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Abstract—Malicious softwares or malwares for short have
become a major security threat. While originating in criminal
behavior, their impact are also influenced by the decisions of
legitimate end users. Getting agents in the Internet, and in
networks in general, to invest in and deploy security features
and protocols is a challenge, in particular because of economic
reasons arising from the presence of network externalities.

An unexplored direction of this challenge consists in under-
standing how to align the incentives of the agents of a large
network towards a better security. This paper addresses this new
line of research. We start with an economic model for a single
agent, that determines the optimal amount to invest in protection.
The model takes into account the vulnerability of the agent to
a security breach and the potential loss if a security breach
occurs. We derive conditions on the quality of the protection to
ensure that the optimal amount spent on security is an increasing
function of the agent’s vulnerability and potential loss. We also
show that for a large class of risks, only a small fraction of the
expected loss should be invested.

Building on these results, we study a network of interconnected
agents subject to epidemic risks. We derive conditions to ensure
that the incentives of all agents are aligned towards a better secu-
rity. When agents are strategic, we show that security investments
are always socially inefficient due to the network externalities.
Moreover if our conditions are not satisfied, incentives can be
aligned towards a lower security leading to an equilibrium with
a very high price of anarchy.

I. INTRODUCTION

Negligent users who do not protect their computer by reg-

ularly updating their antivirus software and operating system

are clearly putting their own computers at risk. But such users,

by connecting to the network a computer which may become

a host from which viruses can spread, also put (a potentially

large number of) computers on the network at risk [1]. This

describes a common situation in the Internet and in enterprise

networks, in which users and computers on the network face

epidemic risks. Epidemic risks are risks which depend on the

behavior of other entities in the network, such as whether or

not those entities invest in security solutions to minimize their

likelihood of being infected. Our goal in this paper is to start

an unexplored research direction consisting in understanding

how to align the incentives of the agents of a large network

towards a better security.

Our work is a first step in a better understanding of

economic network effects: there is a total effect if one agent’s

adoption of a protection benefits other adopters and there is

a marginal effect if it increases others’ incentives to adopt

it [2]. In communication networks, the presence of the total

effect has been the focus of various recent works starting with

Varian’s work [3]. When an agent protects itself, it benefits

not only to those who are protected but to the whole network.

Indeed there is also an incentive to free-ride the total effect.

Those who invest in self-protection incur some cost and in

return receive some individual benefit through the reduced

individual expected loss. But part of the benefit is public: the

reduced indirect risk in the economy from which everybody

else benefits. As a result, the agents invest too little in self-

protection relative to the socially efficient level.
In this paper, we focus on the marginal effect and our work

is a first step to understand the mechanism of incentives in a

large network. To do so, we need to start with an economic

model for a single agent that determines the optimal amount

to invest in protection. We follow the approach proposed

by Gordon and Loeb in [4]. They found that the optimal

expenditures for protection of an agent do not always in-

crease with increases in the vulnerability of the agent. Crucial

to their analysis is the security breach probability function

which relates the security investment and the vulnerability

of the agent with the probability of a security breach after

protection. This function can be seen as a proxy for the

quality of the security protection. Our first main result gives

sufficient conditions on this function to ensure that the optimal

expenditures for protection always increase with increases

in the vulnerability of the agent (this sensitivity analysis is

called monotone comparative statics in economics). From an

economic perspective, these conditions will ensure that all

agents with sufficiently large vulnerability value the protection

enough to invest in it. We also extend a result of [4] and show

(Theorem 1) that if the security breach probability function is

log-convex in the investment, then a risk-neutral1 agent never

invests more than 37% of the expected loss.
Building on these results, we study a network of intercon-

nected agents subject to epidemic risks. We model the effect of

the network through a parameter γ describing the information

available to the agent and capturing the security state of the

network. In particular, we diverge form most of the literature

on security games and relax the complete information assump-

tion. In our model only global statistics are publicly available

and agents do not disclose any information concerning their

security strategy. We show that our general framework extends

previous work [5], [6] and allows to consider a security breach

probability function depending on the parameter γ. Our third

1i.e an agent indifferent to investments that have the same expected value:
such an agent will have no preference between i) a bet of either 100$ or
nothing, both with a probability of 50% and ii) receiving 50$ with certainty



main result gives sufficient conditions on this function to

ensure that the optimal protection investment always increases

with an increase in the security state of the network.

This property will be crucial in our last analysis: we use

our model of interconnected agent in a game theoretic setting

where agents anticipate the effect of their actions on the

security level of the network. We show how the monotonic-

ities (or the lack of monotonicities) impact the equilibrium

of the security game. In particular, coordination among the

agents can be ensured only if optimal protection investment

increases with the security state of the network. Moreover,

we distinguish two parts in the network externalities that

we call public and private. Both types of externalities are

positive since any additional agent investing in security will

increase the security level of the whole network. However, the

effect of this additional agent will be different for an agent

who did not invest in security from an agent who already

did invest in security. The public externalities correspond

to the network effect on insecure agents while the private

externalities correspond to the network effect on secure agents.

As a result of this separation of externalities, some counter-

intuitive phenomena can occur: there are situations where the

incentive to invest in protection decreases as the fraction of

the population investing in protection increases, resulting in a

coordination problem. We also show that in the security game,

security investments are always inefficient due to the network

externalities. This raises the question whether economic tools

like insurance [7], [8], [9] could be used to lower the social

inefficiency of the game2?

The rest of the paper is organized as follows. In Section II,

the optimal security investment for a single agent is analyzed.

In Section III, we extend it to an interconnected agent and

show it connects with the epidemic risk model. Finally in

Section IV, we consider the case where agents are strategic.

We introduce the notion of fulfilled expectations equilibrium

and show our main game theoretic results. We refer to the full

version of this work [10] (available on the webpage of the

author) for proofs and additional results.

II. OPTIMAL SECURITY INVESTMENT FOR A SINGLE

AGENT

In this section, we present a simple one-period model of

an agent contemplating the provision of additional security

to protect a given information set introduced by Gordon and

Loeb in [4]. In one-period economic models, all decisions

and outcomes occur in a simultaneous instant. Thus dynamic

aspects are not considered.

A. Economic model of Gordon and Loeb

The model is characterized by two parameters ℓ and v (also

Gordon and Loeb used a bit more involved notation). The

parameter ℓ represents the monetary loss caused by a security

breach. The parameter ℓ ∈ R+ is a positive real number. The

parameter v represents the probability that without additional

2Note that in this case the risk-neutral assumption made in this paper should
be replaced by a risk-adverse assumption.

security, a threat results in the information set being breached

and the loss ℓ occurs. The parameter v i called the vulnerability

of the asset. Being a probability, it belongs to the interval [0, 1].

An agent can invest a certain amount x to reduce the

probability of loss to p(x, v). We make the assumptions

p(0, v) = v and since p(x, v) is a probability we assume that

for all x > 0 and v ∈ [0, 1] we have 0 ≤ p(x, v) ≤ v. The
function p(x, v) is called the security breach probability.

The expected loss for an amount x spent on security is given

by ℓp(x, v). Hence if the agent is risk neutral, the optimal

security investment should be the value x∗ minimizing

min {ℓp(x, v) + x : x ≥ 0} . (1)

We define the set of optimal security investment by

ϕ(v, ℓ) = argmin {ℓp(x, v) + x : x ≥ 0}

Clearly in general the function ϕ is set-valued and we will

deal with this fact in the sequel. For now on, assume that

the function ϕ is real-valued, i.e. sets reduce to singleton.

As noticed in [4], it turns out that the function ϕ(v, ℓ) does

not need to be non-decreasing in (v, ℓ) for general functions

p(x, v). In particular, the optimal investment can be zero for

low values of the vulnerability and also for high values of the

vulnerability. In this case, the marginal benefit from investment

in security for low vulnerability information sets does not

justify the investment since the security of the information set

is already good. However if the information set is extremely

vulnerable, the cost of security is too high to be ’profitable’,

in the sense that there is no benefit in protecting it.

B. Sufficient conditions for monotone investment

In this section, we derive sufficient conditions on the

probability loss in order to avoid the non-monotonicity in the

vulnerability of the information set.

First we need to define the monotonicity of a set-valued

function. We say that the set-valued function f : Rn → 2R

is non-decreasing if for any xL, xH ∈ R
n with xL ≤ xH

(for the product order), we have for any yL ∈ f(xL) and any

yH ∈ f(xH): yL ≤ yH .

We give a particular case and refer to [10] for a more general

result (dealing with cases where choices can be discrete):

Proposition 1. Assume that the function p(x, v) is twice

continuously differentiable on R+ × [0, 1]. If

∂p

∂x
(x, v) ≤ 0, and,

∂2p

∂x∂v
(x, v) ≤ 0 (2)

then the function (v, ℓ) 7→ ϕ(v, ℓ) is non-decreasing in (v, ℓ).

Remark 1. The first condition requires that the function

p(x, v) is non-increasing in x, i.e. the probability of a security

break is lowered when more investment in security is done.



C. A simple model and the 1/e rule

Even if previous conditions are not met, what is the amount

that should be spent on security? The following generalization

of Gordon and Loeb’s Proposition 3 gives an upper bound on

this amount:

Theorem 1. If the function x 7→ p(x, v) is non-increasing

and log-convex in x then the optimal security investment is

bounded by ℓv/e.

Theorem 1 shows that for a broad class of information

security breach probability function, the optimal security in-

vestment is always less than 37% of the expected loss without

protection. We refer to [10] for a proof of this theorem and

for a natural scenario under which the log-convex assumption

is valid.

III. OPTIMAL SECURITY INVESTMENT FOR AN

INTERCONNECTED AGENT

We now extend previous framework in order to model an

agent who needs to decide the amount to spend on security if

this agent is part of a network. In this section, we give results

concerning the incentives of an agent in a network. In the

next section, we will consider a security game associated to

this model of agent and determine the equilibrium outcomes.

A. General model for an interconnected agent

In order to capture the effect of the network, we will assume

that each agent faces an internal risk and an indirect risk.

As explained in the introduction, the indirect risk takes into

account the fact that a loss can propagate in the network.

The estimation of the internal risk depends only on private

information available to the agent. However in order to decide

on the amount to invest in security, the agent needs also to

evaluate the indirect risk. This evaluation depends crucially on

the information on the propagation of the risk in the network

available to the decision-maker. We now describe an abstract

and general setting for the information of the agent.

We assume that the information concerning the impact of

the network on the security of the agent is captured by a

parameter γ living in a partially ordered set Γ (poset, i.e

a set on which there is a binary relation that is reflexive,

antisymmetric and transitive). Indeed this assumption is not

a technical assumption. The interpretation is as follows: γ
captures the state of the network from the point of view of

security and we need to be able to compare secure states from

unsecure ones.

Given γ ∈ Γ, the agent is able to compute the probability

of loss for any amount x ∈ X invested in security which is

denoted by p(x, v, γ). We still assume that the agent is risk

neutral , so that the optimal security investment is given by:

ϕ(v, ℓ, γ) = argmin{ℓp(x, v, γ) + x : x ∈ X}. (3)

Note that in our model we consider that only global statistics

about the network are available to all agents. The state of

the network γ is public. A ’high’ value of γ corresponds

to a secure environment, typically with a high fraction of

the population investing in security while a ’low’ value of

γ corresponds to an unsecure environment with few people

investing in security. For example, in the epidemic risk model

described below, decision regarding investment are binary

and the public information consists of the parameters of the

epidemic risk model (which are supposed to be fixed) and the

fraction γ of the population investing in security. Then for any

γ ∈ [0, 1], the agent is able to compute p(x, v, γ) as explained
below. Note that in our model, the vulnerability v of an agent

is an intinsic parameter of this agent, in particular it does not

depend on the behavior of others or γ.

B. Epidemic risks model

In order to gain further insight, we consider in this section

the case of economic agents subject to epidemic risks. This

model was introduced in [5]. We concentrate here on a

simplified version presented in [6]. In this section, we focus on

the dependence of p(x, v, γ) in x and γ. For ease of notation,

we remove the explicit dependence in the vulnerability v.

For simplicity, we assume that each agent has a discrete

choice regarding self-protection, so that X = {0, 1}. If she

decides to invest in self-protection, we set x = 1 and say that

the agent is in state S as secure, otherwise we set x = 0 and

say that the agent is in state N as non-secure or negligent.

Note that if the cost of the security product is not one, we can

still use this model by normalizing the loss ℓ by the cost of the

security investment. In order to take her decision, the agent

has to evaluate p(0, γ) and p(1, γ). To do so, we assume that

global statistics on the network and on the epidemic risks are

publicly available and that the agent uses a simple epidemic

model that we now describe.

Agents are represented by vertices of a graph and face two

types of losses: direct and indirect (i.e. due to their neighbors).

We assume that an agent in state S cannot experience a direct

loss and an agent in state N has a probability p of direct

loss. Then any agent experiencing a direct loss ’contaminates’

neighbors independently of each others with probability q if

the neighbor is in state S and q+ if the neighbor is in state

N , with q+ ≥ q. Since only global statistics are available for

the graph, we will consider random families of graphs G(n)

with n vertices and given vertex degree with a typical node

having degree distribution denoted by the random variable D
(see [11]). In all cases, we assume that the family of graphs

G(n) is independent of all other processes. All our results are

related to the large population limit (n tends to infinity). In

particular, we are interested in the fraction of the population

in state S (i.e. investing in security) and denoted by γ.

Using this model the agent is able to compute the functions

p(0, γ) and p(1, γ) thanks to the following result proved in

[5] and [12] (using a local mean field):

Proposition 2. Let Ψ(x) = E[xD] be the generating function

of the degree distribution of the graph. For any γ ∈ [0, 1],
there is a unique solution in [0, 1] to the fixed point equation:

y = 1− γΨ(1− qy)− (1− γ)(1− p)Ψ(1− q+y),



denoted by y(γ). Then we have,

p(1, γ) = 1−Ψ(1− qy(γ)),

p(0, γ) = 1− (1 − p)Ψ(1− q+y(γ)).

If we define h(γ) = p(0, γ) − p(1, γ) as the difference of

the two terms given in Proposition 2, we see that the optimal

decision is:

ℓh(γ) > 1 ⇔ agent invests. (4)

If the benefit of the protection which is ℓh(γ) is more than

its cost (here normalized to one), the agent decides to invest,

otherwise the agents does not invest. In particular, we observe

that the condition for the incentive to invest in security to

increase with the fraction of population investing in security

is given by:

h(γ) = p(0, γ)− p(1, γ) is a decreasing function. (5)

We refer to [10] for a generalization of this property to a much

more general framework and the study of two cases with strong

and weak protection.

IV. EQUILIBRIUM ANALYSIS OF THE SECURITY GAME

We now present our results in a game-theoretic framework

where each agent is strategic. We assume that the effect of

the action of any single agent is infinitesimal but each agent

anticipates the effect of the actions of all other agents on the

security level of the network.

A. Information structure and fulfilled expectations equilibrium

In most of the literature on security games, it is assumed

that the player has complete information. In particular, each

player knows the probability of propagation of the attack or

failure from each other player in the network and also the

cost functions of other players. In this case, the agent is able

to compute the Nash equilibria of the games (if no constraint

is made on the computing power of the agent) and decides on

her level of investment accordingly. In particular, the agent is

able to solve (3) for all possible values of γ which capture the

decision of all other agents. Note that even if only binary

decisions are made by agents the size of the set Γ grows

exponentially with the number of players in the network.

Moreover in a large network, the complete information as-

sumption seems quite artificial, especially for security games

where complete information would then implies that the agents

disclose information on their security strategy to the public and

hence to the potential attacker!

Here we relax the assumption of complete information. As

in previous section, we assume that each agent is able to

compute the function p(x, v, γ) based on public information

and on the epidemic risk model. The values of the possible loss

ℓ and the vulnerability v are private information of the agent

and vary among the population. In order to define properly

the equilibrium of the game, we assume that all players are

strategic and are able to do this computation. Hence if a player

expect that a fraction γe of the population invests in security,

she can decide for her own investment. We assume that at

equilibrium expectations are fulfilled so that at equilibrium the

actual value of γ coincides with γe. This concept of fulfilled

expectations equilibrium to model network externalities is

standard in economics (see Section 3.6.2 in [2]).
We now describe it in more details. For simplicity of

the presentation, we do not consider the dependence in the

vulnerability v since in the security game, we focus on the

monotonicity in γ which will turn out to be crucial. We also

consider that the choice regarding investment is binary, i.e.

X = {0, 1}.
We consider a heterogeneous population, where agents

differ in loss sizes only. This loss size ℓ is called the type

of the agent. We assume that agents expect a fraction γe of

agents in state S, i.e. to make their choice, they assume that the

fraction of agents investing in security is γe. We now define

a network externalities function that captures the influence of

the expected fraction of agents in state S on the willingness

to pay for security. Let the network externalities function be

h(γe). More precisely, for an agent of type ℓ, the willingness

to pay for protection in a network with a fraction γe of the

agents in state S is given by ℓh(γe) so that if

ℓh(γe) ≥ c, (where c is the cost of the security option) (6)

the agent will invest and otherwise not. Hence (6) is in

accordance with (4) (where the cost was normalized to one).

Note that here, we do not make any a priori assumption on

the network externalities function h which can be general and

fit to various models.
Let the cumulative distribution function of types be F (ℓ),

i.e the fraction of the population having type lower than ℓ is

given by F (ℓ) ≤ 1. We assume that F (ℓ) is continuous with

positive density everywhere on its support which is normalized

to be [0, 1]. In particular, F is strictly increasing and it follows

that the inverse F−1(γ) is well-defined for γ ∈ [0, 1].
Given expectation γe and cost for protection c, all agents

with type ℓ such that ℓh(γe) > c will invest in protection.

Hence the actual fraction of agents investing in protection is

given by γ = 1− F
(

min
(

c
h(γe) , 1

))

. Hence, we can invert

this equation and we define the willingness to pay for the last

agent in a network of size γ with expectation γe as

w(γ, γe) = h(γe)F−1(1− γ). (7)

Seen as a function of its first argument, this is just an inverse

demand function: it maps the quantity of protection demanded

to the market price. For goods that do not exhibit network

externalities, demand slopes downward: as price increases, less

of the good is demanded. This fundamental relationship may

fail in goods with network externalities.
For a fixed cost c, in equilibrium, the expected fraction γe

and the actual one γ must satisfy

c = w(γ, γe) = h(γe)F−1(1− γ). (8)

If we assume moreover that in equilibrium, expectations are

fulfilled, then the possible equilibria are given by the fixed

point equation:

c = w(γ, γ) = h(γ)F−1(1− γ) =: w(γ). (9)



We see that if h′(.) > 0, the concept of fulfilled expectations

equilibrium captures the possible increase in the willingness to

pay as the number expected to be sold increases. This would

corresponds to the case where we have w′(γ) > 0 for some

values of γ. In such cases, a critical mass phenomenon can

occurs: there is a problem of coordination. We explain this

phenomenon more formally in [10].

Remark 2. The case of an homogeneous population in which

all agents have the same type, i.e the same loss size ℓ
corresponds to the function F−1 being constant equal to ℓ.
In this case, the willingness to pay is simply w(γ) = h(γ)ℓ.
In particular, the epidemic risk model presented above can

be used to model the network externalities by the function

h(γ) computed in Section III. In this case, Condition (5) still

gives a condition for incentives to be align. As shown in [10],

this condition prevents critical mass: there is no coordination

problem.

B. Critical mass: coordination problem

To determine the possible equilibria, we analize the shape

of the fulfilled expectations demand w(γ). We refer to [10]

for this analysis and the proof of the following theorem:

Theorem 2. A network has positive critical mass if

limγ→0 h
′(γ) > 0 and either

(i) w(0) = 0, i.e. if all agents are in state N then no agent

is willing to invest in self-protection;

(ii) limγ→0 h
′(γ) is sufficiently large, i.e. there are large

private benefits to join the group of agents in state S
when the size of this group is small;

(iii) limγ→1 F
′(γ) is sufficiently large, i.e. there is a signif-

icant density of agents who are ready to invest in self-

protection even if the number of agents already in state

S is small.

We finish this section by explaining the main difference

between our model and models with standard positive exter-

nalities which are felt only by the adopters of the good. In

our case, when an agent chooses to invest in security, we have

to distinguish between two positive externalities: one is felt

by the agents in state S and the other is felt by the agent in

state N . Indeed as γ increases, both populations expereince

a decrease of their probability of loss but the value of this

decrease is not the same in both populations. We call the

’public externalities’ the decrease felt by agents in state N
and the ’private externalities’ the decrease felt only by agents

in state S. We can still have h′(.) < 0 so that by result of

previous section (see Condition 5), incentives are align and

there is no coordination problem (no critical mass). However,

we show in [10] that even in this case, the equilibrium is not

socially efficient:

Theorem 3. A social planner will choose a larger fraction γ of

agents investing in self-protection than the market equilibrium

for any fixed cost c.

V. CONCLUSION

In this paper, we study under which conditions agents

in a large network invest in self-protection. We started our

analysis with finding conditions when the amount of invest-

ment inceases for a single agent as the vulnerability and

loss increase. We also showed that risk-neutral agent do not

invest more than 37% of the expected loss under log-convex

security breach probability functions. We then extended our

analysis to the case of interconnected agents of a large network

using a simple epidemic risk models. We derived a sufficient

condition on the security breach probability functions taking

into consideration the global knowledge on the security of

the entire network for guaranteeing increasing investment with

increasing vulnerability. It would be interesting to use other

epidemics models as in [13] to see the impact on the results of

this section. Finally, we study a security game where agents

anticipate the effect of their actions on the security level of

the network. We showed that the condition derived to ensure

the monotinicity of investment of an interconnected agent

with respect to the global security level of the netwok, also

ensures that there is no coordination problem. In the case

of an homogeneous population, we showed that even if the

incentives are aligned, the fulfilled equilibrium is not socially

efficient. We explained it by the separation of the network

externalities in two components: one public (felt by agents not

investing) and the other private (felt only by agents investing

in self-protection).
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