr

J. Feret
e-mail: Jerome.Feret@ens.fr

L. Mauborgne
e-mail: Laurent.Mauborgne@ens.fr

A. Miné
e-mail: Antoine.Mine@ens.fr

X. Rival
e-mail: Xavier.Rival@ens.fr

mailto:Patrick.Cousot@ens.fr
mailto:Radhia.Cousot@ens.fr
mailto:Jerome.Feret@ens.fr
mailto:Laurent.Mauborgne@ens.fr
mailto:Antoine.Mine@ens.fr
mailto:Xavier.Rival@ens.fr

230 Form Methods Syst Des (2009) 35: 229–264

Keywords Abstract Interpretation · Embedded critical software · Formal methods ·
Safety · Scalability · Static analysis tool · Verification

1 Introduction

Program verification consists in formally proving that the strongest property of a semantic
model of the program runtime executions implies a given specification of this model. This
strongest property is called the collecting semantics. A semantic model of program exe-
cutions classically used in program verification is an operational semantics mapping each
program to a transition system [16] consisting of states (e.g. describing the control by a call
stack and a program counter as well as the memory) and transitions (describing how a pro-
gram execution evolves from one state to another). An example of collecting semantics is
the reachable states by successive transitions from initial states. This collecting semantics
can be expressed in fixpoint form [15].

Static analysis aims at determining statically dynamic properties of programs that is
properties of their runtime executions. It is therefore an approximation of the fixpoint col-
lecting semantics. This approximation is then used to prove the specification.

Abstract interpretation [10, 15, 16] can be used to guarantee soundness of this approach.
Abstract interpretation is a theory of exact or approximate abstraction of mathematical struc-
tures allowing for the systematic derivation of correct approximations of undecidable or
highly complex problems in computer science. When applied to static analysis, it can be
used to formally derive and compute over- (or under-)approximations of the fixpoint col-
lecting semantics thanks to direct or iterative fixpoint approximation methods.

1.1 Motivating example

In principle, the correctness proof could be done by exhaustive exploration of the state space
which, but for limited cases, is subject to state explosion. For example, the verification of
the filtering program of Fig. 1 (where main simulates a plausible calling environment and
the loop runs for 10 hours at a clock rate of 10 ms) by CBMC [8] with MiniSAT leads to
the following result on a Macintosh Intel 4 GB:

Form Methods Syst Des (2009) 35: 229–264 231

Fig. 1 Filter program

The analysis by ASTRÉE [2, 3, 22, 23, 25, 47] of the above program (modified with a direc-
tive to display the over-approximation of the set of reachable values of P):

is as follows:

The absence of warning (lines containing the WARN keyword) indicates a proof of absence
of runtime error.

It is frequently claimed that in abstract static analysis, “the properties that can be proved
are often simple” [27]. Note that to check for the absence of runtime error, ASTRÉE must
first discover an interval of variation of P:

232 Form Methods Syst Des (2009) 35: 229–264

which is definitely a “weak property” (that is “simple to state”) but is not so simple to prove,
and even less to discover. Finding this property requires finding a non trivial non-linear
invariant for second order filters with complex roots [28], which can hardly be found by
exhaustive enumeration. Moreover, even given the interval, it is not possible to prove that it
is invariant with intervals only. This phenomenon is also frequent in mathematics: there are
theorems that are simple to state, harder to discover and difficult to prove. Lemma can be
much more complex to state than theorems.

1.2 Objective of the paper

The objective of this paper is to explain why ASTRÉE does scale up. We show that one of
the main reasons is that it is based on abstract interpretation [10, 15, 16]. From that base, it
follows that it is entirely automatic and sound. The flexibility of the theory also allows the
use of infinite abstract domains [18] with convergence acceleration by widening [10, 15],
which can be exploited to derive precise results, while avoiding interminable exhaustive
exploration. However, the theory of abstract interpretation offers a wide panel of choices
that do not ensure precision and scalability per se. Judicious choices of abstractions and their
algorithmic implementations have to be made to reach this goal. In this paper we discuss the
main design choices ensuring the scalability of ASTRÉE.

The paper is organized as follows. We first recall in Sect. 2 important aspects of ASTRÉE,
such as its target application and an overview of its organization. The following six sections
describe various aspects of ASTRÉE, explaining choices and sometimes dead-ends on these
aspects: Sect. 3 focuses on the way disjunctions are handled; Sect. 4 motivates the choice of
non-uniform abstractions; Sect. 5 describes features of the iterator used in ASTRÉE; Sect. 6
describes choices in the abstract domains and in particular the way memory is modeled;
Sect. 7 describes the particular way we implemented domain reductions, that is communica-
tions between abstract domains; finally, Sect. 8 presents (parts of) the development process
which allowed the production of a precise and efficient static analyzer. Sect. 9 concludes.

2 ASTRÉE

ASTRÉE is a tool designed to show the absence of run-time errors in critical embedded C
programs [2, 3, 22, 23, 25, 47]. The development of that tool started in 2001, answering
needs from the AIRBUS company [26]. The tool takes a program (a set of source files),
optional files describing the range of the inputs and the platform on which the program is
supposed to run, inline options and outputs a textual log file describing the invariants found
by ASTRÉE and warnings whenever the tool is not able to prove that the program is correct.
The result is rather raw and typically one usually uses grep on the output to check for the
WARN keyword but the tool respects all the requirements of the end-user. That is a sound
verification, precise enough to show the absence of errors and capable of scaling to their
large critical programs.

2.1 Requirements

Because of undecidability for infinite systems or high complexity for large finite systems,
static verification is very difficult hence is often made unsound, or incomplete, or does not
scale up.

Form Methods Syst Des (2009) 35: 229–264 233

2.1.1 Sound verification versus bug finding

We use the term verification as the mathematical process of establishing the validity of a
specification with respect to a concrete collecting semantics (as opposed to the other mean-
ings of the term corresponding to empirical means such as testing of some program execu-
tions, the partial exploration of formal models of programs, or inconclusive static analyses
with false positives or negatives).

Unsound static analyzers do not cover the full collecting semantics (which may even
be incorrect e.g. when skipping over parts of the program which are hard to analyze). The
analysis has false negatives since it can miss bugs that exist but are not reported by the
analysis procedure. This is sometimes accepted for bug-finding tools where total correctness
is not the ultimate goal. This is not acceptable for safety or mission-critical software where
no bug should be left undiscovered.

As opposed to bug-finding methods, such as tests where it is extremely difficult to decide
when to end the debugging process, the absence of alarms signals the end of the automatic
verification by ASTRÉE. Moreover, it is exactly known which category of bugs have been
eliminated by ASTRÉE’s validation.

2.1.2 Implicit versus explicit specifications

In ASTRÉE, the concrete operational semantics of C programs is given by the C ISO/IEC
9899:1999 standard, restricted by implementation-specific behaviors, programming guide-
lines and hypotheses on the environment (which can be tuned by analysis options). The spec-
ification is implicit: there should be no runtime error with respect to the concrete semantics.
Whenever the standard is imprecise, ASTRÉE always takes a conservative approach, assum-
ing that every behavior respecting the standard and the implementation-specific behaviors
may happen. ASTRÉE has options to tune the specification, e.g., whether to warn on inte-
ger arithmetic overflows (including or excluding left shifts), on overflows on implicit and
explicit integer conversions, on overflows in initializers, etc. The fact that ASTRÉE has an
implicit specification (but for the static invariant assertions which may optionally be in-
cluded by the end-user in the program text) is essential to its success since the end-users do
not have to write formal specifications (which are often as large, complex, and difficult to
maintain, if not more, than the program itself).

ASTRÉE checks the absence of runtime errors that is that no program execution, as de-
fined by the concrete semantics, either:

• violates the C ISO/IEC 9899:1999 standard (e.g. division by zero, array index out of
bounds),

• violates an implementation-specific undefined behavior (e.g. exceeding implementation-
defined limits on floats, NaN, +∞, −∞),

• violates the programming guidelines (further restricting the correct standard and imple-
mentation-specific behaviors e.g. expressions have at most one side effect, signed integers
should not overflow),

• violates a user-provided assertion __ASTREE_assert((b)), where b is a boolean
C expression (which must all be statically verified, as opposed to the dynamic C
assert(b)).

2.1.3 Precision versus incompleteness

By the very nature of approximation, abstract static analyzers do have false alarms (also
called false positives or spurious warnings) that is error messages about potential bugs that

234 Form Methods Syst Des (2009) 35: 229–264

Fig. 2 A false alarm with ASTRÉE

Fig. 3 An example where CBMC is incomplete

do not exist in any execution of the program. When analyzing a given program for a given
specification, a finite abstraction always exists to make the proof [13]. However, this is
no longer true when considering an infinite family of programs [18]. In this last case, the
challenge is to find the appropriate balance between coarse abstractions which are not costly
but produce many false alarms and precise abstractions that produce no false alarms but are
expensive, if not impossible, to compute. In practice, the challenge is met by ASTRÉE on
a significant family of programs. Nevertheless, and by incompleteness, there are infinitely
many programs on which ASTRÉE will produce false alarms, as in Fig. 2. ASTRÉE is sound
and precise enough on the family of programs for which it was designed (false alarms are
very rare) but is likely to be imprecise on programs outside this family. Note that CBMC [8]
is also incomplete (Fig. 3).

More precisely, the programs for which ASTRÉE was designed are control-command
software automatically generated from a graphical language à la SCADE. They are com-
posed of a large reactive synchronous loop that calls at each clock tick a set of functions
assembled with macro-expanded blocks. Each block is generally simple and consists in a
few statements of C and at most two nested loops. It follows that ASTRÉE was not designed
to support:

• recursive function calls,
• dynamic memory allocations,
• backward gotos,
• long jumps,
• concurrency,
• very complicated data structures,
• or highly nested loops.

Form Methods Syst Des (2009) 35: 229–264 235

Fig. 4 An example on which ASTRÉE runs out of memory

There were of course also difficult points in that family, such as the size of the programs (up
to a million lines of C), with one big loop interrelating nearly all variables (so that we cannot
slice programs and analyse each part in isolation), pointers on functions, or floating-point
computations.

2.1.4 Scalability versus analysis in the small

Experience has shown that ASTRÉE does scale up for the family of programs for which
it was designed which are typically of a few hundred thousands to a million lines of C
code. This does not mean that ASTRÉE does scale up on all programs (with any parame-
terization and analysis directives). Figure 4 shows an example which essentially consists
in exhaustively exploring each execution trace in the program separately (due to the option
--partition-all specified by the user). However, with the appropriate abstraction (i.e.
limiting the amount of case analysis performed on execution traces, which is the default
when no --partition-all option is specified by the user), we immediately get:

Note that CBMC [8] is also sensitive to an appropriate choice of options. We have

while the verification succeeds with an appropriate choice of the number of unrollings:

236 Form Methods Syst Des (2009) 35: 229–264

Fig. 5 Benchmark analyses with
ASTRÉE

The previous discussion on precision and scalability shows that the effectiveness of ab-
stract static analyzers can only be evaluated with respect to precise objectives. ASTRÉE

aims at proving the absence of runtime errors in safety and mission critical synchronous
control-command C code [2, 3, 22, 23, 47]. Typically, the analyzed C code is automatically
generated from a specification language in terms of primitives written by hand (such as inte-
grators, filters, limiters, etc.). The challenge met by ASTRÉE is therefore to scale up without
false alarms for that class of programs.

To illustrate the scalability of ASTRÉE, Fig. 5 presents some analysis benchmarks on
various versions of two families of industrial software for which ASTRÉE was designed. To-
gether with the approximate size of the C code (before any preprocessing and macro expan-
sion), we give the analysis time and number of abstract iterations with widening (Sect. 3.3)
required by ASTRÉE to find an invariant for the reactive synchronous loop. All these bench-
marks were run on a single core of a 2.6 GHz 64-bit Intel Linux workstation. Note that, in
each family, the analysis time is roughly proportional to the code size but also to the number
of iterations (see Sect. 5.2 for insights on how this number varies depending on the com-
plexity of feedback loops in the program and the widening strategies adopted by ASTRÉE).
It is difficult to provide reliable memory consumption figures due to the garbage-collected
nature of OCaml; at least we can say that the smaller analyses can be run on a 2 GB laptop
while 8 GB is sufficient for the largest ones.

2.2 The structure of ASTRÉE

Before discussing the choices made in ASTRÉE and the reasons for these choices, we present
briefly the results of these choices, i.e., the current state of its structure.

2.2.1 Engineering facts

ASTRÉE is a self-contained tool. It consists in 80,000 lines of OCaml [46] and 12,000 lines
of C. The C parser was developed for ASTRÉE in OCamlYacc. It allows ASTRÉE to han-
dles full C with the exception of unstructured backward branching, conflicting side effects,
recursion, dynamic heap allocation, library calls (which have to be stubbed), system calls
(hence parallelism), exceptions (but the clock tick of synchronous programs).

The development of ASTRÉE required about 7 years of effort for a small team of four to
five researchers-programmers. The structure of the code is decomposed in OCaml modules
allowing independent development.

Form Methods Syst Des (2009) 35: 229–264 237

2.2.2 Iterator and abstract domains

Following the abstract interpretation design, ASTRÉE is composed of an iterator and a num-
ber of abstract domains communicating to obtain precise results. The iterator follows the
flow of the program, starting from a main function which is an argument of the analyzer.

Here is a succinct list of the abstract domains currently used in ASTRÉE:

• An interval domain [14] that infers for each integer or floating-point variable Vi a property
of the form Vi ∈ [ai, bi].

• A simple congruence domain [38] for integer properties of the form Vi ≡ ai[bi].
• A non-relational bitfield domain that tells for each bit of each integer variable whether it

must be 0, 1, or may be either.
• An octagon domain ([52], Sect. 6.3) for relations of the form ±Vi ±Vj ≤ cij . The octagon

domain does not relate all variables (which would be too costly) but only integer and
floating-point variables selected automatically by a packing pre-analysis (Sect. 4.3).

• A boolean decision tree domain (Sect. 3.2) to infer disjunctions of properties based on the
value of boolean variables. Decision trees also employ an automatic packing pre-analysis
to pre-select the set of variables to relate together.

• A symbolic propagation domain ([53], Sect. 6.4) that remembers the last expression as-
signed to each variable and performs substitution and simplification in subsequent expres-
sions.

• An abstract domain for digital filters [28, 30] that discovers that a variable V lies within
the sequence defined by a first order Vi = αVi−1 + aIi + bIi−1 or second order Vi =
αVi−1 + βVi−2 + aIi + bIi−1 + cIi−2 digital filter with input I , up to some error interval
[−ε, ε].

• An arithmetic-geometric progression domain [29] that infers properties of the form |V | ≤
αC + γ or |V | ≤ α(1 + β)C + γ , where C is the implicit clock variable counting the
number of iterations of the synchronous loop. The domain is helped by a dependency
pre-analysis that selects a set of candidate variables V .

• A domain of generic predicates that enables an accurate analysis of the functions that
implement Euclidean remainders.

• A domain to discover equivalence classes of equal variables. This information is used in
the digital filter domain.

• A pointer domain ([51], Sect. 6.1.1) that associates with each pointer a set of possible
pointed-to variables and abstracts pointer offsets using all the integer numerical abstract
domains above.

• A memory structure domain ([51], Sect. 6.1.3) that dynamically splits composed data-
structures (such as arrays, structures, or unions) into cells of integer, floating-point or
pointer type.

• A trace partitioning domain ([58], Sect. 3.1) to infer disjunctions of properties based on
the history of the computation using control or data criteria. An automatic pre-analysis is
used to infer relevant places where to perform trace partitioning.

2.2.3 Interface

The input of ASTRÉE is a set of files containing the sources of the program to analyze.
Optionally, it can take into account the range of some input variables in another file, and the
specifications for the intended platform on which the program should run in yet another file.
A vast number of options can be given to the analyzer, in order to specify the function to
analyze or which abstract domains (not) to use or some parameters of the abstract domains

238 Form Methods Syst Des (2009) 35: 229–264

or iterator. The growing number of such options (currently 150) justified the development
of a graphical interface which organizes them. One last source of inputs for ASTRÉE is
the directives (starting with __ASTREE) which can be written in the source of the code
to analyze. Such directives can control the output (asking to display the value of a variable
at a given point) or help abstract domains when testing new strategies or trying to find the
origin of alarms. Ultimately, ASTRÉE is configured internally so that on the very specific
kinds of code analysed by our end-users, no directive and only a minimal set of options and
configuration is needed. Directives and options are used mainly by the developers during the
development phase, and by the end-users when experimenting with the analysis of new codes
[26, 60, 61] (e.g. new versions of their software, or after changes to the code generator).

The output can provide a human-readable description of the invariants found and proved
by ASTRÉE. It can also provide a more structured flow that can be exploited by a graphical
interface. Currently, two such interfaces have been developed.

3 Disjunctions

A major difficulty in abstract interpretation is to handle disjunctions. On the one hand, keep-
ing precise disjunctive information is very costly (and can end up in handling the disjunction
of the semantic state singletons). On the other hand, approximating disjunctions is the main
source of imprecision in abstractions. The proper abstraction of disjunctions is therefore a
key to achieve scalability.

In case of finite abstractions, like in dataflow analysis [42] or predicate abstraction [37],
one way to recover disjunctive information is to consider merge-over-all-paths abstractions
[42] or, equivalently, to consider the disjunctive completion of the abstract domain [16,
31, 33], or to consider an automatic refinement to the disjunctive completion [40], or a
refinement towards the concrete collecting semantics [7, 24]. These extreme solutions are
too costly and so do not scale up in the large. For infinitary abstractions, the merge-over-all-
paths is not computable but portions of paths can be abstracted together to make the analysis
feasible [9, 41].

Weaker, but scalable, alternatives are discussed below. Note that disjunctive completion
as well as the weaker alternatives discussed below cannot solve all false alarms and so the
abstraction may ultimately have to be refined as discussed in later sections.

3.1 Trace partitioning versus local invariance analysis

A non-distributive abstraction is an abstraction that may lose information whenever unions
are performed. This is quite a frequent case. For example, intervals are a non-distributive
abstraction (e.g. [1,2]∪[5,6] ⊂ [1,6] = [1,2]�[5,6]). To gain precision in such cases, AS-
TRÉE proves that all program execution traces satisfy an invariance property by partitioning
the set of all traces into sets of trace portions abstracted separately [48, 58].

In the classic state partitioning by program points [10, 11], all reachable states corre-
sponding to a given program point are over-approximated by a local invariant on memory
states attached to this program point. The two figures below illustrate graphically this parti-
tioning on two examples. Both cases present six traces (horizontal lines) composed of eight
program states (dots) each. (1) to (8) denote program points, while #1 to #4 denote loop iter-
ations. Each gray zone denotes a set of program states that are abstracted together. The left
figure corresponds to an if-then-else statement, where program points (2a)–(3a) above
are in the then branch, program points (2b)–(3b) below are in the else branch, and pro-
gram points (1) and (4)–(8) are statements before and after the conditional. The right figure

Form Methods Syst Des (2009) 35: 229–264 239

corresponds to a loop with four iterations #1 to #4 of a body consisting of two statements
(1)–(2). In both cases, ASTRÉE collects together program states from all traces at each pro-
gram point, even for program executions that reach several times the same point (as in the
loop example). Thus, the left example results in ten abstract memory states computed and
the right example results in two abstract memory states.

Conversely, when employing trace partitioning, program states at the same program point
but belonging to different traces may be collected separately. Consider the two figures be-
low, corresponding to the two same programs as before. On the left figure, tests cases are
prolonged beyond the end of the if, so that we abstract separately the set of states at pro-
gram points (4)–(7) depending on whether the then or else branch was taken. Moreover,
it is possible to perform case analysis to distinguish traces based on the value some variable
takes at some program point. Indeed, at program points (5)–(6), traces that come from the
then branch are further partitioned into two sets depending on the value some variable
takes at point (5). To ensure efficiency, the case analysis can be terminated by (partially)
merging trace partitions at some program point, as shown in (7) and (8). The right figure
corresponds to unrolling the loop body once, so that program states at both program points
in the first iteration are abstracted separately from those in the following three iterations.

It follows that trace partitioning abstract interpretation [48, 58] combines the effects of case
analysis and symbolic execution as in Burstall’s intermittent assertion method [6, 19] as
opposed to state partitioning as found in Floyd/Naur/Hoare invariant assertion proof method
[17, 32, 43, 55]. It can be implemented easily by on-the-fly program transformation/code
generation in the abstract interpreter. Trace partitioning is then much more efficient than the
merge-over-all-paths or disjunctive completion since it is applied locally, not globally on
the whole program: the case analysis always ends with an explicit merge of the cases (an
implicit merge is performed at the end of functions).

240 Form Methods Syst Des (2009) 35: 229–264

Fig. 6 The clip program

Fig. 7 Clip program with partitioning directives

For example, the analysis of the clip.c program (Fig. 6) by ASTRÉE produces no false
alarm:

This precision is obtained after automatic inclusion of partitioning directives by a prelimi-
nary analysis [48]. The result of such inclusion on the clip program is shown on Fig. 7. The
effect of these directives is to distinguish, when analysing the second test, traces that come
from the then and from the implicit else branch of the first test. Without the partition-
ing directives, the abstractions used by ASTRÉE would not be expressive enough to capture
the weakest invariant necessary to make the partial correctness proof (including proving the
user-supplied assertion that m<=y<=M):

Form Methods Syst Des (2009) 35: 229–264 241

Fig. 8 Boolean control

3.2 Decision trees

Trace partitioning is used for control and data case analysis and applies equally to all abstract
domains in the abstract interpreter. It is therefore not possible to perform a case analysis only
on part of the abstract invariant handled by the abstract domains (e.g. only for one variable
or two). Moreover, the case analysis is performed uniformly along the paths until they are
merged. So, if the cases need to be distinguished only at the beginning of the path (where e.g.
a variable is assigned) and at the end of the path (where it is used), it has to be propagated
along paths in between (where e.g. the variable is never redefined, used or modified), which
can be costly for very long paths. An example is the analysis of the program of Fig. 8 which
succeeds using decision trees:

and equally well using value partitioning (Fig. 9) but for the fact that, if the code /*...*/
is very long, it will be partitioned unnecessarily, which is costly since the partitioning is on
the whole abstract state.

Decision trees are an efficient implementation of the reduced cardinal product [16,
Sect. 10.2] thus allowing expressing disjunctions on values v of variables x1, . . . ,xn.
Suppose that each variable xi takes its values in a set Di , then we can express

∨
v1∈D1

· · ·
∨

vn∈Dn
(
∧n

i=1 xi = vi ∧ P �
v1,...,vn

). It is represented as a Shannon tree on v1, . . . , vn with ab-
stract domain information P �

v1,...,vn
at the leaves and opportunistic sharing like in BDDs [5].

It is an abstract domain functor in that the abstract domains of P �
v1,...,vn

at the leaves are
parameters of the analyzer chosen at build time. It would be extremely expensive to parti-
tion on all variables so it must be restricted to few variables with few values. The automatic
decision of where to use decision trees and on which variables is automated in ASTRÉE so

242 Form Methods Syst Des (2009) 35: 229–264

Fig. 9 Analysis of boolean control with value partitioning

as to bridle its cost (thanks to automatic variable packing (Sect. 4.3) and parameterizable
limitation on the tree height).

In conclusion, trace partitioning is a disjunction on control/values involving the whole
abstract state so its use should remain local in the program so as to avoid very long program
paths. In contrast, a decision tree is a disjunction on part of the abstract state. To scale up,
it must be limited to a small part of the abstract state (e.g. a few values of a few variables).
It is therefore less expressive than trace partitioning but does scale up on large parts of the
program along very long program paths.

3.3 Widenings

For infinitary abstractions, a widening is necessary to pass to the limit of the iterates [16],
which is at the origin of a loss of disjunctive information since the least upper bound of two
elements is always more precise than their widening. This can be avoided when the fixpoint
solution can be computed directly (for instance when we know that an arithmetic-geometric
sequence such as x = α · x + b is iterated). But such a direct computation requires either a
global knowledge of the system (such as a set of semantic equations e.g. see Sect. 5.1.2),
or an accurate analysis to extract dependencies between variables: on the one hand when
iterating an arithmetic-geometric sequence x = α · x + b, we have to prove that the variable
x is not otherwise updated between consecutive iterations; on the other hand, in order to
compute the stable limit of a filter [28], we need to prove that the bounds on filter inputs
will not increase during further iterations. Lastly, the direct computation of fixpoints would
require the computation of complex relational invariants. As a consequence, it would be
difficult to compute fixpoints directly without losing scalability.

In general, a fixpoint iteration with convergence acceleration by widening is necessary to
ensure termination. The loss of disjunctive information can be limited both by adjusting the
frequency of the widenings (see Sect. 5.2) and by designing widenings to be refinable e.g. by
enriching the widening thresholds [14]. In ASTRÉE the default thresholds for integer interval
widenings are 0, 1, and the biggest value of all signed and unsigned integer C types. In many
cases, this allows the analysis to show the absence of modulo in integer arithmetic. We

Form Methods Syst Des (2009) 35: 229–264 243

can increase the precision by adding more thresholds and the performance by suppressing
useless thresholds. This is done through options in the analyzer.

As explained in the previous paragraph, we cannot compute directly fixpoints without
losing scalability. However, in some situations, we are able to guess a potential bound of a
fixpoint, but we cannot afford the computation of the global properties that would entail the
fact that this is actually a sound bound (it might even happen that our guess is wrong and
the bound is not sound). In such a case, we modify the widening thresholds dynamically, so
that the widened iterates can jump directly to the bound that has been guessed. Then, it is
up to the iterator to prove the stability of the bound: in case of failure, the analysis keeps on
iterating with higher values until a fixpoint is reached. Special care must be taken in order to
ensure the termination and efficiency of this process: in order to ensure that we never insert
an infinite (or very large) number of thresholds, the computation of the dynamic thresholds
to be inserted at each iteration is itself subject to widening. This strategy is widely used
when analyzing filters [28, Sect. 5].

As a conclusion, the use of thresholds that are dynamically computed thanks to (poten-
tially unsound) heuristics (controlled by a widening) is a light-weight alternative to the direct
computation of fixpoints.

4 Locality versus uniformity

The design of ASTRÉE follows a locality principle. Only the information necessary at a
given program point for a given program data should be computed and stored as opposed to
using a uniform representation at each program point for all program data of the information
statically collected.

4.1 Local versus global information

In proof methods (like Floyd-Naur-Hoare invariance proofs [17, 32, 43, 55]) and classic sta-
tic analysis methods (like compiler dataflow analysis [42], or in simple abstract interpreters
[12]), the properties (like invariants, bit-vectors, or abstract environments) attached to pro-
gram points are chosen to be essentially of the same nature at each program point. So, the
choice of which information should be attached to program points is made globally and is
identical for each program point (e.g. an abstraction of a set of call stacks and memory states
reachable at that program point). Formally, let p ∈ P be the set of program points (in a loose
sense, this might include the full calling context). Let D be the global abstract domain (e.g.
a predicate on visible variables, a bit-vector or a Cartesian abstraction). The uniform choice
of the abstraction leads to the same abstraction attached to each program point: P → D
(for example a local invariant on visible variables attached to each program point or a bit-
vector for variables attached to program blocks). This choice is simple but hardly scales up
because a little part of the information is needed locally but, more importantly, a different
kind of information is in general needed at different program points. When the same ab-
stract domain D is used everywhere, this means that either a universal representation of the
abstract information is used (like predicates, bit-vectors or BDDs) or that the abstract do-
main D = D1 × · · · × Dn is the composition of various abstract domains D1, . . . , Dn using
different information encodings. In the case of a universal encoding of the information in D,
one cannot benefit from efficient algorithms for transformers since such algorithms are often
based on tricky specific representations of the information (e.g. BDDs [5] may not be the
best representation of numerical intervals). In the case of multi-representations, the infor-
mation in D1, . . . , Dn is represented everywhere whereas it is needed only locally, at some

244 Form Methods Syst Des (2009) 35: 229–264

specific program points. The design of ASTRÉE mixes global information (like intervals for
numerical variables attached to each program point but propagated locally, see Sect. 6.2)
and local information attached to program points when needed (see e.g. Sect. 6.3).

4.2 Functional versus imperative data-structures

So far, we have discussed only semantic choices and not algorithmic ones. The main reason
is that, in its design, each abstract domain comes fully equipped with its specialized data-
structures and algorithms optimized for best efficiency, and so, we refer the reader to articles
describing each one of them in details (e.g., [52] for the octagon domain). There is however
one particular data-structure of pervasive use in ASTRÉE that we wish to discuss here: binary
balanced trees with sharing.

Consider, for instance, the cheapest abstract domain used in ASTRÉE: intervals. It is
generally described as having a “linear cost” in the number of variables, a guarantee of its
scalability. Actually, this denotes the memory cost per abstract state as well as the worst-case
time cost per abstract operation. The cost of an actual analysis is more subtle and a careful
choice of data-structures and algorithms is required to actually scale up to tens of thousands
of variables. To represent an environment, one needs a data-structure akin an associative
array supporting the following operations:

1. retrieve and change the interval associated to a variable;
2. add or remove variables (preferably in arbitrary order);
3. copy an environment;
4. apply a binary function or predicate point-wise to two environments.

Operation 3 is used when the analysis performs case analysis (due to control-flow split, or
trace or state partitioning). Operation 4 is used for control-flow join, widening, and inclusion
testing. Using a naive array-based or hash-table-based approach leads to a unit cost for
operations 1 and 2, but linear cost for operations 3 and 4. In programs where the numbers
of both variables and control-flow joins are linear in the program size, one iteration of the
interval domain on the whole code actually incurs a quadratic cost.

To improve the efficiency, a crucial observation is that all operators used point-wisely
are idempotent (f (a, a) = a) and often applied to environments that are very similar (e.g.,
a control-flow join occurring a few statements only after the corresponding split). Our effi-
ciency problem can thus be solved using binary balanced trees. These serve as functional
associative arrays, and thus, the copy operation is free. Moreover, given two copies of the
same initial array, both changed in small ways, most of their structure is shared in memory
(intuitively, only the nodes along paths leading to updated variables are fresh, and they point
mostly to subtrees of the original tree). We have designed binary operators on balanced bi-
nary trees that apply a binary function to all non-equal elements, ignoring subtrees with the
same memory address. Its cost is in r × logn, where n is the total number of variables and
r is the number of changed variables since the common ancestors of both arguments. Al-
though the cost of element retrieval, modification, addition, and deletion is increased from
constant to logarithmic, this is far out-weighed by the improved cost of the copy and binary
operations.

Another benefit of subtree-sharing is the improved memory footprint. Many environ-
ments are transient: they are created at control-flow splits only to be merged a few statements
later. These do not occupy much memory as most of the data-structure remains shared. Note
that we solely rely on subtree-sharing that naturally arise from the functional nature of tree
algorithms, but we do not enforce maximal sharing (as often used in BDDs [5]).

Form Methods Syst Des (2009) 35: 229–264 245

Fig. 10 Octagon packs

Binary balanced trees with sharing are used in many other abstract domains in ASTRÉE

besides intervals: other non-relational domains (such as congruences), but also domains of
relational properties attached to variables (see, e.g., Sect. 6.4) or domains with packing (see
Sect. 4.3).

4.3 Packed versus global relationality

Relational domains are critical to prove the absence of run-time errors (see, e.g., Sect. 6.3)
but are, unfortunately, very costly. For instance, even limited linear inequalities such as
octagons [52] have a quadratic memory and cubic time worst-case cost and these costs
are often encountered in practice as the existence of bounds on the sum and difference of
any two variables is very likely, whether the variables are actually logically related to each
other or not. Although most relational information is useless or even redundant (consider,
e.g., bounds on variable sums which are sums of variable bounds), redundancy removal
techniques do not help scaling up as they are also costly (e.g. cubic for octagons [1]). No
domain with a supra-linear cost is likely to scale up to tens of thousands of variables.

In ASTRÉE, costly relational domains do not operate on the full set of variables, but only
on small packs of variables. Relational domains such as octagons relate all variables in one
pack but not variables in different packs, as shown in Fig. 10. Non-relational information
(such as variable bounds) can still be exchanged between packs through variables appearing
in several packs or through reductions with other domains (Sect. 7).

Our packing heuristics are rather simple syntax-directed analyses. For octagons, they
gather variables that are used together in linear expressions, as well as variables that are
incremented or decremented within loops. We perform a transitive-closure of linear depen-
dencies but, to avoid snowball effects resulting in all variables put in the same octagon, the

246 Form Methods Syst Des (2009) 35: 229–264

closure is stopped at syntactic block boundaries (in particular, it is intra-procedural and we
do not relate together formal and actual function arguments). Statistics output at the end of
this pre-processing hint at whether the subsequent analysis may fail to scale up due to the
octagon domain, and why. Experimentally, using a strategy adapted to the structure of our
analyzed codes (adjustment being necessary only when the code generator is substantially
changed), the number of packs is linear in the code size, while their size is constant. More-
over, experimentally, a variable appears in at most three packs, which limits the number of
packs updated at each statement. The resulting analysis exhibits a linear cost.

Note that our packing strategy is local, as it is statement-based, but the subsequent octa-
gon analysis is global: relational information on variables in a pack are also tracked outside
the block statement that hinted at the pack creation. We experimented with local octagon
analyses, using our packing strategy to create and destroy octagons according to scope, but
it was not retained as it was more complex but did not actually impact the precision nor
the efficiency. A more promising research direction towards more dynamic packing strat-
egy would be to monitor the information requested by other domains through reduction and
respond to their needs with the creation of new packs (Sect. 7).

5 Abstract interpreter

5.1 Fixpoint iterator

Static analyses reduce to computing fixpoint approximations of dynamic systems [15], and
they differ in the way the system is posed, the way it is solved and the algebraic domain in
consideration.

5.1.1 Global versus separate analysis

A first choice is whether our domain represents states (or traces) or state (or trace) transform-
ers. The later allows modular analyses [20] which feature, in theory, improved efficiency by
avoiding recomputing the effect of reused procedures, especially when the analyzed pro-
gram is written in a modular fashion (that is, features natural boundaries at which simple
invariants can be computed to account for the effect of large amounts of encapsulated code).
Unfortunately, this is not the case for the synchronous control-command programs targeted
by ASTRÉE. Indeed, they are composed of a (linear in the code size) number of instances of a
small (a few dozens) set of small (generally less than 10 lines) C macros that are scattered in
long linear sequences by the scheduler of the code-generator. No higher-level modularity is
visible and exploitable, and so, a modular analysis is not likely to offer improved efficiency.
On the contrary, modular analyses require the inference of much more complex properties
(such as relationality) which puts a huge strain on the abstract domains. Thus, ASTRÉE

abstracts traces and not transformers. Moreover, function calls are completely inlined, re-
sulting in a full context-sensitive analysis. An abstract control point is thus a program control
point together with the full stack of function calls, from the main procedure up to the current
function. We believe that the cost of reanalyzing some code is largely compensated by the
comparatively simpler (and cheaper) abstractions sufficient to abstract traces precisely.

5.1.2 Control flow driven interpreter versus abstract equation solver

Another choice is the way semantic equations are solved to reach a (approximation of a)
fixpoint. Classic frameworks assume that all equations and the current abstract value associ-
ated to all abstract control points reside in memory so that a wide range of chaotic iteration

Form Methods Syst Des (2009) 35: 229–264 247

strategies can be deployed (see [4]), with the idea that a global view permits improved per-
formance and/or precision (up to finding an exact solution in some very restricted cases
[62]). This approach is not scalable to a large number of abstract control points and large
abstract state spaces. In ASTRÉE, we chose instead to closely follow the control-flow of the
analyzed program, so that the analyzer is very similar to an actual interpreter. This solution
is very memory efficient as, apart from the abstract value associated to the concrete con-
trol point currently executed, the analyzer must only remember one abstract value for each
nested loop (to perform extrapolation) and nested if-then-else instruction (to perform
control-flow join at end of both branches) that syntactically encompasses the control point.
It is equivalent to one particular flavor of chaotic iterations where:

• widening points are loop heads,
• the iteration strategy is recursive; in case of imbricated loops, inner loops are stabilized

first, for each iteration of the outer ones.

This corresponds to the strategy advocated in [4].

5.2 Widening frequencies

Widening after each iterate may be a cause of unrecoverable loss of information. Let us
consider the following program, for instance:

In this example, the boolean B switches between two iteration modes: in the first mode,
the variable X is first updated with the value of the expression Y + 2, then the variable Y is
updated with the value of the expression 0.99 * X + 3; in the second mode, the variable
X remains unchanged whereas the variable Y is updated with the value of the expression
0.99 * X + 3. At run-time, the range of the variable X is [0,500] and the range of the
variable Y is [0,498]. Nevertheless, an iteration with widening thresholds when widening
is applied at each iteration fails to bound variables X and Y. Indeed, if at each iteration we
widen both X and Y, when computing odd iterates, the variable Y is unstable because the
bound of the variable X has changed, whereas when computing even iterates, the variable X
is unstable because the bound of the variable Y has changed. We give in Fig. 11(a) the values
for the widened iterates having powers of 10 as thresholds. Iterations stop with the [0,+∞[
interval.

A first attempt to solve this problem (e.g. see [3, Sect. 7.1.3]) consisted in not applying
the widenings when at least one variable has become stable during the iteration. This is a
global method where the widening of a given variable always depends on the iterates of all
variables. We also added a fairness condition to avoid livelocks in cases where, at each iter-
ation, there exists a variable that becomes stable while not all variables are stable. We give
in Fig. 11(b) the values for the widened iterates using the same widening thresholds (i.e. the

248 Form Methods Syst Des (2009) 35: 229–264

Fig. 11 Abstract iterates for the
three widening methods

powers of 10). At iteration 4, the range of the variable Y is stable, so, we do not widen X.
Then the iteration converges at iterate 4 when the range of the variable X is [0,1002] and the
range of the variable Y is [0,1000]. While solving the accuracy problem for small applica-
tions, this solution has turned out to be not scalable for large programs. In practice, at each
iteration, at least one variable becomes stable. As a result, the widening was only scheduled
by the fairness condition.

We now use a local solution. Each piece of abstract information (such as an interval, an
octagon, a filter predicate, etc.) is fitted with a freshness counter that allows regulating when
this piece of information is widened. More precisely, when we compute the join between
two iterations, the counter of each unstable piece of information is decremented. When it

Form Methods Syst Des (2009) 35: 229–264 249

reaches zero, then the piece of information is widened, and the counter is reset. We give in
Fig. 11(c) the values for the widened iterates using freshness counters initialized to 2 and
the same widening thresholds (i.e. powers of 10). The iteration converges at iterate 7 when
the range of the variable X is [0,1002] and the range of the variable Y is [0,1000].

During an analysis by ASTRÉE, the more a given piece of information has been widened,
the smaller the value used to reset the freshness counter is. A fairness condition ensures
that, after a certain time, counters are always reset to zero, that is, widening occurs in all
subsequent iterations, which ensures the termination of the analysis.

The main advantage of freshness counters is that each piece of abstract information is
dealt with separately and they are not necessarily widened at the same time. This is very
important to analyze some variables that depend on each others.

The analysis by ASTRÉE of the above program is as follows:

5.3 Stabilization

We have also encountered another issue in the stabilization of increasing iterates. When
considering a slow convergence (such as when iterating the assignment X = 0.9 * X
+ 0.2), the analyzer can linger just below the limit, not being able to jump above the
limit without a widening step. However, perturbing the iterates by relaxing them by a small
amount allows the analyzer to jump above the limit without any widening step.

The situation is exacerbated when the analyzer uses floating-point arithmetic to compute
abstract transformers. Indeed, the iterates can be above a post-fixpoint, but not sufficiently
above and, because of sound rounding errors in the analyzer, it is unable to prove the induc-
tion. To solve this problem, we use perturbation in increasing sequences in the computation
of post-fixpoints. Since the perturbation is meant to counteract rounding error noise in the
abstract computation, we use a perturbation that is tailored to be slightly bigger than the
estimated abstract rounding errors. For most domains we use a perturbation that is propor-
tional to the current value of the iteration. For octagons [52], the situation is more involved
due to the shortest-path-closure algorithm in the reduction of octagons that propagates all
constraints. Thus, we use a perturbation proportional to the biggest bounded entry in the
octagon.

This heuristic has allowed us to significantly reduce the number of iterations during
analyses.

5.4 Concurrent versus sequential analysis

Recently [54] a parallel implementation of ASTRÉE has been designed so that it can take
advantage of multi-processor computers that are now mainstream.

Currently, we have only experimented with a coarse granularity parallelization of the
iterator. As explained in Sect. 5.1, the iterator follows roughly the control-flow of the pro-
gram. When it splits (due to a conditional or a call to a function pointer with several targets),
ASTRÉE follows each branch in turn and then merges the results. Computations along the
branches are completely independent, and so, can be easily parallelized. The kind of code
currently analyzed by ASTRÉE presents an ideal situation as it is composed of a top-level

250 Form Methods Syst Des (2009) 35: 229–264

loop that performs different large tasks at regular periods, and the actual order of task execu-
tion is not important when checking for run-time errors. We thus abstract the control of this
loop as an execution of a random task at each iteration. Each task can be analyzed by a ded-
icated independent analysis process. As there are up to 16 tasks, parallelizing the top-level
loop exhausts the number of cores in current computers and achieves the maximum amount
of parallelization possible. Actually, we have observed that the use of more than four cores
is not advisable as the cost of synchronization (communication and merge of invariants at
the end of each top-level loop iteration) then out-weights the speedup of parallel execution.

Our solution can be extended to more general kinds of analyzed codes (i.e., without a top-
level loop executing non-deterministic tasks) as every control-flow split can be parallelized.
These splits generally have a very short duration, so, light-weight parallelization is advised
(e.g., POSIX threads as opposed to processes). Unfortunately, ASTRÉE is programmed in
OCaml [46], which is not well equipped in this department (mainly due to the garbage
collector locking all threads), and thus, we currently use heavy-weight processes not suitable
for fine-grained parallelization. Moreover, even this solution may not be sufficient to exploit
the tens or hundreds of cores in future computers.

6 Abstract domains

The abstraction in ASTRÉE is implemented in the form of several abstract domains com-
bined by reduction [16, Sect. 10.1]. The abstract domains are OCaml modules [46] that can
be chosen by parameters and assembled statically. It means that many different combina-
tions of abstract domains must be compiled to offer some flexibility in choosing the abstract
domain for the end-user. But this design method has several advantages:

• Each abstract domain uses its own efficient algorithms for abstract operations operating
on efficient specific computer representations of abstract properties. Such elaborated data
representations and algorithms can hardly be automatically inferred by abstraction refine-
ment [7, 24], a severe limitation of this approach.

• Being designed to scale up precisely for the family of synchronous control-command
programs, ASTRÉE produces few or no false alarms for programs in this specific fam-
ily (typically less than one alarm per 5000 lines of code, before tuning of the parame-
ters). Occasionally, an adaptation of ASTRÉE parameters or analysis directives may be
required. When extending the considered family of programs, it may also happen that
the weakest inductive property necessary to prove the specification may not be express-
ible with the currently available abstraction. Examples we encountered include filters [28]
and arithmetic-geometric sequences [29] which cannot be expressed using linear numeri-
cal abstractions. On such rare occasions, the abstraction must be refined. This consists in
adding a new abstract domain and its interaction with the existing abstract domains [25].

• The specification of the abstraction as the reduction of several abstract domains [16,
Sect. 10.1] divides the design and programming of the abstract interpreter into indepen-
dent tasks which are specified by the interface of abstract domains, including reductions,
and by the concretization operator for that abstraction. The complexity of the program-
ming task is thus significantly reduced.

We first discuss the memory abstraction mapping the concrete memory model to the ab-
stract memory model used by abstract domains. Then we discuss some important choices
regarding numerical abstractions. The combination of abstract domains by reduction is dis-
cussed in Sect. 7 while the refinements of abstractions is considered in Sect. 8.

Form Methods Syst Des (2009) 35: 229–264 251

6.1 Memory abstraction

6.1.1 Points-to analysis versus shape analysis

Mission-critical synchronous control-command programs targeted by ASTRÉE feature very
simple data-structures: mostly scalar numerical or boolean variables and statically allocated
arrays or structures of constant size. No recursive nor dynamically allocated data-structures
are used. This greatly simplifies the design of ASTRÉE and avoids the need for memory
shape abstractions (such as [59]) that do not currently scale up well. In particular, due to our
full context-sensitive control abstraction (Sect. 5.1), the set of existing memory locations at
each abstract control point can be determined statically: it is the set of global variables and
local variables of all functions in the call stack.

Our programs feature pointers, but these are used only to model passing-by-reference
and encode array accesses through pointer arithmetic. We thus use a straightforward scalable
points-to analysis: the (often singleton) set of pointed-to variables is represented explicitly,
while the byte-offset from the starting byte of the variable is abstracted as an integer variable
would.

6.1.2 Combined versus separate pointer and value analyses

Many authors only consider value analyses on pointer-free programs and rely on a prior
alias analysis to remove the use of pointers. However, there is experimental proof [56] that
combined pointer-value analyses are more precise. This is especially the case for languages
such as C that feature pointer arithmetic, with expressions mixing pointers and numbers.
ASTRÉE performs such a combined pointer-value analysis. In particular, the offset abstrac-
tion benefits from all the (possibly relational) numerical domains available for integers,
trace partitioning, etc. This is key in proving the absence of out-of-bound array accesses
encoded through pointer arithmetic, as in the example of Fig. 12. Note the abstraction of the
pointer p as a symbolic base base(p) and a numerical offset off(p). The information
that off(p) is less than i, provided by the octagon domain, allows proving that there is
not access outside a in the loop. Note that this example would not work with a pointer to
int (or, indeed, any type whose byte-size is greater than one) as it would require an integer
information of the form off(p)� 4 ×i, which is currently outside the scope of ASTRÉE.

6.1.3 Field-sensitive versus field-insensitive analysis

To perform a value analysis in the complex C memory model, we need a map from pointer
values (variable/offset pairs) to dimensions in value (e.g. numerical) abstract domains, so
called cells. ASTRÉE uses a mostly field-sensitive model, where each scalar component in a
structure or array is associated its own cell. However, to scale up, it is necessary to abstract
large arrays in a field-insensitive way, where a single cell accounts for the whole contents of
the array. Indeed, this allows a unit cost for abstract operations, even when an imprecision in
an index causes a large portion of the array to be potentially read or updated. Although less
precise than a fully field-sensitive analysis (we lose the relationship between indexes and
values), this is sufficient to analyze all large arrays in our programs as they mainly model
homogeneous sequences of data.

Recently [51] the concrete memory semantics and its abstraction have been extended to
support union types, pointer casts, as well as platform-specific ill-typed memory accesses
(such as reading individual bytes in the byte representation of an integer or a float). This has

252 Form Methods Syst Des (2009) 35: 229–264

Fig. 12 Example with pointer arithmetic

Fig. 13 Example with union type

been done without changing the main assumption that the memory can be represented as a
finite set of abstract cells, each accounting for a fixed number of concrete memory locations.
However, in this new model, the mapping is dynamic: as we cannot rely on misleading
static C types (they do not account for dynamic casts), the mapping is updated according
to the actual access pattern during the analysis. A second difference is that cells can now
represent overlapping byte segments, which requires careful handling of updates. As each
memory byte can be abstracted by only finitely many cells (as many as atomic C types but, in
practice, a single one often suffices), the scalability of the analysis is not affected. Consider
the example of Fig. 13. Indeed, because ASTRÉE is aware of the big endian, 2’s complement
bit representation of integers used in PowerPC processors, it discovers that the byte sequence
0 0 2 1 (field a.b) corresponds to the integer 513 (field a.x). For performance reasons, this
information is only inferred in some cases (such as when converting a byte sequence to an
integer) but not necessarily in others (e.g., converting back an integer to a byte sequence) if
it was not deemed useful to prove the absence of run-time errors.

6.2 Domain of observable

A core domain in ASTRÉE is the interval domain [14] that infers bounds on variables and
expressions. It allows expressing the minimal information requested for checking the im-

Form Methods Syst Des (2009) 35: 229–264 253

plicit specification. Indeed, bound properties are crucial as they can express the absence of
run-time errors for most atomic language operations (absence of arithmetic overflows, con-
version overflows, out-of-bound array accesses, square root of negative numbers, etc.), i.e.,
they are the main observable properties for our implicit specification of programs. Addi-
tionally, bound properties are useful to parameterize more elaborate abstractions (Sects. 6.3,
6.5).

Although several complex abstract domains used in ASTRÉE are able to express bounds
(e.g., octagons in Sect. 6.3), we still keep bound information for all variables in a dedicated
interval abstract domain for two reasons. Firstly, this ensures that some bound information
is always available even when other domains are turned off globally or locally (in some
program parts or for some variables) for performance reasons. Secondly, the interval do-
main is quite simple and well understood so that it is easy to design precise abstractions for
all language operators, including complex non-linear ones (such as integer bit-operations or
floating-point arithmetic). This is not the case for more complex domains (such as octagons)
that, although more expressive in theory, can only handle precisely a few arithmetic opera-
tors, and so, compute bounds that may or may not be tighter than the plain interval domain
in other cases. To get the best of all domains, variable bounds are computed in parallel in
them, and then exchanged through reduction (see Sect. 7).

To supplement the interval domain, ASTRÉE also features a congruence domain [38]
that associates a congruence information V ≡ a [b] to each integer variable and pointer
offset V . This is necessary to prove the absence of mis-aligned pointer dereferences, another
observable property.

6.3 Specialized versus general inequality domains

If intervals and congruences are sufficient to express the absence of run-time errors, they
are often insufficient to prove it, i.e., provide local and/or inductive invariants that imply the
sufficient bounds. Linear inequalities have been recognized early [21] as a class of useful
invariants for proving correctness. They can express, for instance, the relational loop invari-
ant linking i and j in code of the form shown in Fig. 14, which is key in proving that j++
never performs an overflow.

Another feature is their ability to gather relational information from tests and exploit
them in subsequent assignments, for instance in the code of Fig. 15 implementing a rate
limiter, where linear invariants are necessary to bound OUT and prove that no overflow can
occur.

General polyhedra [21] unfortunately suffer from a very high complexity (exponential at
worse), exacerbated by the need to resort to arbitrary precision arithmetic to guarantee the
soundness of the algorithms. Thus, ASTRÉE employs octagons [52] instead, which allow
discovering restricted forms of linear constraints on variables: ±X ± Y � c. They feature
a lower and predictable quadratic-memory and cubic-time complexity, as well as a fast yet
sound floating-point implementation [44]. Their limited expressiveness is still sufficient in
most cases: they find the same loop invariant as polyhedra in the first program, while they
find a less precise bound for OUT (due to their inability to model exactly assignments in-
volving three variables) which is still sufficient to prove the absence of overflow.

6.4 Symbolic constants versus domain completion

Most abstract domains in ASTRÉE are specialized for a specific kind of properties and, as
a result, can only handle precisely specific statements and are sensitive to even the simplest

254 Form Methods Syst Des (2009) 35: 229–264

Fig. 14 Octagon usage

Fig. 15 Rate limiter

program transformations. Consider, for instance, an abstract domain for linear interpolation.
Given an assignment Y=B+(A-B)*T and the knowledge that T ∈ [0,1], it infers that Y is
a linear combination of A and B, and thus, that the range of Y is the join of that of A and B
(which is outside the scope of the interval domain due to the relationality of the expression
as B appears twice). Now, consider the following code: X=(1-T)*B; ...; Y=A*T+X
(where ... denotes an arbitrary long piece of code that does not modify A, B, T, nor X).
Our domain will fail as neither assignment is a linear interpolation between two variables.
A common solution to this problem is domain completion [16, 34], that is, enriching do-
mains with properties holding at intermediate statements. Unfortunately, managing a richer
set of properties may cause scalability issues.

As an alternate, lightweight solution, we have designed in ASTRÉE a special-purpose
symbolic constant propagation domain [53]. This domain remembers which expression is
assigned to which variable (e.g., X maps to (1-T)*B) and is able to substitute on de-
mand variables with the corresponding expression in subsequent assignments and tests (e.g.,
Y=A*T+X becomes Y=A*T+(1-T)*B). It was indeed observed that most intermediate
properties are only required due to the fine granularity of abstract transfer functions, but
their need disappears once we take past assignments into account and derive more synthetic
transfer functions. Consider the analysis of the program in Fig. 16, with only the interval do-

Form Methods Syst Des (2009) 35: 229–264 255

Fig. 16 No symbolic propagation

main and no symbolic evaluation. There is a false alarm on the assertion (k == 2) which
is removed with the symbolic evaluation of the expression y - z:

Another difference between our symbolic domain and more traditional relational do-
mains is that the symbolic domain does not represent general equations that can be com-
bined, solved, etc., but only substitutions (that is, directed equations) that can be applied to
expressions. Its implementation is akin that of non-relational domains and enjoys its good
scalability if one uses proper data-structures (Sect. 4.2) and takes care to bound the substi-
tution depth to a reasonable value (which can be changed through a parameter --symb-
max-depth which defaults to 20).

6.5 Floating-point error abstraction versus accumulation

Relational domains in ASTRÉE (such as octagons, see Fig. 15) are able to handle floating-
point computations, although their algorithms are based on mathematical properties (such
as linear arithmetic) that only hold on algebraic fields such as rationals or reals. We use the
method of [49] to abstract floating-point expressions into ones on reals by abstracting round-
ing as a non-deterministic choice within a small interval. These expression manipulations
are sound only in the absence of overflows and are parameterized by bounds on variables
and expressions. Thus, we rely on the self-sufficient interval domain (Sect. 6.2) to provide
coarse but sound initial bounds and bootstrap a refinement process that can then involve
relational domains (Sect. 7).

Furthermore, when abstracting properties on floating-point numbers, all computations in
our domains are also handled using floating-point arithmetic, rounded in a sound way, to
ensure the scalability of the analysis.

In Fig. 17, the expression z = x - (0.25 * x) is linearized as

z= ([0.749 · · · ,0.750 · · ·] × x) + (2.35 · · ·1038 × [− 1,1])
which takes rounding errors into account and allows some simplification even in the interval
domain so that we get |z| � 0.750 · · · instead of |z| � 1.25 · · ·.

256 Form Methods Syst Des (2009) 35: 229–264

Fig. 17 Linearization

Fig. 18 Example using domain reduction

A key point in our method is the eagerness to abstract away rounding errors as soon as
possible. This is unlike methods such as [35] which accumulate symbolically the effects of
local rounding errors over the whole program. That method provides more information (e.g.,
the drift between a real and a floating-point computation across complex loops) but has dif-
ficulties scaling up due to the complex symbolic expressions involved [36]. The abstractions
used in ASTRÉE scale up to large programs by keeping only the information relevant to the
proof of absence of run-time errors.

7 Approximate reduction

Finding a single appropriate abstraction for a family of complex programs is an insurmount-
able intellectual task. The approach chosen in ASTRÉE is to use dozens of abstract domains
which are relatively simple when taken separately but perfectly complement each other and
which can be combined to achieve precision.

7.1 Reduced product

The reduced product of abstract domains [16, Sect. 10.1] is such a combination of abstrac-
tions. It is the most precise abstraction of the conjunction of the concrete properties ex-
pressed by each abstract domain which can be expressed using only these abstract domains.
An example is displayed in Fig. 18. The interval analysis [14] determines that X ∈ [129,132]
and the congruence analysis [38] that X= 0 mod 4 on loop exit. The reduction between these
two abstract domains yields X= 132.

The reduced cardinal product is a semantic notion, the definition of which refers to the
concrete semantics. It can be approximated by taking the iterated fixpoint of the composition
of lower closure operators performing the reduction between pairs of abstract domains [12,
39]. However, the iteration cost is high and the convergence is not guaranteed. It follows that

Form Methods Syst Des (2009) 35: 229–264 257

it is not effectively computable for non-trivial programs and therefore must be approximated
by enforcing the convergence by a narrowing [12].

We discuss the weaker but efficient approximate reduction adopted in ASTRÉE [25]. The
static analyzer is extensible in that it is easy to add new abstract domains because all abstract
domains share a common interface and a common reduction method.

7.2 Interactions between abstract domains

Abstract domains are implemented as independent modules that share a common interface.
Any such module implements the usual predicate transformers (such as abstract assign-
ments, abstract guards, control-flow joins) and extrapolation primitives (widening opera-
tors). Moreover, in order to enable the collaboration between domains, each abstract domain
contains some optional primitives that enable the expression of properties about abstract pre-
conditions and abstract post-conditions in a common format that can be understood by all
other domains. For instance, the symbolic abstract domain provides the capability to lin-
earize expressions (e.g. see Sect. 6.5), that is to replace an arbitrary expression with a linear
expression with interval coefficients; the linearization requires bounds on the variables that
occur in the expression (in order to take into account rounding errors and to replace some
variables with their range in case of non-linearity). Another example is the symbolic con-
stant domain (e.g. see Sect. 6.4) that provides the capability to substitute variables with the
expression they have been assigned to last, in order to enable further simplification.

Abstract domains have two basic ways to interact with each others. Either a given abstract
domain decides to propagate some properties to other domains (this is the case for instance
when the filter domain [28] interprets the iteration of a filter, since it knows that the interval
it has found is more accurate than the one that can be found by the other domains); or a
given domain needs a particular kind of properties in order to make a precise computation,
in which case the domain requests the other domains for such a property (this is the case
when the filter domain detects a filter initialization and it requests information about the
ranges of initial values of the filter). This two-way mechanism is detailed in [25].

This scheme of interactions between abstract domains has been chosen in order to avoid
a priori limitations (such as deciding that relational domains always access already lin-
earized expressions, which might no longer be true for future domains). Indeed, each domain
has access to a hierarchy of interpretations for expressions. Each interpretation is sound and
the algorithms of the transformers use the more adequate interpretation according to the
abstract domain.

The resulting architecture [25] is highly extensible. It is very easy to add a new domain.
We can also easily add a new capability for abstract domains: we only have to modify the im-
plementation of abstract domains that may use this capability. Usually, we only modify few
domains when we add a new capability. Moreover, in order to avoid recomputing the same
information requested by various domains (such as the linearization of a given expression),
we use information caches. This ensures the efficiency of the approach.

7.3 Interactions of reduction with widening

As explained in [25], in ASTRÉE we use reductions after widening steps in order to limit the
loss of information. Namely, let us denote by � the widening operator, by ρ the reduction
operator, and by F� the abstract transformer for a loop iteration. In ASTRÉE, we compute
the sequence X0 = ⊥ and Xn+1 = ρ(Xn�[ρ ◦ F�](Xn)). Alternative methods exist, for in-
stance, we can delay the application of the reduction operator until the first time the result

258 Form Methods Syst Des (2009) 35: 229–264

of the widening is used as a precondition. Namely, we would obtain the following sequence:
Y0 = ⊥ and Yn+1 = Yn�[ρ ◦ F� ◦ ρ](Yn). Due to the non-monotonicity of the widening op-
erator (there usually exists a, b, c such that a � b and a�c � b�c), the accuracy of the two
strategies cannot be universally compared.

We have chosen to use reductions after widening because, in general, some precision
lost by widening in one abstract domain can be recovered by reduction with another ab-
stract domain. However, it raises other issues. It is well-known that mixing widenings and
reductions can prevent the convergence of the iteration sequence in some cases (e.g. see
[50, Example 3.7.3, p. 99]). Intuitively, this is because the reduction and widening oper-
ators have contradicting purposes: the widening operator builds an induction that can be
destroyed by the reduction operator. For that reason, we require extra properties [25] about
our abstract domains, the reduction operator that is used after widening, and the widening
operator. Namely, we require that (1) each abstract domain is a finite Cartesian product of
components that are totally ordered sets (for instance, an interval for a given program vari-
able is seen as a pair of two bounds, an octagon is seen as a family of bounds, etc.), (2) the
widening operator is defined component-wise from widening operators over the components
(e.g. for intervals, independent widening on each bound), and that (3) the graph of reduction
between components is acyclic (where a → b is an edge in the reduction graph whenever
the outcome of the reduction on component b depends on the value of component a). This
way, we avoid cyclic reductions and ensure that abstract constraints stabilize themselves
progressively.

8 Refinement

Because the cost/precision trade-off for a family of very large programs can only be adjusted
experimentally, easy refinement capability is a key to ultimately guarantee precision and
scalability.

8.1 Shortcomings of abstraction refinement

One technique for tuning the precision/cost ratio of an abstraction is to start from a rough
one and then refine it automatically until a specification can be proved. The refinement can
be driven by the concrete collecting semantics using e.g. counter-example based abstrac-
tions [7] or fixpoint refinement [24] following from the notion of completion in abstract
interpretation [16, 34]. The refinement can also be guided by the disjunctive completion
[16, 31, 33] of the current abstraction.

Software verification by abstraction completion/refinement is not used in ASTRÉE be-
cause it faces serious problems:

• completion involves computations in the infinite domain of the concrete semantics (with
undecidable implication) so refinement algorithms assuming a finite concrete domain
[7, 24] are inapplicable;

• completion is an infinite iterative process (in general not convergent) which does not
provide an easy way to pass to the limit;

• completion relies on sets of states or traces representations of abstract properties hence
does not provide an effective computer representation of refined abstract properties;

• completion does not provide effective algorithmic implementations of the abstract domain
transformers (but ineffective sets of states or traces transformers).

Form Methods Syst Des (2009) 35: 229–264 259

The alternative solution used in ASTRÉE to control the cost/precision ratio is:

• to use very precise and potentially costly abstract domains which expressiveness can be
bridled or relaxed as necessary (by parameterization, widening tuning, and/or analysis
directives);

• and, when necessary, to introduce new abstract domains (with reduction with the current
abstraction).

8.2 Refinement by parameterization of abstract domains

ASTRÉE has very expressive relational abstract domains that may be necessary to express the
complex properties that are required to make the correctness proof. Using the full expressive
power of these complex abstract domains may not scale up. That is why the expressive power
of these domains is deliberately constrained.

An example is the packing described in Sect. 4.3. The global packing strategy may be
parameterized using command-line options, and influenced locally by analysis directives
inserted by the end-user or automatically thanks to an automatic heuristic.

Examples of command-line options that can be used to restraint/refine the expressive
power of abstract domains are:

• --smash-threshold n (n = 400 by default) fixes the array size limit above which
arrays are abstracted in a field-insensitive way.

• The automatic packing of octagons can be controlled in several ways. For example
--fewer-oct prevents the creation of packs at the top-level block of functions (packs
are only created for inner blocks) while --max-array-size-in-octagons n in-
dicates that elements of arrays abstracted in a field-sensitive way and of size greater than
n should not be included in octagon packs.

8.3 Refinement by widening tuning

Another way of controlling the precision/coarseness of the analysis is to control widen-
ing. Beyond the choice of thresholds in widenings (see Sect. 3.3), it is possible to con-
trol their frequency (see Sect. 5.2). For example, --forced-union-iterations-
beginning n delays the use of widening for the first n iterations where it is replaced
by unions (which is less precise than unrolling, more precise than widening, but does not
enforce termination). Lastly, the option --fewer-widening-steps n will use n times
fewer widenings between the first loop unrolling and the iterations where widenings are al-
ways enforced. It is also possible to select the widening frequency on a per abstract domain
basis.

8.4 Refinement by analysis directives

Analysis directives inserted manually or automatically in the program can locally refine an
abstraction as shown e.g. in Sects. 3.1 and 4.3.

Packing can be specified by insertion of analysis directives in the source. For example,
the analysis of Fig. 19 fails because no relation is established between b and x. Adding a
packing directive for the boolean decision tree abstract domain as follows:

260 Form Methods Syst Des (2009) 35: 229–264

Fig. 19 Missing boolean pack

solves the precision problem:

ASTRÉE includes fast pre-analyses in order to automatically insert packing directives in the
source (the automatic packing strategy could be easily extended to include the above case,
if needed) as well as trace partitioning directives (Sect. 3.1).

8.5 Refinement by local improvements to the analyzer

Many transfer functions in ASTRÉE do not correspond to the best (i.e. sound and most
precise) transformer either because such transformers do not exist (the abstraction is not a
Galois connection), for efficiency of the functions, or to minimize the coding effort. This
may be at the origin of false alarms where the precondition is precise enough but not the
post-condition. In that case the abstract transformer may have to be manually refined in the
abstract domain.

A similar situation has been observed for reduction.
Firstly, because the verification is done with the interval abstract domain, some infor-

mation present in another abstract domain may not be reflected in the intervals, making
the verification impossible in the abstract while it is feasible in the concrete. In this case,
the interval must be reduced by this information present in the other abstract domain by
refinement of the approximate reduction.

Secondly, an abstract transformer for an abstract domain may be imprecise although the
use of information in another abstract domain could drastically improve precision. In this
case, the abstract transformer may ask the other abstract domains for the required informa-
tion using the interaction mechanism between abstract domains described in Sect. 7.2.

8.6 Refinement by addition of new abstract domains

In case no invariant sufficient to prove the specification can be expressed in the currently
available combination of abstractions in their most refined form, false alarms cannot be

Form Methods Syst Des (2009) 35: 229–264 261

avoided by any of the methods discussed previously. There is then no other solution than
refining the abstraction by adding a new abstract domain. This cannot be done by the end-
user but by the designers of the analysis or specialists with a deep understanding of its
structure. For such specialists, this involves discovering the appropriate abstraction, devis-
ing global parameterization and local directives able to adjust its cost/precision trade-off,
finding a representation of the abstract properties, designing abstract property transformers
for all language primitives, widening operators, and reductions with other abstractions. Ex-
perimentation usually indicates how the parameters should be adjusted and how the insertion
of local directives can be automated. Throughout the life of ASTRÉE, the situation has been
encountered several times, which lead to the design of several new abstract domains, such as
ellipsoids to handle digital filtering [30], exponentials for accumulation of small rounding
errors [29], etc.

8.7 Choice of abstractions for cost/precision tuning

For a given family of programs, some domains must be enabled while some other domains
that are not useful for this family should be disabled to save time and space by avoiding
useless computation.

However, since the domains are interconnected, it might be difficult for the end-user
to guess which domains can be safely disabled. For instance, a given domain may require
a capability (such as the linearization) that is only provided by another domain. To solve
this issue, we use a dependency graph between abstract domains, so that when an abstract
domain is used, all the domains that are necessary to make the computation in this abstract
domain are automatically included.

9 Conclusion

A frequent criticism of abstract interpretation-based static analysis is that “Due to the unde-
cidability of static analysis problems, devising a procedure that does not produce spurious
warnings and does not miss bugs is not possible” [27]. This was indeed the case for the first
generation of industrial analyzers [45, 57] which could produce thousands of false alarms on
programs of few hundred thousands lines. This difficulty has been surmounted by domain-
specific static analyzers such as ASTRÉE [26, 60, 61] which produce few alarms on embed-
ded synchronous control-command programs and can be easily refined to reach the no false
alarm objective. This approach is sound, precise, and scales up, unlike shallow bug detec-
tion methods [8] ultimately not suitable for safety and mission critical applications where the
quest for total correctness has definitely intensified [63]. In particular, and contrary to tests
where it is not obvious to decide when to stop testing, sound static analyses guarantee that
all bugs in a given well-specified category have been extirpated. As a consequence, software
engineering methodology should evolve in the near future from the present-day process-
based methodology controlling the design, coding, and testing processes to a product-based
methodology incorporating a systematic control of the final software product by static ana-
lyzers.

The theory of abstract interpretation offers several keys for the design of abstract sound,
precise, and scalable static analyzers. The key to scalability is, on the one hand, to use very
effective abstract domains with efficient representations of abstract properties and quasi-
linear cost abstract transformers and, on the other hand, an iterator acting locally and acceler-
ating the convergence. The key to extreme precision is to design the abstractions and widen-
ings for the considered domains of application together with a flexible extension mechanism

262 Form Methods Syst Des (2009) 35: 229–264

to easily add new abstractions and their reductions with previous ones. The key to the suc-
cessful design of a complex static analyzer is to exploit the modularity. Finally, the success
comes from capable and determined end-users [26, 60, 61] able to understand the potential
of software verification by abstract interpretation.

References

1. Bagnara R, Hill PM, Mazzi E, Zaffanella E (2005) Widening operators for weakly-relational numeric
abstractions. In: Hankin C, Siveroni I (eds) Proc 12th int symp SAS ’05, London, 7–9 Sep 2005. LNCS,
vol 3672. Springer, Berlin, pp 3–18

2. Blanchet B, Cousot P, Cousot R, Feret J, Mauborgne L, Miné A, Monniaux D, Rival X (2002) Design
and implementation of a special-purpose static program analyzer for safety-critical real-time embedded
software. In: Mogensen T, Schmidt DA, Sudborough IH (eds) The essence of computation: complexity,
analysis, transformation. Essays dedicated to Neil D Jones. LNCS, vol 2566. Springer, Berlin, pp 85–108

3. Blanchet B, Cousot P, Cousot R, Feret J, Mauborgne L, Miné A, Monniaux D, Rival X (2003) A static
analyzer for large safety-critical software. In: Proc ACM SIGPLAN ’2003 conf PLDI, San Diego, 7–14
June 2003. ACM, New York, pp 196–207

4. Bourdoncle F (1993) Efficient chaotic iteration strategies with widenings. In: Bjørner D, Broy M,
Pottosin IV (eds) Proc FMPA, Akademgorodok, Novosibirsk, 28 June–2 July 1993. LNCS, vol 735.
Springer, Berlin, pp 128–141

5. Bryant RE (1986) Graph-based algorithms for boolean function manipulation. IEEE Trans Comput C
35(8)

6. Burstall RM (1974) Program proving as hand simulation with a little induction. In: Rosenfeld JL (ed)
Information Processing 74, Stockholm, Aug 5–10 1974. Proc IFIP congress, vol 74. North-Holland,
Amsterdam, pp 308–312

7. Clarke EM, Grumberg O, Jha S, Lu Y, Veith H (2000) Counterexample-guided abstraction refinement.
In: Emerson EA, Sistla AP (eds) Proc 12th int conf CAV ’00, Chicago, 15–19 Jul 2000. LNCS, vol 1855.
Springer, Berlin, pp 154–169

8. Clarke EM, Kroening D, Lerda F (2004) A tool for checking ANSI-C programs. In: Jensen K, Podelski
A (eds) Proc 10th int conf TACAS ’2004, Barcelona, 29 Mar–2 Apr 2004. LNCS, vol 2988. Springer,
Berlin, pp 168–176

9. Colby C, Lee P (1996) Trace-based program analysis. In: 23rd POPL, St Petersburg Beach, 1996. ACM,
New York, pp 195–207

10. Cousot P (1978) Méthodes itératives de construction et d’approximation de points fixes d’opérateurs
monotones sur un treillis, analyse sémantique de programmes. Thèse d’État ès sciences mathématiques,
Université scientifique et médicale de Grenoble, Grenoble, 21 Mar 1978

11. Cousot P (1981) Semantic foundations of program analysis. In: Muchnick SS, Jones ND (eds) Program
flow analysis: theory and applications. Prentice Hall, New York, pp 303–342. Chap 10

12. Cousot P (1999) The calculational design of a generic abstract interpreter. In: Broy M, Steinbrüggen R
(eds) Calculational system design. NATO science series, series F: computer and systems sciences, vol
173. IOS Press, Amsterdam, pp 421–505

13. Cousot P (2000) Partial completeness of abstract fixpoint checking. In: Choueiry BY, Walsh T (eds) Proc
4th int symp SARA ’2000, Horseshoe Bay, 26–29 Jul 2000. LNAI, vol 1864. Springer, Berlin, pp 1–25

14. Cousot P, Cousot R (1976) Static determination of dynamic properties of programs. In: Proc 2nd int
symp on programming. Dunod, Paris, pp 106–130

15. Cousot P, Cousot R (1977) Abstract interpretation: a unified lattice model for static analysis of programs
by construction or approximation of fixpoints. In: 4th POPL, Los Angeles, 1977. ACM, New York,
pp 238–252

16. Cousot P, Cousot R (1979) Systematic design of program analysis frameworks. In: 6th POPL, San An-
tonio, 1979. ACM, New York, pp 269–282

17. Cousot P, Cousot R (1982) Induction principles for proving invariance properties of programs. In: Néel
D (ed) Tools & notions for program construction. Cambridge University Press, Cambridge, pp 43–119

18. Cousot P, Cousot R (1992) Comparing the Galois connection and widening/narrowing approaches to
abstract interpretation. In: Bruynooghe M, Wirsing M (eds) Proc 4th int symp on PLILP ’92, Leuven,
26–28 Aug 1992. LNCS, vol 631. Springer, Berlin, pp 269–295

19. Cousot P, Cousot R (1993) “À la Burstall” intermittent assertions induction principles for proving in-
evitability properties of programs. Theor Comput Sci 120:123–155

Form Methods Syst Des (2009) 35: 229–264 263

20. Cousot P, Cousot R (2002) Modular static program analysis. In: Horspool RN (ed) Proc 11th int conf CC
’2002, Grenoble, 6–14 Apr 2002. LNCS, vol 2304. Springer, Berlin, pp 159–178

21. Cousot P, Halbwachs N (1978) Automatic discovery of linear restraints among variables of a program.
In: 5th POPL, Tucson, 1978. ACM, New York, pp 84–97

22. Cousot P, Cousot R, Feret J, Mauborgne L, Miné A, Monniaux D, Rival X (2005) The ASTRÉE analyser.
In: Sagiv M (ed) Proc 14th ESOP ’2005, Edinburg, 2–10 Apr 2005. LNCS, vol 3444. Springer, Berlin,
pp 21–30

23. Cousot P, Cousot R, Feret J, Mauborgne L, Miné A, Monniaux D, Rival X (2007) Varieties of static
analyzers: A comparison with ASTRÉE. In: Hinchey M, Jifeng H, Sanders J (eds) Proc 1st TASE ’07,
Shanghai, 6–8 June 2007. IEEE Comput Soc, Los Alamitos, pp 3–17

24. Cousot P, Ganty P, Raskin J-F (2007) Fixpoint-guided abstraction refinements. In: Filé G, Riis-Nielson
H (eds) Proc 14th int symp SAS ’07, Kongens Lyngby, 22–24 Aug 2007. LNCS, vol 4634. Springer,
Berlin, pp 333–348

25. Cousot P, Cousot R, Feret J, Mauborgne L, Miné A, Monniaux D, Rival X (2008) Combination of
abstractions in the ASTRÉE static analyzer. In: Okada M, Satoh I (eds) 11th ASIAN 06, Tokyo, 6–8 Dec
2006. LNCS, vol 4435. Springer, Berlin, pp 272–300

26. Delmas D, Souyris J (2007) ASTRÉE: from research to industry. In: Filé G, Riis-Nielson H (eds) Proc
14th int symp SAS ’07, Kongens Lyngby, 22–24 Aug 2007. LNCS, vol 4634. Springer, Berlin, pp 437–
451

27. D’Silva V, Kroening D, Weissenbacher G (2008) A survey of automated techniques for formal software
verification. IEEE Trans Comput-Aided Des Integr Circuits 27(7):1165–1178

28. Feret J (2004) Static analysis of digital filters. In: Schmidt D (ed) Proc 30th ESOP ’2004, Barcelona,
Mar 27–Apr 4, 2004. LNCS, vol 2986. Springer, Berlin, pp 33–48

29. Feret J (2005) The arithmetic-geometric progression abstract domain. In: Cousot R (ed) Proc 6th int conf
VMCAI 2005, Paris, 17–19 Jan 2005. LNCS, vol 3385. Springer, Berlin, pp 42–58

30. Feret J (2005) Numerical abstract domains for digital filters. In: 1st int work on numerical & symbolic
abstract domains, NSAD ’05, Maison Des Polytechniciens, Paris, 21 Jan 2005

31. Filé G, Ranzato F (1994) Improving abstract interpretations by systematic lifting to the powerset. In:
Bruynooghe M (ed) Proc int symp ILPS ’1994, Ithaca, 13–17 Nov 1994. MIT Press, Cambridge,
pp 655–669

32. Floyd RW (1967) Assigning meaning to programs. In: Schwartz JT (ed) Proc symposium in applied
mathematics, vol 19. AMS, Providence, pp 19–32

33. Giacobazzi R, Ranzato F (1998) Optimal domains for disjunctive abstract interpretation. Sci Comput
Program 32(1–3):177–210

34. Giacobazzi R, Ranzato F, Scozzari F (2000) Making abstract interpretations complete. J ACM
47(2):361–416

35. Goubault É (2001) Static analyses of floating-point operations. In: Cousot P (ed) Proc 8th int symp SAS
’01, Paris, Jul 2001. LNCS, vol 2126. Springer, Berlin, pp 234–259

36. Goubault É, Martel M, Putot S (2002) Asserting the precision of floating-point computations: a simple
abstract interpreter. In: Le Métayer D (ed) Proc 11th ESOP ’2002, Grenoble, 8–12 Apr 2002. LNCS,
vol 2305. Springer, Berlin, pp 209–212

37. Graf S, Saïdi H (1996) Verifying invariants using theorem proving. In: Alur R, Henzinger TA (eds)
Proc 8th int conf CAV ’97, New Brunswick, Jul 31–Aug 3, 1996. LNCS, vol 1102. Springer, Berlin,
pp 196–207

38. Granger P (1989) Static analysis of arithmetical congruences. Int J Comput Math 30(3 & 4):165–190
39. Granger P (1991) Improving the results of static analyses of programs by local decreasing iterations. Res

rep. LIX/RR/91/08, Laboratoire d’Informatique, École polytechnique, Palaiseau, Dec 1991
40. Gulavani BS, Chakraborty S, Nori AV, Rajamani SK (2008) Automatically refining abstract interpreta-

tions. In: Ramakrishnan CR, Rehof J (eds) Proc 14th int conf TACAS ’2000, Budapest, 29 Mar–6 Apr
2008. LNCS, vol 4963. Springer, Berlin, pp 443–458

41. Handjieva M, Tzolovski S (1998) Refining static analyses by trace-based partitioning using control flow.
In: Levi G (ed) Proc 5th int symp SAS ’98, Pisa, 14–16 Sep 1998. LNCS, vol 1503. Springer, Berlin,
pp 200–214

42. Hecht MS (1977) Flow analysis of computer programs. North-Holland/Elsevier, Amsterdam
43. Hoare CAR (1969) An axiomatic basis for computer programming. Commun ACM 12(10):576–580
44. Jeannet B, Miné A (2007) The Apron numerical abstract domain library. http://apron.cri.ensmp.fr/

library/
45. Lacan P, Monfort JN, Ribal LVQ, Deutsch A, Gonthier G (1998) The software reliability verification

process: The ARIANE 5 example. In Proceedings DASIA 98—DAta Systems In Aerospace, Athens.
ESA Publications, SP-422, 25–28 May 1998

http://apron.cri.ensmp.fr/library/
http://apron.cri.ensmp.fr/library/

264 Form Methods Syst Des (2009) 35: 229–264

46. Leroy X, Doligez D, Garrigue J, Rémy D, Vouillon J (2007) The Objective Caml system, documentation
and user’s manual (release 3.10). Technical report, INRIA, Rocquencourt, France, 19 May 2007. http://
caml.inria.fr/pub/docs/manual-ocaml/

47. Mauborgne L (2004) ASTRÉE: Verification of absence of run-time error. In: Jacquart P (ed) Building the
information society. Kluwer Academic, Norwell, pp 385–392. Chap 4

48. Mauborgne L, Rival X (2005) Trace partitioning in abstract interpretation based static analyzer. In: Sagiv
M (ed) Proc 14th ESOP ’2005, Edinburg, Apr 2–10, 2005. LNCS, vol 3444. Springer, Berlin, pp 5–20

49. Miné A (2004) Relational abstract domains for the detection of floating-point run-time errors. In:
Schmidt D (ed) Proc 30th ESOP ’2004, Barcelona, Mar 27–Apr 4, 2004. LNCS, vol 2986. Springer,
Berlin, pp 3–17

50. Miné A (2004) Weakly relational numerical abstract domains. Thèse de doctorat en informatique, École
polytechnique, Palaiseau, 6 Dec 2004

51. Miné A (2006) Field-sensitive value analysis of embedded C programs with union types and pointer
arithmetics. In: Proc LCTES ’2006. ACM, New York, pp 54–63

52. Miné A (2006) The octagon abstract domain. High-Order Symb Comput 19:31–100
53. Miné A (2006) Symbolic methods to enhance the precision of numerical abstract domains. In: Emerson

EA, Namjoshi KS (eds) Proc 7th int conf VMCAI 2006, Charleston, 8–10 Jan 2006. LNCS, vol 3855.
Springer, Berlin, pp 348–363

54. Monniaux D (2005) The parallel implementation of the ASTRÉE static analyzer. In: Proc 3rd APLAS
’2005, Tsukuba, 3–5 Nov 2005. LNCS, vol 3780. Springer, Berlin, pp 86–96

55. Naur P (1966) Proofs of algorithms by general snapshots. BIT 6:310–316
56. Pioli A, Hind M (1999) Combining interprocedural pointer analysis and conditional constant propaga-

tion. Technical Report 99-103, IBM
57. Randimbivololona F, Souyris J, Deutsch A (2000) Improving avionics software verification cost-

effectiveness: Abstract interpretation based technology contribution. In: Proceedings DASIA 2000—
DAta Systems In Aerospace, Montreal. ESA Publications, 22–26 May 2000

58. Rival X, Mauborgne L (2007) The trace partitioning abstract domain. TOPLAS 29(5)
59. Sagiv M, Reps T, Wilhelm R (1999) Parametric shape analysis via 3-valued logic. In: 26th POPL, San

Antonio, 1999. ACM, New York, pp 105–118
60. Souyris J (2004) Industrial experience of abstract interpretation-based static analyzers. In: Jacquart P

(ed) Building the information society. Kluwer Academic, Norwell, pp 393–400. Chap 4
61. Souyris J, Delmas D (2007) Experimental assessment of ASTRÉE on safety-critical avionics software. In:

Saglietti F, Oster N (eds) Proc int conf on computer safety, reliability, and security (SAFECOMP 2007),
Nuremberg, 18–21 Sep 2007. LNCS, vol 4680. Springer, Berlin, pp 479–490

62. Su Z, Wagner D (2005) A class of polynomially solvable range constraints for interval analysis without
widenings. Theor Comput Sci 345(1):122–138

63. Traverse P, Lacaze I, Souyris J (2004) Airbus fly-by-wire—a total approach to dependability. In: Jacquart
P (ed) Building the information society. Kluwer Academic, Norwell, pp 191–212, Chap 3

http://caml.inria.fr/pub/docs/manual-ocaml/
http://caml.inria.fr/pub/docs/manual-ocaml/

	Why does Astrée scale up?
	Abstract
	Introduction
	Motivating example
	Objective of the paper

	Astrée
	Requirements
	Sound verification versus bug finding
	Implicit versus explicit specifications
	Precision versus incompleteness
	Scalability versus analysis in the small

	The structure of Astrée
	Engineering facts
	Iterator and abstract domains
	Interface

	Disjunctions
	Trace partitioning versus local invariance analysis
	Decision trees
	Widenings

	Locality versus uniformity
	Local versus global information
	Functional versus imperative data-structures
	Packed versus global relationality

	Abstract interpreter
	Fixpoint iterator
	Global versus separate analysis
	Control flow driven interpreter versus abstract equation solver

	Widening frequencies
	Stabilization
	Concurrent versus sequential analysis

	Abstract domains
	Memory abstraction
	Points-to analysis versus shape analysis
	Combined versus separate pointer and value analyses
	Field-sensitive versus field-insensitive analysis

	Domain of observable
	Specialized versus general inequality domains
	Symbolic constants versus domain completion
	Floating-point error abstraction versus accumulation

	Approximate reduction
	Reduced product
	Interactions between abstract domains
	Interactions of reduction with widening

	Refinement
	Shortcomings of abstraction refinement
	Refinement by parameterization of abstract domains
	Refinement by widening tuning
	Refinement by analysis directives
	Refinement by local improvements to the analyzer
	Refinement by addition of new abstract domains
	Choice of abstractions for cost/precision tuning

	Conclusion
	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 600
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c006500720020003700200061006e006400200038002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006f006e006c0069006e0065002e000d0028006300290020003200300030003800200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f006100640065006400200061007400200068007400740070003a002f002f00700072006f00640075006300740069006f006e002e0073007000720069006e006700650072002e0063006f006d000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c0020003600200061006e0064002000500069007400530074006f007000200053006500720076006500720020003300200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.276 841.890]
>> setpagedevice

