
The extended abstract of this work appears in A. Menezes, editor, Topics in Cryptology – CT-

RSA 2005, Volume 3376 of Lectures Notes in Computer Science, pages 191–208, San Francisco,
CA, USA, Feb. 14–18, 2005. Springer-Verlag, Berlin, Germany.

Simple Password-Based

Encrypted Key Exchange Protocols

Michel Abdalla

Departement d’Informatique

École Normale Supérieure

45 Rue d’Ulm

75230 Paris Cedex 05, France

Michel.Abdalla@ens.fr

http://www.michelabdalla.net

David Pointcheval

Departement d’Informatique

École Normale Supérieure

45 Rue d’Ulm

75230 Paris Cedex 05, France

David.Pointcheval@ens.fr

http://www.di.ens.fr/∼pointche

Abstract

Password-based encrypted key exchange are protocols that are designed to provide pair
of users communicating over an unreliable channel with a secure session key even when the
secret key or password shared between two users is drawn from a small set of values. In
this paper, we present two simple password-based encrypted key exchange protocols based
on that of Bellovin and Merritt. While one protocol is more suitable to scenarios in which
the password is shared across several servers, the other enjoys better security properties.
Both protocols are as efficient, if not better, as any of the existing encrypted key exchange
protocols in the literature, and yet they only require a single random oracle instance. The
proof of security for both protocols is in the random oracle model and based on hardness
of the computational Diffie-Hellman problem. However, some of the techniques that we use
are quite different from the usual ones and make use of new variants of the Diffie-Hellman
problem, which are of independent interest. We also provide concrete relations between the
new variants and the standard Diffie-Hellman problem.

Keywords: password, encrypted key exchange, Diffie-Hellman assumptions.

Contents

1 Introduction 1

2 Security model for password-based key exchange 4

3 Diffie-Hellman assumptions 5

3.1 Definitions . 5
3.2 Some relations . 8

4 SPAKE1: a simple non-concurrent password-based encrypted key exchange 9

4.1 Description . 9
4.2 Security . 9

5 SPAKE2: a simple concurrent password-based encrypted key exchange 14

5.1 Description . 14
5.2 Security . 15

A The splitting lemma 17

B Proof of lemmas 18

B.1 Proof of Lemma 3.4 . 18
B.2 Proof of Lemma 3.5 . 19
B.3 Proof of Lemma 3.6 . 19
B.4 Proof of Lemma 3.7 . 20

C Proof of Theorem 5.1 20

1 Introduction

Background. Keys exchange protocols are cryptographic primitives used to provide a pair of
users communicating over a public unreliable channel with a secure session key. In practice, one
can find several flavors of key exchange protocols, each with its own benefits and drawbacks. An
example of a popular one is the SIGMA protocol [18] used as the basis for the signature-based
modes of the Internet Key Exchange (IKE) protocol. The setting in which we are interested
in this paper is the 2-party symmetric one, in which every pair of users share a secret key. In
particular, we consider the scenario in which the secret key is a password.

Password-based key exchange. Password-based key exchange protocols assume a more
realistic scenario in which secret keys are not uniformly distributed over a large space, but
rather chosen from a small set of possible values (a four-digit pin, for example). They also seem
more convenient since human-memorable passwords are simpler to use than, for example, having
additional cryptographic devices capable of storing high-entropy secret keys. The vast majority
of protocols found in practice do not account, however, for such scenario and are often subject to
so-called dictionary attacks. Dictionary attacks are attacks in which an adversary tries to break
the security of a scheme by a brute-force method, in which it tries all possible combinations of
secret keys in a given small set of values (i.e., the dictionary). Even though these attacks are
not very effective in the case of high-entropy keys, they can be very damaging when the secret
key is a password since the attacker has a non-negligible chance of winning.

To address this problem, several protocols have been designed to be secure even when the
secret key is a password. The goal of these protocols is to restrict the adversary’s success to
on-line guessing attacks only. In these attacks, the adversary must be present and interact with
the system in order to be able to verify whether its guess is correct. The security in these
systems usually relies on a policy of invalidating or blocking the use of a password if a certain
number of failed attempts has occurred.

Encrypted key exchange. The seminal work in the area of password-based key exchange is
the encrypted key exchange (EKE) protocol of Bellovin and Merritt [7]. In their protocol, two
users execute an encrypted version of the Diffie-Hellman key exchange protocol, in which each
flow is encrypted using the password shared between these two users as the symmetric key. Due
to the simplicity of their protocol, several other protocols were proposed in the literature based
on it [6, 9, 10, 17, 19], each with its own instantiation of the encryption function. Our protocol
is also a variation of their EKE protocol.

Minimizing the use of random oracles. One of our main goals is to provide schemes that
are simple and efficient, but relying as little as possible on random oracles. Ideally, one would
want to completely eliminate the need of random oracles as done in the KOY protocol [16].
However, such protocols tend to be less efficient than those based on the EKE protocol of
Bellovin and Merritt [7].

To understand the difficulties involved in the design of protocols with few random oracles,
let us consider the extreme case of the protocol in Figure 1 in which no random oracles are
used. Despite being secure against passive attacks, this protocol can be easily broken by an
active adversary performing a man-in-the-middle attack. Such an adversary can easily create
two different sessions whose session keys are related in a predictable manner. For instance, an
adversary can do so by multiplying X? by gr for a known value r. The relation between the
underlying session keys SKA and SKB is SKB = SKA · Y

r. Hence, if the adversary learns the
value of these two keys, it can perform an off-line dictionary attack using Y = (SK B/SKA)

−r

1

Public information: G, g, p,M,N
Secret information: pw ∈ Zp

User A User B

x
R

← Zp ; X ← gx y
R

← Zp ; Y ← gy

X? ← X ·Mpw Y ? ← Y ·Npw

X?
−→
Y ?
←−

SKA ← (Y ?/Npw)x SKB ← (X?/Mpw)y

Figure 1: An insecure password-based key exchange protocol.

and Y ? to recover the password. Moreover, since the adversary can use arbitrary values for r,
we cannot detect such attacks.

Protecting against related key attacks. In order to fix the problem in the protocol
presented in Figure 1 and prevent the adversary from altering the messages, one may be tempted
to use message authentication code (MAC) algorithms for key derivation (e.g., by making the
session key equal to MACSKA

(A,B,X?, Y ?, 0)) or key confirmation (e.g., by computing tags
via MACSKA

(A,B,X?, Y ?, 1)). In fact, this is the approach used by Kobara and Imai in the
construction of their password-authenticated key exchange protocol [17]. Unfortunately, this
approach does not quite work.

Let us now explain the main problems with using MACs. First, the standard notion of
security for MACs does not imply security against related key attacks. Hence, new and stronger
security notions are required. Second, such new security notions may have to consider adversaries
which are given access to a related-key tag-generation oracle. These are oracles that are capable
of generating tags on messages under related keys, where the related key function is also passed
as a parameter. This is actually the approach used in [17]. However, it is not clear whether
such MACs can even be built. Such security notion, for instance, may completely rule out the
possibility of using block-cipher-based MAC algorithms since similar security requirements in
the context of block ciphers are known to be impossible to achieve [2]. Perhaps, hash-based MAC
algorithms may be able to meet these goals, but that does not seem likely without resorting to
random oracles, which would defeat the purpose of using MACs in the first place.

Simple constructions. In this paper, we deal with the problem of related-key attacks by
using a single instance of a random oracle in the key derivation process. We present two simple
constructions, whose only difference to one another is the presence of the password in the key
derivation function. The presence of the password in the key derivation function is an important
aspect, for example, when one wants to consider extensions to the distributed case, where each
server only holds a share of password (see [11]).

Surprisingly, the techniques that we use to prove the security of these two constructions
are quite different and so are the exact security results. While we are able to provide a tight
security reduction for the scheme which includes the password in the key derivation phase, the
same cannot be said about the other scheme, for which we can only prove its security in the
non-concurrent scenario. However, the techniques that we use to prove the security of the latter
are quite interesting and make use of new variants of the Diffie-Hellman problem.

New Diffie-Hellman assumptions. The new variants of the Diffie-Hellman problem that we

2

introduce are called Chosen-Basis Diffie-Hellman assumptions due to the adversary’s capability
to choose some of the bases used in the definition of the problem. These assumptions are
particular interesting when considered in the context of password-based protocols and we do
expect to find applications for them other than the ones in this paper. Despite being apparently
stronger than the standard Diffie-Hellman assumptions, we prove that this is not the case by
providing concrete reductions to the computational Diffie-Hellman problem.

Contributions. In this paper, we address the issue of constructing efficient password-based
encrypted key exchange protocols. Our main contributions are as follows.

Simple and efficient constructions in random oracle model. In this paper, we pro-
pose two new password-based encrypted key exchange protocols, called SPAKE1 and SPAKE2,
both of which can be proven secure based on the hardness of the computational Diffie-Hellman
problem in the random oracle model. Both protocols are comparable in efficiency to any of the
existing EKE protocols, if not more efficient, and they only require one random oracle instance.
This is contrast with existing EKE constructions, which require either a larger number of random
oracle instances or additional ideal models, such as the ideal cipher model. Moreover, neither
SPAKE1 nor SPAKE2 requires full domain hash functions or ideal ciphers onto a group, which
are hard to implement efficiently. While one protocol is more suitable to scenarios in which the
password is shared across several servers, the other enjoys better security properties.

New Diffie-Hellman assumptions. In proving the security of our protocols, we make use
of new variations of the computational Diffie-Hellman assumption, called chosen-basis computa-
tional Diffie-Hellman assumptions. These new assumptions are of independent interest and we
do expect to find new applications for it other than the ones in this paper. Reductions between
the problems underlying the new assumptions and the standard computational Diffie-Hellman
assumption are also provided.

Related work. Password-based authenticated key exchange has been extensively studied in the
last few years [3, 8, 9, 10, 12, 13, 14, 16, 20, 21, 11] with the majority of them being submitted
for inclusion in the IEEE P1363.2 standard [15], a standard dealing with the issues of password-
authenticated key agreement (e.g. EKE) and password-authenticated key retrieval. With the
exception of [12, 13, 16], all of these protocols are only proven secure in the random oracle
model.

Perhaps, the related work that is closest to ours is the pretty-simple password-authenticated
key exchange protocol of Kobara and Imai [17], whose proof of security is claimed to be in the
“standard” model. Their protocol consists of EKE phase that is similar to the one used in our
protocols followed by an authentication phase based on message authentication code (MAC)
algorithms. However, the security model which they use is different from the standard one and
hence their result only applies to their specific model. Moreover, as we pointed out above, their
protocol needs a stronger security notion for the MAC algorithm and it is not clear whether such
MACs can be built without resorting to random oracles, which would contradict their claims.

Organization. In Section 2, we recall the security model for password-based authenticated
key exchange. Next, in Section 3, we present our new variants of the Diffie-Hellman problem
and their relations to the computational Diffie-Hellman problem. Section 4 then introduces the
first of our password-based encrypted key exchange protocols, called SPAKE1, along with its
proof of security. SPAKE1 is in fact based on one of the variants of the Diffie-Hellman problem
introduced in Section 3. Our second protocol, SPAKE2, is then presented in Section 4 along
with its security claims. In the appendix, we present proofs for several lemmas in Section 3 as
well as the proof of security for SPAKE2.

3

2 Security model for password-based key exchange

We now recall the security model for password-based authenticated key exchange of Bellare et
al. [3].

Protocol participants. Each participant in the password-based key exchange is either a
client C ∈ C or a server S ∈ S. The set of all users or participants U is the union C ∪ S.

Long-lived keys. Each client C ∈ C holds a password pwC . Each server S ∈ S holds a vector
pwS = 〈pwS [C]〉C∈C with an entry for each client, where pwS [C] is the transformed-password,
as defined in [3]. In this paper, we only consider the symmetric model, in which pwS [C] = pwC ,
but they may be different in general. pwC and pwS are also called the long-lived keys of client
C and server S.

Protocol execution. The interaction between an adversary A and the protocol participants
occurs only via oracle queries, which model the adversary capabilities in a real attack. During
the execution, the adversary may create several instances of a participant. While in a concurrent
model, several instances may be active at any given time, only one active user instance is allowed
for a given intended partner and password in a non-concurrent model. Let U i denote the instance
i of a participant U and let b be a bit chosen uniformly at random. The query types available
to the adversary are as follows:

• Execute(Ci, Sj): This query models passive attacks in which the attacker eavesdrops on
honest executions between a client instance C i and a server instance Sj . The output of
this query consists of the messages that were exchanged during the honest execution of
the protocol.

• Send(U i,m): This query models an active attack, in which the adversary may tamper with
the message being sent over the public channel. The output of this query is the message
that the participant instance U i would generate upon receipt of message m.

• Reveal(U i): This query models the misuse of session keys by a user. If a session key is not
defined for instance U i or if a Test query was asked to either U i or to its partner, then
return ⊥. Otherwise, return the session key held by the instance U i.

• Test(U i): This query tries to capture the adversary’s ability to tell apart a real session key
from a random one. If no session key for instance U i is defined, then return the undefined
symbol ⊥. Otherwise, return the session key for instance U i if b = 1 or a random key of
the same size if b = 0.

Notation. Following [4, 5], an instance U i is said to be opened if a query Reveal(U i) has
been made by the adversary. We say an instance U i is unopened if it is not opened. We say an
instance U i has accepted if it goes into an accept mode after receiving the last expected protocol
message.

Partnering. The definition of partnering uses the notion of session identifications (sid). More
specifically, two instances U i

1 and U j
2 are said to be partners if the following conditions are met:

(1) Both U i
1 and U j

2 accept; (2) Both U i
1 and U j

2 share the same session identifications; (3) The

partner identification for U i
1 is U j

2 and vice-versa; and (4) No instance other than U i
1 and U j

2

accepts with a partner identification equal to U i
1 or U j

2 . In practice, the sid could be taken to
be the partial transcript of the conversation between the client and the server instances before
the acceptance.

4

Freshness. The notion of freshness is defined to avoid cases in which adversary can trivially
break the security of the scheme. The goal is to only allow the adversary to ask Test queries to
fresh oracle instances. More specifically, we say an instance U i is fresh if it has accepted and if
both U i and its partner are unopened.

Semantic security. Consider an execution of the key exchange protocol P by an adversary
A, in which the latter is given access to the Reveal, Execute, Send, and Test oracles and asks
a single Test query to a fresh instance, and outputs a guess bit b′. Such an adversary is said to
win the experiment defining the semantic security if b′ = b, where b is the hidden bit used by
the Test oracle.

Let Succ denote the event in which the adversary is successful. The ake-advantage of an
adversary A in violating the semantic security of the protocol P and the advantage function
of the protocol P , when passwords are drawn from a dictionary D, are respectively

AdvakeP,D(A) = 2 · Pr[Succ]− 1 and AdvakeP,D(t, R) = max
A
{AdvakeP,D(A) } ,

where maximum is over allA with time-complexity at most t and using resources at most R (such
as the number of queries to its oracles). The definition of time-complexity that we use henceforth
is the usual one, which includes the maximum of all execution times in the experiments defining
the security plus the code size [1].

3 Diffie-Hellman assumptions

In this section, we recall the definitions for the computational Diffie-Hellman assumption and
introduce some new variants of it, which we use in the proof of security of simple password-based
encrypted key exchange protocols. We also present some relations between these assumptions.
In doing so, we borrow some of the notations in [1].

3.1 Definitions

Notation. In the following, we assume a finite cyclic group G of prime order p generated by
an element g. We also call the tuple G = (G, g, p) the represented group.

Computational Diffie-Hellman: CDH. The CDH assumption states that given gu and
gv, where u and v were drawn at random from Zp, it is hard to compute guv. Under the
computational Diffie-Hellman assumption it might be possible for the adversary to compute
something interesting about guv given gu and gv.

This can be defined more precisely by considering an Experiment Expcdh
G

(A), in which we
select two values u and v in Zp, compute U = gu, and V = gv, and then give both U and V
to an adversary A. Let Z be the output of A. Then, the Experiment Expcdh

G
(A) outputs 1 if

Z = guv and 0 otherwise. Then, we define advantage of A in violating the CDH assumption as
AdvcdhG (A) = Pr[Expcdh

G
(A) = 1] and the advantage function of the group, AdvcdhG (t), as the

maximum value of AdvcdhG (A) over all A with time-complexity at most t.

Chosen-basis computational Diffie-Hellman: CCDH. The chosen-basis computational
Diffie-Hellman problem is a variation of the CDH problem. It considers an adversary that
is given three random elements M , N and X in G and whose goal is to find a triple of values
(Y, u, v) such that u = CDH(X,Y) and v = CDH(X/M,Y/N). The idea behind this assumption
is that the adversary may be able to successfully compute either u (e.g., by choosing Y = g and

5

u = X) or v (e.g., by choosing Y = g · N and v = X/M), but not both. In fact, as we prove
later, solving this problem is equivalent to solving the underlying computational Diffie-Hellman
problem in G. We now proceed with the formal definition.

Definition 3.1 [CCDH] Let G = (G, g, p) be a represented group and let A be an adversary.
Consider the following experiment, where M , N and X are elements in G,

Experiment Expccdh
G

(A,M,N,X)

(Y, u, v)← A(M,N,X)
u′ ← CDH(X,Y)
v′ ← CDH(X/M,Y/N)
if u = u′ and v = v′ then b← 1 else b← 0
return b

Now define the advantage of A in violating the CCDH assumption with respect to (M,N,X),
the advantage of A, and the advantage function of the group, respectively, as follows:

AdvccdhG (A,M,N,X) = Pr[ExpccdhG (A,M,N,X) = 1]

AdvccdhG (A) = PrM,N,X

[

AdvccdhG (A,M,N,X)
]

AdvccdhG (t) = max
A
{AdvccdhG (A) },

where the maximum is over all A with time-complexity at most t. ♦

Password-based chosen-basis computational Diffie-Hellman: PCCDH. The password-
based chosen-basis computational Diffie-Hellman problem is a variation of the chosen-basis com-
putational Diffie-Hellman described above that is more appropriate to the password-based set-
ting. The inputs to the problem and the adversarial goals are also somewhat different in this
case so let us explain it.

Let D = {1, . . . , n} be a dictionary containing n equally likely password values and let P be
a public injective map P from {1, . . . , n} into Zp. An example of an admissible map P is the one
in which {1, . . . , n} is mapped into the subset {1, . . . , n} of Zp. Now let us consider an adversary
that runs in two stages. In the first stage, the adversary is given as input three random elements
M , N and X in G as well as the public injective map P and it outputs a value Y in G. Next,
we choose a random password k ∈ {1, . . . , n} and give it to the adversary. We also compute
the mapping r = P(k) of the password k. The goal of the adversary in this second stage is to
output a value K such that K = CDH(X/M r, Y/N r).

Note that an adversary that correctly guesses the password k in its first stage can easily solve
this problem by computing r = P(k) and making, for instance, Y = g ·N r and K = X/M r. Since
we assume k to be chosen uniformly at random from the dictionary {1, . . . , n}, an adversary
that chooses to guess the password and follow this strategy can succeed with probability 1/n.

The idea behind the password-based chosen-basis computational Diffie-Hellman assumption
is that no adversary can do much better than the adversary described above. In fact, as we later
prove, this should be the case as long as the computational Diffie-Hellman problem is hard in
G. We now proceed with the formal definition.

Definition 3.2 [PCCDH] Let G = (G, g, p) be a represented group and let A be an adversary.
Consider the following experiment, where M and N are elements in G, and P is a public injective
map from {1, . . . , n} into Zp,

6

Experiment Exp
pccdh
G,n (A,M,N,X ′,P)

(Y ′, st)← A(find,M,N,X ′,P)

k
R

← {1, . . . , n} ; r ← P(k)
(K)← A(guess, st, k)
X ← X ′/M r ; Y ← Y ′/N r

if K = CDH(X,Y) then b← 1 else b← 0
return b

Now define the advantage of A in violating the PCCDH assumption with respect to (M,N,X ′,
P), the advantage of A, and the advantage function of the group, respectively, as follows:

Adv
pccdh
G,n (A,M,N,X ′,P) = Pr[Exppccdh

G,n (A,M,N,X ′,P) = 1]

Adv
pccdh
G,n (A,P) = PrM,N,X′

[

Adv
pccdh
G,n (A,M,N,X ′,P)

]

Adv
pccdh
G,n (t,P) = max

A
{Advpccdh

G,n (A,P) },

where the maximum is over all A with time-complexity at most t. ♦

Set password-based chosen-basis computational Diffie-Hellman: S-PCCDH. The set
password-based chosen-basis computational Diffie-Hellman problem (S-PCCDH) is a multidi-
mensional variation of the password-based chosen-basis computational Diffie-Hellman problem
described above, in which the adversary is allowed to return not one key but a list of keys at
the end of the second stage. In this case, the adversary is considered successful if the list of keys
contains the correct value. We now proceed with the formal definition.

Definition 3.3 [S-PCCDH] Let G = (G, g, p) be a represented group and let A be an adversary.
Consider the following experiment, where M and N are elements in G, and P is a public injective
map from {1, . . . , n} into Zp,

Experiment Exp
s−pccdh
G,n,s (A,M,N,X ′,P)

(Y ′, st)← A(find,M,N,X ′,P)

k
R

← {1, . . . , n} ; r ← P(k)
(S)← A(guess, st, k)
X ← X ′/M r ; Y ← Y ′/N r

if CDH(X,Y) ∈ S and |S| ≤ s then b← 1 else b← 0
return b

As above, we define the advantage of A in violating the S-PCCDH assumption with respect to
(M,N,X ′,P), the advantage of A, and the advantage function of the group, respectively, as
follows:

Adv
s−pccdh
G,n,s (A,M,N,X ′,P) = Pr[Exps−pccdh

G,n,s (A,M,N,X ′,P) = 1]

Adv
s−pccdh
G,n,s (A,P) = PrM,N,X′

[

Adv
s−pccdh
G,n,s (A,M,N,X ′,P)

]

Adv
s−pccdh
G,n,s (t,P) = max

A
{Advs−pccdh

G,n,s (A,P) },

where the maximum is over all A with time-complexity at most t. ♦

7

3.2 Some relations

In this section, we first provide two relations between the above problems. The first result
is meaningful for small n (polynomially bounded in the asymptotic framework). The second
one considers larger dictionaries. Then, we show that these assumptions are implied by the
classical computational Diffie-Hellman assumption. Finally, we also prove that the most general
assumption is also implied by the classical computational Diffie-Hellman assumption.

Relations between the PCCDH and CCDH problems. The following two lemmas present
relations between the PCCDH and CCDH problems. The first lemma, whose proof can be found
in Appendix B, is oriented to the case of small dictionaries, for which n is polynomially-bounded.
However, if n is large, super-polynomial in the asymptotic framework, or more concretely n ≥
8/ε, then one should use the second lemma, whose proof can be easily derived from the proof of
the first lemma (see Appendix B).

Lemma 3.4 Let G = (G, g, p) be a represented group, let n be an integer, and let P be a public
injective map from {1, . . . , n} into Zp.

2

n
≥ Advpccdh

G,n (t,P) ≥
1

n
+ ε =⇒ AdvccdhG (2t+ 3τ) ≥

n

128
× ε3.

Lemma 3.5 Let G = (G, g, p) be a represented group, let n be an integer, and let P be a public
injective map from {1, . . . , n} into Zp.

Adv
pccdh
G,n (t,P) ≥ ε ≥

8

n
=⇒ AdvccdhG (2t+ 3τ) ≥

ε2

32
,

where τ denotes the time for an exponentiation in G.

Relation between the CCDH and CDH problems. The following lemma, whose proof is
in Appendix B, shows that the CCDH and CDH problems are indeed equivalent.

Lemma 3.6 Let G = (G, g, p) be a represented group.

AdvccdhG (t) ≤ AdvcdhG (t+ 2τ),

where τ denotes the time for an exponentiation in G.

Relation between the S-PCCDH and CDH problems. The following lemma, whose proof
is in Appendix B, gives a precise relation between the S-PCCDH and CDH problems.

Lemma 3.7 Let G = (G, g, p) be a represented group, let n and s be integers, and let P be a
public injective map from {1, . . . , n} into Zp.

Adv
s−pccdh
G,n,s (t,P) ≥

1

n
+ ε =⇒ AdvcdhG (t′) ≥

n2ε6

214
−

2s4

p
,

where t′ = 4t+ (18 + 2s)τ and τ denotes the time for an exponentiation in G. More concretely,

Adv
s−pccdh
G,n,s (t,P) ≥

1

n
+ ε ≥

1

n
×

(

1 +
8(ns)2/3

p1/6

)

=⇒ AdvcdhG (t′) ≥
n2ε6

215
.

8

4 SPAKE1: a simple non-concurrent password-based encrypted

key exchange

We now introduce our first protocol, SPAKE1, which is a non-concurrent password-based en-
crypted key exchange protocol, based on the multi-dimensional version of password-based chosen-
basis computational Diffie-Hellman problem, S-PCCDH.

4.1 Description

SPAKE1 is a variation of the password-based encrypted key exchange protocol of Bellovin and
Merritt [7], in which we replace the encryption function Epw(.) with a simple one-time pad
function. More specifically, whenever a user A wants to send the encryption of a value X ∈ G
to a user B, it does so by computing X ·Mpw , where M is an element in G associated with
user A and the password pw is assumed to be in Zp. The session identification is defined as
the transcript of the conversation between A and B, and the session key is set to be the hash
(random oracle) of the session identification, the user identities, and the Diffie-Hellman key. The
password pw is not an input to the hash function. The full description of SPAKE1 is given in
Figure 2.

Public information: G, g, p,M,N,H
Secret information: pw ∈ Zp

User A User B

x
R

← Zp ; X ← gx y
R

← Zp ; Y ← gy

X? ← X ·Mpw Y ? ← Y ·Npw

X?
−→
Y ?
←−

KA ← (Y ?/Npw)x KB ← (X?/Mpw)y

SKA ← H(A,B,X?, Y ?,KA) SKB ← H(A,B,X?, Y ?,KB)

Figure 2: SPAKE1: a simple non-concurrent password-based key exchange protocol.

Correctness. The correctness of our protocol follows from the fact that, in an honest execution
of the protocol, KA = KB = gxy.

4.2 Security

As Theorem 4.1 states, our non-concurrent password-based key exchange protocol is secure in
the random oracle model as long as we believe that the S-PCCDH problem is hard in G.

Theorem 4.1 Let G be a represent group and let D be a uniformly distributed dictionary of
size |D|. Let SPAKE1 describe the password-based encrypted key exchange protocol associated
with these primitives as defined in Figure 2. Then, for any numbers t, qstart, qAsend, qBsend, qH ,

9

qexe,

AdvakeSPAKE,D(t, qstart, q
A
send, q

B
send, qH , qexe)

≤ 2 · (qAsend + qBsend) ·Adv
s−pccdh
G,|D|,qH

(t′,P) +

2 ·

(

(qexe + qsend)
2

2p
+ qH Adv

cdh
G (t+ 2qexeτ + 3τ)

)

,

where qH represents the number of queries to the H oracle; qexe represents the number of queries
to the Execute oracle; qstart and qAsend represent the number of queries to the Send oracle with
respect to the initiator A; qBsend represents the number of queries to the Send oracle with respect
to the responder B; qsend = qAsend+ qBsend+ qstart; t

′ = t+O(qstartτ); and τ is the time to compute
one exponentiation in G.

Since the S-PCCDH problem can be reduced to the CDH problem according to Lemma 3.7,
it follows that SPAKE1 is a secure non-concurrent password-based key exchange protocol in the
random oracle model as long as the CDH problem is hard in G, as stated in Corollary 4.2.

Corollary 4.2 Let G be a represent group and let D be a uniformly distributed dictionary of
size |D|. Let SPAKE1 describe the password-based encrypted key exchange protocol associated
with these primitives as defined in Figure 2. Then, for any numbers t, qstart, qAsend, qBsend, qH ,
qexe,

AdvakeSPAKE,D(t, qstart, q
A
send, q

B
send, qH , qexe)

≤ 2 ·

qAsend + qBsend
|D|

+ 6

√

214

|D|2
AdvcdhG (t′) +

215q4H
|D|2p

+

2 ·

(

(qexe + qsend)
2

2p
+ qH Adv

cdh
G (t+ 2qexeτ + 3τ)

)

,

where t′ = 4t+O((qstart + qH)τ) and the other parameters are defined as in Theorem 4.1.

Proof idea. Let A be an adversary against the semantic security of SPAKE. The idea is to use
A to build adversaries for each of the underlying primitives in such a way that if A succeeds
in breaking the semantic security of SPAKE, then at least one of these adversaries succeeds in
breaking the security of an underlying primitive. Our proof consists of a sequence of hybrid
experiments, starting with the real attack and ending in an experiment in which the adversary’s
advantage is 0, and for which we can bound the difference in the adversary’s advantage between
any two consecutive experiments.

Proof of Theorem 4.1. Our proof uses a sequence of hybrid experiments, the first of which
corresponds to the actual attack. For each experiment Expn, we define an event Succn corre-
sponding to the case in which the adversary correctly guesses the bit b involved in the Test query.

Experiment Exp0. This experiment corresponds to the real attack, which starts by choosing
a random password pw . By definition, we have

AdvakeSPAKE(A) = 2 · Pr[Succ0]− 1 (1)

Experiment Exp1. In this experiment, we simulate the Execute, Reveal, and Send oracles
as in the real attack (see Figure 4 and Figure 5), after having chosen a random password pw .

10

H
or
ac
le – On hash query H(q) (resp. H ′(q)) for which there exists a record (q, r) in

the list ΛH (resp. ΛH), return r. Otherwise, choose an element r ∈ {0, 1}
lk ,

add the record (q, r) to the list ΛH (resp. ΛH), and return r.

Figure 3: Simulation of random oracles H and H ′.
S
en

d
q
u
er
ie
s

– On a query Send(Ai, start), assuming Ai is in the correct state, we
proceed as follows:

if ActiveSessionIndex 6= 0 then abort AActiveSessionIndex

ActiveSessionIndex = i

θ
R

← Zp ; Θ← gθ ; Θ? ← Θ ·Mpw

return (A,Θ?)

– On a query Send(Bi, (A,Θ?)), assuming Bi is in the correct state, we
proceed as follows:

φ
R

← Zp ; Φ← gφ ; Φ? ← Φ ·Npw

K ← (Θ?/Mpw)
φ

SK ← H(A,B,Θ?,Φ?,K)
return (B,Φ?)

– On a query Send(Ai, (B,Φ?)), assuming Ai is in the correct state, we
proceed as follows:

K ← (Φ?/Npw)
θ

SK ← H(A,B,Θ?,Φ?,K)
ActiveSessionIndex = 0

Figure 4: Simulation of Send oracle query.

One can easily see that this experiment is perfectly indistinguishable from the real experiment.
Hence,

Pr[Succ1] = Pr[Succ0] (2)

Experiment Exp2. In this experiment, we simulate all oracles as in Experiment Exp1, ex-
cept that we halt all executions in which a collision occurs in the transcript ((A,X?), (B, Y ?)).
Since either X? or Y ? was simulated and thus chosen uniformly at random, the probability of
collisions in the transcripts is at most (qsend + qexe)

2/(2p), according to the birthday paradox.
Consequently,

∣

∣Pr[Succ2]− Pr[Succ1]
∣

∣ ≤
(qexe + qsend)

2

2p
(3)

Experiment Exp3. In this experiment, we replace the random oracle H by a secret one, for
computing SKA and SKB for all sessions generated via an Execute oracle query. As the following
lemma shows, the difference between the current experiment and the previous one is negligible
as long as the CDH assumption holds. More precisely, we use a private random oracle H ′, and
in the Execute oracle queries, one gets SKA,SKB ← H ′(A,B,Θ?,Φ?).

Lemma 4.3
∣

∣Pr[Succ3]− Pr[Succ2]
∣

∣ ≤ qH ·Adv
cdh
G (t+ 2qexeτ + 3τ) .

Proof: The proof of Lemma 4.3 uses the random self-reducibility of the Diffie-Hellman prob-
lem. Indeed, the only way for an execution to be altered by the above modification is if
the adversary directly asks for H(A,B,Θ?,Φ?,K), which will output something different from
H ′(A,B,Θ?,Φ?), the answer of a Reveal query. But let us simulate the Execute oracle with a

11

E
x
ec

u
te
,
R

ev
ea

l
an
d

T
es

t
q
u
er
ie
s.

– On query Reveal(U i), proceed as follows:
if session key SK is defined for instance U i

then return SK ,
else return ⊥.

– On query Execute(Ai, Bj), proceed as follows:

θ
R

← Zp ; Θ← gθ ; Θ? ← Θ ·Mpw

φ
R

← Zp ; Φ← gφ ; Φ? ← Φ ·Npw

K ← Θφ

SKA ← H(A,B,Θ?,Φ?,K) ; SKB ← SKA

return ((A,Θ?), (B,Φ?))
– On query Test(U i), proceed as follows:

SK ← Reveal(U i)
if SK = ⊥ then return ⊥
else

b
R

← {0, 1}

if b = 0 then SK ′ ← SK else SK ′ R

← {0, 1}lk

return SK ′

Figure 5: Simulation of Execute, Reveal and Test queries.

Diffie-Hellman instance (A,B), and thus Θ ← A · gθ and Φ ← B · gφ. As a consequence, the
above event means that K = CDH(Θ,Φ) = CDH(A,B) × Aφ × Bθ × gφθ is in the list of the
queries asked to H: a random guess leads to CDH(A,B).

Experiment Exp4. The goal of this experiment is to bound the advantage of the adversary
during active attacks, in which the adversary has possibly generated the input of a Send oracle.
To achieve this goal, we change the simulation of the Send oracle so that its output is chosen
uniformly at random and independently of the password. The session key associated with each
oracle is a bit string of appropriate length chosen uniformly at random and independently of
input being provided to the Send oracle. The exact simulation of the Send oracle is as follows:

• On a query of type (Ai, start), we reply with (A,X? = gx
?

) for a random x? ∈ Zp, if A
i

is in the correct state. If another concurrent session already exists for user A, then we also
terminate that session.

• On a query of type (Bi, (A,X?)), we reply with (B, Y ? = gy
?

) for a random y? ∈ Zp and
we set the session key SKB to H ′(A,B,X?, Y ?), if Bi is in the correct state.

• On a query of type (Ai, (B, Y ?)), we set the session key SKA to H ′(A,B,X?, Y ?), if Ai is
in the correct state.

As the following lemma shows, the adversary cannot do much better than simply guessing
the password when distinguishing the current experiment from the previous one.

Lemma 4.4
∣

∣Pr[Succ4] − Pr[Succ3]
∣

∣ ≤ (qAsend + qBsend) · Adv
s−pccdh
G,|D|,qH

(t′,P) , where t′ = t +

O(qstartτ).

Proof: The proof of this lemma is based on a sequence of qAsend + qBsend + 1 hybrid experiments
Hybrid3,j , where j is an index between 0 and qAB = qAsend+qBsend. Let i be a counter for number

of queries of the form (Bk, (A,X?)) or (Ak, (B, Y ?)). That is, we do not count start queries (we
do not increment this counter). We define Experiment Hybrid3,j as follows:

• If i ≤ j, then we processes the current Send query as in Experiment Exp4.

12

• If i > j, then we processes the current Send query as in Experiment Exp3.

It is clear from the above definition that experimentsHybrid3,0 andHybrid3,qAB
are equivalent

to experiments Exp3 and Exp4, respectively. Now let Pj denote the probability of event Succ

in Experiment Hybrid3,j . It follows that Pr[Succ3] = P0 and Pr[Succ4] = PqAB
. Moreover,

∣

∣

∣
Pr[Succ4]− Pr[Succ3]

∣

∣

∣
≤

qAB
∑

j=1

∣

∣Pj − Pj−1
∣

∣ .

The lemma will follow easily from bounding
∣

∣Pj − Pj−1
∣

∣. In order to so, consider the following
algorithm Dj for the S-PCCDH problem in G.

Algorithm Dj. Let U = gu, V = gv, and W = gw be random elements in G and let P be
any injective map from {1, . . . , n} into Zp. Dj starts running A, simulating all its oracles. The
Reveal, Execute, and Test oracles are simulated as in Experiment Exp3. The Send oracle is
simulated as follows, Let i be the index of the current Send query.

• If the Send query is of the form (Ak, start),

– if i ≤ j, then Dj replies with (A,X? = Wgx
?

) for a random x? ∈ Zp, if A
k is in the

correct state. If another concurrent session already exists for user A, then Dj also
terminates that session.

– if i > j, then Dj processes it as in Experiment Exp3.

• If the query is of the form (Bk, (A,X?)),

– if i < j, then Dj processes it as in Experiment Exp4.

– if i = j, then Dj replies with (B, Y ? = W). It also returns (st, Y ′ = X?) as the
output of its find stage and waits for the input (st, k) of the guess stage. It then
sets the password pw shared between A and B to P(k) and the session key SK B to
H(A,B,X?, Y ?,KB), where KB = (X?/V pw)w−u pw . We note that st should contain
all the necessary information for Dj to continue the execution of A and the simulation
of its oracles in the guess stage. Let this be Case B.

– if i > j, then Dj processes it as in Experiment Exp3.

• If the Send query is of the form (Ak, (B, Y ?)),

– if i < j, then Dj processes it as in Experiment Exp4.

– if i = j, and Ak is in the correct state, then it returns (st, Y ′ = Y ?) as the output of its
find stage and waits for the input (st, k) of the guess stage. Then, it sets the password
pw shared between A and B to P(k) and the session key SKA toH(A,B,X?, Y ?,KA),
where KA = (Y ?/V pw)w+x

?−u pw . Let this be Case A.

– if i > j, then Dj processes it as in Experiment Exp3.

Let K be the part of the input of H that is not present in H ′ and let K1, . . . ,KqH
be the list of

all such elements. When in Case A, Dj sets K ′
i = Ki/(Y

′/V pw)x
?

for i = 1, . . . , qH , where x? is
the value used to compute X? in the crucial query. When in Case B, Dj simply sets K ′

i = Ki.
Finally, Dj outputs K ′

1, . . . ,K
′
qH

.

13

We note that in the above, the password is only defined at the j-th step and it is not used before
that. Due to the non-concurrency, we do not need to know the password for simulating flows in
Experiment Exp4. We only need it in Experiment Exp3.

Using the knowledge of u, v, and w in the above, it is clear that the processing of the Send

queries matches that of Experiment Hybrid3,j−1. However, in the actual description of the
S-PCCDH problem, we do not have access to these values. For this reason, the actual algorithm
Dj replaces the random oracle H by a secret random oracle H ′ in the computation of SKA and
SKB during the processing of the j-th Send query. More precisely, it computes SK A and SKB

as H ′(A,B,X?, Y ?). Moreover, we note that in this new scenario, the processing of the Send

queries matches that of Experiment Hybrid3,j .

Probability analysis. Let AskH represent the event in which the adversary asks for H(A,B,
X?, Y ?,K), where K = CDH(X?/Upw , Y ?/V pw) and either X? or Y ? is involved in the crucial
j-th query. We first observe that experiments Hybrid3,j−1 and Hybrid3,j are identical if event
AskH does not happen. Therefore, it follows that the probability difference

∣

∣Pj − Pj−1
∣

∣ is at
most Pr[AskH].

However, whenever event AskH happens, we know that the list of queries asked to H contains
the key K = CDH(X?/Upw , Y ?/V pw) involved in the crucial query, and thus Dj will be able
to successfully use A to help it solve the S-PCCDH problem. This is because KA (Case A) or
KB (Case B) can be used to compute the solution CDH(W/U pw , Y ′/V pw) for the S-PCCDH
problem as follows:

KA = CDH(Y ?/V pw ,Wgx
?

/Upw) = CDH(W/Upw , Y ′/V pw)× (Y ′/V pw)x
?

KB = CDH(X?/V pw ,W/Upw) = CDH(W/Upw , Y ′/V pw)

Therefore, the list of candidates K ′
1, . . . ,K

′
qH

outputted by Dj should contain the solution for
the S-PCCDH problem whenever AskH happens. Hence, Pr[AskH] is less than or equal to the
success probability of Dj . The lemma follows easily from the fact that Dj has time-complexity
at most t′.

5 SPAKE2: a simple concurrent password-based encrypted key

exchange

We now introduce our second protocol, SPAKE2, which is a concurrent password-based encrypted
key exchange protocol, based on the computational Diffie-Hellman problem, CDH.

5.1 Description

SPAKE2 is a also variation of the password-based encrypted key exchange protocol of Bellovin
and Merritt [7] and is almost exactly like SPAKE1. The only difference between the two is in the
key derivation function, which also includes the password pw . More specifically, the session key
in SPAKE2 is set to be the hash (random oracle) of the session identification, the user identities,
the Diffie-Hellman key, and the password. In other words, SK ← H(A,B,X?, Y ?, pw ,K). The
session identification is still defined as the transcript of the conversation between A and B.

14

5.2 Security

As the following theorem states, our concurrent password-based key exchange protocol is secure
in the random oracle model as long as the CDH problem is hard in G. The proof of Theorem 5.1
can be found in Appendix C.

Theorem 5.1 Let G be a represent group and let D be a uniformly distributed dictionary of
size |D|. Let SPAKE2 describe the password-based encrypted key exchange protocol associated
with these primitives as defined in Section 5.1. Then, for any numbers t, qstart, q

A
send, q

B
send, qH ,

qexe,

AdvakeSPAKE2,D(t, qstart, q
A
send, q

B
send, qH , qexe)

≤ 2 ·

(

qAsend + qBsend
n

+
(qexe + qsend)

2

2p

)

+

2 ·
(

qH Adv
cdh
G (t+ 2qexeτ + 3τ) + q2H Adv

cdh
G (t+ 3τ)

)

,

where the parameters are defined as in Theorem 4.1.

Acknowledgments

The work described in this document has been supported in part by the European Commission
through the IST Programme under Contract IST-2002-507932 ECRYPT. The information in
this document reflects only the author’s views, is provided as is and no guarantee or warranty is
given that the information is fit for any particular purpose. The user thereof uses the information
at its sole risk and liability

References

[1] Michel Abdalla, Mihir Bellare, and Phillip Rogaway. The oracle Diffie-Hellman assumptions
and an analysis of DHIES. In David Naccache, editor, Topics in Cryptology – CT-RSA 2001,
volume 2020 of Lecture Notes in Computer Science, pages 143–158, San Francisco, CA, USA,
April 8–12, 2001. Springer-Verlag, Berlin, Germany.

[2] Mihir Bellare and Tadayoshi Kohno. A theoretical treatment of related-key attacks: RKA-
PRPs, RKA-PRFs, and applications. In Eli Biham, editor, Advances in Cryptology –

EUROCRYPT 2003, volume 2656 of Lecture Notes in Computer Science, pages 491–506,
Warsaw, Poland, May 4–8, 2003. Springer-Verlag, Berlin, Germany.

[3] Mihir Bellare, David Pointcheval, and Phillip Rogaway. Authenticated key exchange secure
against dictionary attacks. In Bart Preneel, editor, Advances in Cryptology – EURO-

CRYPT 2000, volume 1807 of Lecture Notes in Computer Science, pages 139–155, Bruges,
Belgium, May 14–18, 2000. Springer-Verlag, Berlin, Germany.

[4] Mihir Bellare and Phillip Rogaway. Entity authentication and key distribution. In Dou-
glas R. Stinson, editor, Advances in Cryptology – CRYPTO’93, volume 773 of Lecture

Notes in Computer Science, pages 232–249, Santa Barbara, CA, USA, August 22–26, 1994.
Springer-Verlag, Berlin, Germany.

15

[5] Mihir Bellare and Phillip Rogaway. Provably secure session key distribution — the three
party case. In 28th Annual ACM Symposium on Theory of Computing, pages 57–66,
Philadephia, Pennsylvania, USA, May 22–24, 1996. ACM Press.

[6] Mihir Bellare and Phillip Rogaway. The AuthA protocol for password-based authenticated
key exchange. Contributions to IEEE P1363, March 2000.

[7] Steven M. Bellovin and Michael Merritt. Encrypted key exchange: Password-based proto-
cols secure against dictionary attacks. In 1992 IEEE Symposium on Security and Privacy,
pages 72–84, Oakland, CA, May 1992. IEEE Computer Society Press.

[8] Victor Boyko, Philip D. MacKenzie, and Sarvar Patel. Provably secure password-
authenticated key exchange using Diffie-Hellman. In Bart Preneel, editor, Advances in

Cryptology – EUROCRYPT 2000, volume 1807 of Lecture Notes in Computer Science,
pages 156–171, Bruges, Belgium, May 14–18, 2000. Springer-Verlag, Berlin, Germany.

[9] Emmanuel Bresson, Olivier Chevassut, and David Pointcheval. Security proofs for an effi-
cient password-based key exchange. In ACM CCS 03: 10th Conference on Computer and

Communications Security, pages 241–250, Washington D.C., USA, October 27–30, 2003.
ACM Press.

[10] Emmanuel Bresson, Olivier Chevassut, and David Pointcheval. New security results on
encrypted key exchange. In Feng Bao, Robert Deng, and Jianying Zhou, editors, PKC 2004:

7th International Workshop on Theory and Practice in Public Key Cryptography, volume
2947 of Lecture Notes in Computer Science, pages 145–158, Singapore, March 1–4, 2004.
Springer-Verlag, Berlin, Germany.

[11] Mario Di Raimondo and Rosario Gennaro. Provably secure threshold password-
authenticated key exchange. In Eli Biham, editor, Advances in Cryptology – EURO-

CRYPT 2003, volume 2656 of Lecture Notes in Computer Science, pages 507–523, Warsaw,
Poland, May 4–8, 2003. Springer-Verlag, Berlin, Germany.

[12] Rosario Gennaro and Yehuda Lindell. A framework for password-based authenticated key
exchange. In Eli Biham, editor, Advances in Cryptology – EUROCRYPT 2003, volume
2656 of Lecture Notes in Computer Science, pages 524–543, Warsaw, Poland, May 4–8,
2003. Springer-Verlag, Berlin, Germany. http://eprint.iacr.org/2003/032.ps.gz.

[13] Oded Goldreich and Yehuda Lindell. Session-key generation using human passwords only.
In Joe Kilian, editor, Advances in Cryptology – CRYPTO 2001, volume 2139 of Lecture

Notes in Computer Science, pages 408–432, Santa Barbara, CA, USA, August 19–23, 2001.
Springer-Verlag, Berlin, Germany. http://eprint.iacr.org/2000/057.

[14] Shai Halevi and Hugo Krawczyk. Public-key cryptography and password protocols. ACM

Transactions on Information and System Security, 2(3):230–268, August 1999.

[15] IEEE draft standard P1363.2. Password-based public key cryptography. http://grouper.
ieee.org/groups/1363/passwdPK, May 2004. Draft Version 15.

[16] Jonathan Katz, Rafail Ostrovsky, and Moti Yung. Efficient password-authenticated key
exchange using human-memorable passwords. In Birgit Pfitzmann, editor, Advances in

Cryptology – EUROCRYPT 2001, volume 2045 of Lecture Notes in Computer Science,
pages 475–494, Innsbruck, Austria, May 6–10, 2001. Springer-Verlag, Berlin, Germany.

16

[17] Kazukuni Kobara and Hideki Imai. Pretty-simple password-authenticated key-exchange
under standard assumptions. IEICE Transactions, E85-A(10):2229–2237, October 2002.
Also available at http://eprint.iacr.org/2003/038/.

[18] Hugo Krawczyk. SIGMA: The “SIGn-and-MAc” approach to authenticated Diffie-Hellman
and its use in the IKE protocols. In Dan Boneh, editor, Advances in Cryptology –

CRYPTO 2003, volume 2729 of Lecture Notes in Computer Science, pages 400–425, Santa
Barbara, CA, USA, August 17–21, 2003. Springer-Verlag, Berlin, Germany.

[19] Philip D. MacKenzie. The PAK suite: Protocols for password-authenticated key exchange.
Contributions to IEEE P1363.2, 2002.

[20] Philip D. MacKenzie, Sarvar Patel, and Ram Swaminathan. Password-authenticated key
exchange based on RSA. In Tatsuaki Okamoto, editor, Advances in Cryptology – ASI-

ACRYPT 2000, volume 1976 of Lecture Notes in Computer Science, pages 599–613, Kyoto,
Japan, December 3–7, 2000. Springer-Verlag, Berlin, Germany.

[21] Philip D. MacKenzie, Thomas Shrimpton, and Markus Jakobsson. Threshold password-
authenticated key exchange. In Moti Yung, editor, Advances in Cryptology –

CRYPTO 2002, volume 2442 of Lecture Notes in Computer Science, pages 385–400, Santa
Barbara, CA, USA, August 18–22, 2002. Springer-Verlag, Berlin, Germany.

[22] David Pointcheval and Jacques Stern. Security arguments for digital signatures and blind
signatures. Journal of Cryptology, 13(3):361–396, 2000.

[23] Victor Shoup. Lower bounds for discrete logarithms and related problems. In Walter
Fumy, editor, Advances in Cryptology – EUROCRYPT’97, volume 1233 of Lecture Notes in

Computer Science, pages 256–266, Konstanz, Germany, May 11–15, 1997. Springer-Verlag,
Berlin, Germany.

A The splitting lemma

For simplicity, we reproduce here the splitting lemma presented in [22].

Lemma A.1 [Splitting Lemma] Let A ⊂ X × Y such that Pr[(x, y) ∈ A] ≥ ε. For any α < ε,
define

B =

{

(x, y) ∈ X × Y Pr
y′∈Y

[(x, y′) ∈ A] ≥ ε− α

}

and B̄ = (X × Y)\B,

then the following statements hold:

(i) Pr[B] ≥ α

(ii) ∀(x, y) ∈ B,Pry′∈Y [(x, y
′) ∈ A] ≥ ε− α.

(iii) Pr[B |A] ≥ α/ε.

Proof: In order to prove statement (i), we argue by contradiction. Assume that Pr[B] < α.
Then

ε ≤ Pr[B] · Pr[A |B] + Pr[B̄] · Pr[A | B̄] < α · 1 + 1 · (ε− α) = ε.

17

This implies a contradiction, hence the result. Statement (ii) is a straightforward consequence
of the definition. We finally turn to the last assertion, using Bayes’ law:

Pr[B |A] = 1− Pr[B̄ |A] = 1− Pr[A | B̄] · Pr[B̄]/Pr[A] ≥ 1− (ε− α)/ε = α/ε.

B Proof of lemmas

B.1 Proof of Lemma 3.4

By definition of Advpccdh
G,n (A,P), we have

Pr[b = 1] ≥
1

n
+ ε,

where all the variables follow the distribution defined in Experiment Exppccdh
G,n (A,M,N,X ′,

P), for uniformly distributed M,N,X ′ ∈ G and b ∈ {0, 1}. The probability space is thus defined
by the variables ω, ρ, the random tapes of the adversary in the find-stage and the guess-stage
respectively; M,N,X ′, the group elements; and k, the password:

Ω0 =
{

(ω, ρ,M,N,X ′, k)
∣

∣

∣
ω, ρ

R

← {0, 1}?; (M,N,X ′)
R

← G3; k
R

← {1, . . . , n}
}

.

By definition, we have

PrΩ0
[b = 1] ≥

1

n
+ ε.

Applying the splitting lemma A.1, we get that if we split Ω0 into Ω′1 × Ω1:

Ω′1 =
{

ω
∣

∣

∣ ω
R

← {0, 1}?
}

Ω1 =
{

(ρ,M,N,X ′, k)
∣

∣

∣
ρ

R

← {0, 1}? ; (M,N,X ′)
R

← G3 ; k
R

← {1, . . . , n}
}

,

there exists a set S1 ⊆ Ω′1 such that

PrΩ′

1
[S1] ≥

ε

2
, for any ω ∈ S1,PrΩ1

[b = 1] ≥
1

n
+

ε

2
,

PrΩ0
[ω ∈ S1 | b = 1] ≥

nε

2 + 2nε
.

Applying again the splitting lemma A.1, we get that if we split Ω1 into Ω′2 × Ω2:

Ω′2 =
{

(M,N,X ′)
∣

∣

∣
(M,N,X ′)

R

← G3
}

Ω2 =
{

(ρ, k)
∣

∣

∣ ρ
R

← {0, 1}? ; k
R

← {1, . . . , n}
}

,

for each random tape ω ∈ S1, there exists a set S2(ω) ⊆ Ω′2 such that

PrΩ′

2
[S2(ω)] ≥

ε

4
, for any (M,N,X ′) ∈ S2(ω),PrΩ2

[b = 1] ≥
1

n
+

ε

4
,

18

PrΩ1

[

(M,N,X ′) ∈ S2(ω) | b = 1
]

≥
nε

4 + 2nε
.

Let (U, V,X) be a random instance of the CCDH problem. We choose a random tape ω
R

←
{0, 1}?, and two random indices i < j ∈ {1, . . . , n}. Then, we define r = P(i) and r′ = P(j),
and then set δ = r′ − r, M = U1/δ, N = V 1/δ, as well as X ′ = X × M r. Since (U, V,X)
is a random triple, (M,N,X ′) is also uniformly distributed (and thus independently of r and
r′, and thus of i and j): with probability greater than 1/n + ε, A wins the Experiment

Exp
pccdh
G,n (A,M,N,X ′,P), with k = i, and the random tape (ω, ρ). In the favorable case, we

have ω ∈ S1 and (M,N,X ′) ∈ S2(ω) with probability

nε

2 + 2nε
×

nε

4 + 2nε
≥

1

8
×

(

nε

1 + nε

)2

.

Thereafter, with probability greater than ε/4, A wins the Experiment Exppccdh
G,n (A,M,N,X ′,

P), with k = j, and the random tape (ω, ρ′):

Pr[K = CDH(X ′/M r, Y ′/N r) ∧K ′ = CDH(X ′/M r′

, Y ′/N r′

)] ≥

(

1

n
+ ε

)

×
1

8
×

(

nε

1 + nε

)2

×
ε

4
.

Since we assumed, in the theorem, that 2/n ≥ 1/n+ ε, then 1 + nε ≤ 2. Furthermore,

K = CDH(X ′/M r, Y ′/N r) = CDH(X,Y)

K ′ = CDH(X ′/M r′

, Y ′/N r′

) = CDH(X/M δ, Y/N δ) = CDH(X/U, Y/V)

This concludes the proof of this lemma.

B.2 Proof of Lemma 3.5

The proof of this lemma is similar to that of Lemma 3.4 and is hence omitted in this version of
the paper.

B.3 Proof of Lemma 3.6

Let us consider an instance A, B for the Diffie-Hellman problem. We choose a random b ∈ Zp.
Then we set M ← A, N ← B and X ← Ab. We run an adversary A on this triple (M,N,X),
and get (Y, u, v), which in case of success u = CDH(X,Y) and v = CDH(X/M,Y/N):

u = CDH(X,Y) = CDH(Ab, Y) = CDH(A, Y)b

v = CDH(X/M,Y/N) = CDH(Ab−1, Y/B) = CDH(A, Y/B)b−1

= CDH(A, Y)b−1/CDH(A,B)b−1

ub−1 = CDH(A, Y)b(b−1)

vb = CDH(A, Y)b(b−1)/CDH(A,B)b(b−1) = ub−1/CDH(A,B)b(b−1)

Thus,

CDH(A,B)b(b−1) = ub−1/vb and CDH(A,B) = u1/bv−1/(b−1).

19

B.4 Proof of Lemma 3.7

In this proof, we use a general technique presented in [23] for computing the solution of a
given instance of a problem by finding a collision between the list of candidates for two related
instances.

On a given A, B instance of the Diffie-Hellman problem, we use exactly the same argument as
in the proof of Lemma 3.4, running the S-PCCDH algorithm to break two instances of the CCDH
problem: U1 = Agu1 , V1 = Bgv1 and X1 = Ab1 , and U2 = Agu2 , V2 = Bgv2 and X2 = Ab2 ,
for random values u1, u2, v1, v2, b1, b2 ∈ Zp. We then get four sets, S1, S

′
1, S2 and S ′2, (instead

of values) which contain candidates for CDH(X1, Y1), CDH(X1/U1, Y1/V1), CDH(X2, Y2) and
CDH(X2/U2, Y2/V2) respectively. Therefore, with probability greater than (nε3/128)2, each set
contains the correct value. Note that

Ki = CDH(Xi, Yi) = CDH(A, Yi)
bi

K ′
i = CDH(Xi/Ui, Yi/Vi)

= CDH(Xi, Yi)× CDH(Ui, Vi)/CDH(Xi, Vi)× CDH(Ui, Yi)

= CDH(Xi, Yi)× CDH(Agui , Bgvi)/CDH(Abi , Bgvi)× CDH(Agui , Yi)

= CDH(Xi, Yi)× CDH(A,B)AviBuiguivi/CDH(A,B)biAvibi × CDH(A, Yi)Y
ui

i

= CDH(A, Yi)
bi−1 × CDH(A,B)1−bi ×Avi(1−bi)(B/Yi)

uiguivi

CDH(A,B)bi−1 = CDH(A, Yi)
bi−1 ×Avi(1−bi)(B/Yi)

uiguivi/K ′
i

CDH(A,B) = CDH(A, Yi)×A−vi(B/Yi)
ui/(bi−1)guivi/(bi−1)/K ′

i
1/(bi−1)

=
(

Ki
1/bi/K ′

i
1/(bi−1)

)

×A−vi(B/Yi)
wigwivi ,

where wi = ui/(bi − 1) mod p.
With all the pairs in S1×S

′
1, we build the s2 candidates for CDH(A,B), and we do the same

with all the pairs in S2 × S
′
2. The first collision in the two lists is outputted as the value for

CDH(A,B). But for each pair (ki, k
′
i) ∈ S1 × S

′
1, the candidate is

α =
(

ki
1/bi/k′i

1/(bi−1)
)

×A−vi(B/Yi)
wigwivi =

(

ki
Ki

)1/bi

×

(

K ′
i

k′i

)1/(bi−1)

.

If ki 6= Ki, or k
′
i 6= K ′

i, it is totally random in G, because of the randomness of bi. The probability
of a wrong collision is thus bounded by 2s4/p.

C Proof of Theorem 5.1

The proof of security for SPAKE2 also uses a hybrid argument consisting of a sequence of ex-
periments, the first of which corresponds to the actual attack. Since the proof of security for
SPAKE2 is similar to that of SPAKE1, we only state the differences here.

In Exp1, we need to change the simulation of oracles in order to allow concurrent executions
and to account for the presence of the password in the key derivation function. The claims
remain unchanged.

In Exp2, no changes are required and thus the claims remain unchanged.

20

In Exp3, the only change comes from the fact the password is part of the input of H but
not of H ′. This change, however, does not affect the claims.

In Exp4, we also need to account for the password being part of the input of H but not
of H ′. In this case, however, the claims are different. In order to bound the difference in the
adversary’s success probability in experiments Exp3 and Exp4, we use a technique similar to
the one used in the proof of security of the protocol MDHKE in [10].

Let AskH4 be the event in which the adversary directly asks the query H(A,B,Θ?,Φ?,K)
in experiment Exp4, where either Θ

? or Φ? has been simulated during an active attack. Clearly,
this is the only case in which the adversary can distinguish experiment Exp4 from experiment
Exp3.

In order to upper-bound the probability of event AskH4, let us first define Coll to be the
event in which there exist two different values pw1 and pw2 such that the tuples (X?, Y ?, pw i,
CDH(X?/Mpwi , Y ?/Npwi)). are present in the list of queries to H, for i = 1, 2. Then, by using
a technique similar to that used in Lemma 5 in [10], one can show that

Pr[Coll] ≤ q2H ·Adv
cdh
G (t+ 3τ) .

Now, let us consider the event AskH4 given that the event Coll does not happen. That is,
for each pair (X?, Y ?) involved in an active attack, there is at most one value of pw such that
(X?, Y ?, pw ,CDH(X?/Mpw , Y ?/Npw)) is in the list of queries to H. Since the password pw is
not needed in the simulation of the oracles, we can postpone choosing its value until the very
end of the simulation, at which moment we can detect whether the event AskH4 has happened.
Hence, the probability that the event AskH4 happens given that the event Coll did not happen

can be upper-bound by
qA

send
+qB

send

n . That is,

Pr
[

AskH4 | Coll
]

≤
qAsend + qBsend

n
.

As a result,

Pr[AskH4] ≤ Pr[AskH4 ∧Coll] + Pr[AskH4 ∧Coll]

≤ Pr[Coll] + Pr
[

AskH4 | Coll
]

≤ q2H ·Adv
cdh
G (t+ 3τ) +

qAsend + qBsend
n

.

The proof of theorem follows immediately by noticing that the adversary’s success probability
is exactly 1/2 in this last experiment.

21

