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ABSTRACT
Motivated by the modeling of the spread of viruses or epi-
demics with coordination among agents, we introduce a new
model generalizing both the basic contact model and the
bootstrap percolation. We analyze this percolated thresh-
old model when the underlying network is a random graph
with fixed degree distribution. Our main results unify many
results in the random graphs literature. In particular, we
provide a necessary and sufficient condition under which a
single node can trigger a large cascade. Then we quantify
the possible impact of an attacker against a degree based
vaccination and an acquaintance vaccination. We define a
security metric allowing to compare the different vaccina-
tions. The acquaintance vaccination requires no knowledge
of the node degrees or any other global information and is
shown to be much more efficient than the uniform vaccina-
tion in all cases.

Categories and Subject Descriptors
G.2.2 [Discrete Mathematics]: Graph Theory—Network
problems

General Terms
Theory, Performance, Design

Keywords
Epidemics, Random graphs, Vaccination

1. INTRODUCTION
Many network phenomena are well modeled as spreads of

epidemics through a network. Examples include the spread
of worms and email viruses, and, more generally, faults. The
propagation of information and opinions can also often be
modeled as the spread of an epidemic. Interacting particle
systems (like the contact process) have been successfully em-
ployed to model such diverse phenomena. The distinguish-
ing features of these stochastic systems are that they model
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a large number of particles on a graph, and that each particle
is assigned a state function of the states of nearby particles.
Here particles may represent computers, people... Tradi-
tionally, research on interacting particle systems has only
answered analysis-type questions, such as determining the
steady-state behavior of the system or the probability of an
epidemic outbreak. Our aim is to study these models with an
engineering eye to answer design-oriented questions. With
this general aim in mind, we consider the concrete problem
of containment of the spread of viruses in a random graph.
We will consider vaccination strategies applicable before the
epidemic starts spreading as opposed to vaccination strate-
gies based on contact tracing method (see [4] for a rigorous
treatment of this case). We show that the acquaintance vac-
cination proposed in [7] has the advantage of requiring no
global information and allows a much better protection of
the network against epidemics (propagating according to a
contact process or with a probability of contagion that is a
threshold function) than the uniform vaccination.

A worm is a self-propagating malicious program that ex-
ploits security vulnerabilities and does not require user ac-
tion to propagate. The mechanism by which a worm dis-
covers vulnerable hosts is one of the critical factors of a
worm’s strategy [31]. Current generation worms have typ-
ically used simple strategies, such as random or sequential
scanning of the address space, to discover vulnerable hosts.
In this case, it might be reasonable to model the spread
of the epidemic as a contact process [32]: a node can be in-
fected by its infected neighbors at a rate that is proportional
to their number. There is a vast literature on epidemics on
complex networks (see [25] for a review) and there is now
a good understanding of the impact of the topology on the
spread of an epidemic [11, 8]. In this paper, we propose a
new epidemic model which generalizes the basic SIR model.
Most of the epidemic models consider a transmission mech-
anism which is independent of the local condition faced by
the agents concerned. However, if there is a factor of coor-
dination or persuasion involved, relative considerations tend
to be important in understanding whether some new belief
or behavior is adopted. In such cases, the probability that a
node becomes infected when r out of her d neighbors are al-
ready infected can be modeled by a threshold function: the
probability is v ∈ (0, 1] if r/d ≥ θ and it is zero otherwise. If
θ = 1/2, this would correspond to a local majority rule [27].
This notion has been proposed to address the central prob-
lem in distributed computing of overcoming failures. The
idea is to eliminate the damage caused by failed vertices by
maintaining replicated copies of crucial data and performing



a voting process among the participating processors when-
ever faults occur, adopting the values stored at the majority
of the processors as the correct data. [22] proposed to apply
such ideas to large peer-to-peer systems. It is then imper-
ative to understand the possible influence of malign peer
attempting to subvert the system. Such an understanding
can lead to better techniques for preventing and fighting this
malicious intent.

Another motivation for our work comes from social sci-
ences. In social contexts, the diffusion of information and
behavior often exhibits features that do not match well those
of the contact process [29]. To illustrate our purpose, con-
sider the basic game-theoretic diffusion models proposed by
Morris [24]. Consider a graph G in which the nodes are the
individuals in the population and there is an edge (i, j) if i
and j can interact with each other. Each node has a choice
between two possible behaviors labeled A and B. On each
edge (i, j), there is an incentive for i and j to have their
behaviors match, which is modeled as the following coordi-
nation game with parameter q ∈ (0, 1): if i and j choose A
(resp. B), they each receive a payoff of q (resp. (1 − q)); if
they choose opposite strategies, then they receive a payoff
of 0. Then the total payoff of a player is the sum of the
payoffs with each of her neighbors. Even at this level of
simplicity, the analysis of the possible equilibria when nodes
apply a best-response update gives a number of qualitative
insights. Jackson and Yariv [12] analyze the influence of net-
work structure on diffusion of behavior in network games.
Watts [30] shows that there can be a cascading sequence of
nodes switching to B with only one node forced to play B
while all others are playing A (see also [19]). In this pa-
per, we will extend this result and go one step further: we
show how it is possible to control (i.e. provoke or prevent)
efficiently such kind of cascading sequence.

The first main contribution of our work is to introduce a
new model of epidemic called the percolated threshold
model. This model is versatile enough to cover both the
contact model and the threshold model. It combines neigh-
borhood effects and random transmission. Our second main
contribution is an analysis of this model when the underly-
ing network is a random graph with fixed degree distribu-
tions. Our main results on the spread of the epidemic
for the percolated threshold model unify many results in the
random graphs literature. In particular, we derive a neces-
sary and sufficient condition under which a single node can
trigger a large cascade. Although random graphs are not
considered to be highly realistic models of most real-world
networks, they are often used as first approximation and are
a natural first choice for a sparse interaction network in the
absence of any known geometry of the problem. Our third
contribution is a rigorous analysis of attack and vac-
cination strategies. We give quantitative results on the
possible impact of an attacker for a vaccination targeting
high-degree nodes (but requiring global knowledge of the
network) and a local immunization called the acquaintance
vaccination [7]. We show that this vaccination outperforms
the basic uniform vaccination, especially in scale-free net-
works.

While there is a vast literature providing non-rigorous
analysis of immunization strategies for random networks [6,
7], results in the mathematics literature are very rare. The
work of Britton, Janson and Martin-Löf [5] is a notable ex-
ception but restricted to the basic contact model. Our work

provides a new proof of their results and extends them to
our percolated threshold model. In the contact model, ran-
dom vaccination requires vaccinating a very large fraction
of a computer network or population. In particular, as it
was heuristically shown in [6, 7], stopping viruses spreading
upon contact requires almost 100% vaccination when the
degree distribution of the underlying graph has an infinite
variance for any (positive) value of the conatgion probabil-
ity. On the other hand, targeted vaccination of the most
highly connected nodes, while effective, requires global infor-
mation about the network, rendering it impractical in many
cases. Following [7], we study a vaccination of random ac-
quaintances of randomly selected nodes. In this way, the
most highly connected nodes are immunized without requir-
ing the knowledge of the network. Our analysis validates
results of [7] and shows that in the contact model, the frac-
tion of vaccinated nodes required to stop the epidemic can
be lowered from almost 100% in the random vaccination’s
case to 25% if the acquaintance vaccination is used. More
generally, we define the efficiency of a vaccination strategy
as the reduction in the possible damages caused by a single
infected node. In the case of power-law graphs, we show
that the efficiency gain of the acquaintance vaccination is
much higher than the one obtained by random vaccination.

The paper is structured as follows. We introduce our mod-
els for the graph, the epidemic and the attack and vaccina-
tion strategies in Section 2. Our main results on the spread
of the epidemic as a function of the attack strategy (Theorem
4) and the impact of the vaccinations (Theorem 5) are given
in Section 3. We present applications of our theorems in
Section 4. In particular we derive the cascade condition and
compare degree based vaccination and acquaintance vacci-
nation. In Section 5, we give the main technical proofs of
our paper. Section 6 summarizes the paper.

2. MODELS
We first present the model for the underlying graph, then

the model for the epidemic process and finally the attack
and vaccination strategies.

2.1 Graphs: the configuration model
Let n ∈ N and let (di)

n
1 = (d

(n)
i )n

1 be a sequence of non-
negative integers such that

Pn
i=1 di is even. We define a

random multigraph with given degree sequence (di)
n
1 , de-

noted by G∗(n, (di)
n
1 ) by the configuration model [3]: take

a set of di half-edges for each vertex i and combine the half-
edge into pairs by a uniformly random matching of the set of
all half-edges. Conditioned on the multigraph G∗(n, (di)

n
1 )

being a simple graph, we obtain a uniformly distributed ran-
dom graph with the given degree sequence, which we denote
by G(n, (di)

n
1 ) [13].

We will let n → ∞ and assume that we are given (di)
n
1

satisfying the following regularity conditions [23]:

Condition 1. For each n, (di)
n
1 = (d

(n)
i )n

1 is a sequence
of non-negative integers such that

Pn
i=1 di is even and, for

some probability distribution (pr)
∞
r=0 independent of n,

(i) |{i : di = r}|/n → pr for every r ≥ 0 as n → ∞;

(ii) λ :=
P

r rpr ∈ (0,∞);

(iii)
Pn

i=1 di/n → λ as n → ∞;



The results of this work can be applied to some other
random graphs models too by conditioning on the vertex
degrees. For example, for the Erdös-Rényi graph G(n, p)
with np → λ ∈ (0,∞), the assumptions hold with (pr) a
Poisson distribution with mean λ.

2.2 Epidemic: percolated threshold model
Symmetric threshold model: We first present the sym-

metric threshold model which generalizes the contagion model
of [24]: a node becomes active when a certain threshold frac-
tion of neighbors are already active. We allow the thresh-
old fraction to be a random variable with distribution de-
pending on the degree of the node and such that thresh-
olds are independent among nodes. Formally, we define for
each d ∈ N, a sequence of i.i.d. random variables in N de-
noted by (Ki(d))∞i=1. The threshold associated to node i is
ki = Ki(di) where di is the degree of node i. We will use
the notation (d, k) = (di, ki)

n
1 .

Now the progressive dynamic of the epidemic operates as
follows: some set of nodes S starts out being active; all
other nodes are inactive. Time operates in discrete steps t =
1, 2, 3, . . . . At a given time t, any inactive node i becomes
active if its fraction of active neighbors exceeds its threshold
Ki(di) + 1. This in turn may cause other nodes to become
active. We will suppose that Ki(1) = 0 for all i, so that any
leaf of the network is active as soon as her neighbor becomes
active.

It is easy to see that the final set of active nodes (after
n time steps if the network is of size n) only depends on
the initial set S (and not on the order of the activations)
and can be obtained as follows: set Xi = 11(i ∈ S) for all i.
Then as long as there exists i such that

P

j∼i Xj > ki, set
Xi = 1, where j ∼ i means that i and j share an edge in
G. When this algorithm finishes, the final state of node i is
represented by Xi: Xi = 1 if node i is active and Xi = 0
otherwise.

Note that we allow for the possibility di < Ki(di) in which
case, node i is never activated unless it belongs to the set S.

We now introduce a general model of epidemic combining
neighborhood effects and random transmission.

Percolated threshold model: this model depends on a
parameter π ∈ [0, 1] and a distribution of random thresholds
(K(d))d∈N. Given any graph G and initial set S, we now
proceed in two phases.

• bond percolation: randomly delete each edge with prob-
ability 1 − π independently of all other edges. We de-
note the resulting random graph by Gπ;

• apply the symmetric threshold epidemic with thresh-
olds K(d): set Xi = 11(i ∈ S) and then as long as there
is i such that

P

j∼πi Xj > Ki(di), set Xi = 1, where
j ∼π i means that i and j share an edge in Gπ and di

is the degree of node i in the original graph G.

The final fraction of active nodes is simply n−1Pn
i=1 Xi.

Clearly if π = 1, this is exactly the symmetric threshold
model. In general, the intuition is the following: in a case
where the virus propagates instantaneously but only if some
interactions occur between the nodes. If one looks at the
epidemic on a finite time horizon and two neighbors did not
interact during that time, the virus will not propagate on
their shared edge. Hence one can think of π as the proba-
bility that they actually did interact during this period of
time.

Examples of epidemics. We now present some exam-
ples to illustrate the scope of our framework.

Example 1. The most basic epidemic model is the con-
tact model with probability of contagion π on each edge. It
corresponds to the percolated threshold model with parameter
π and where K(d) = 0 for any d ∈ N. We refer to [18] for
a connection with the dynamic SIR epidemic model.

Example 2. The linear threshold model generalizes the
model of [24] by allowing nodes to weigh the influence of their
neighbors differently and assuming that each node’s threshold
is chosen randomly and possibly depends on the degree of the
node. Following [16], we introduce

• for each d ∈ N, let (W1i(d), . . . , Wdi(d))∞i=1 be a se-
quence of i.i.d. random variables such that the compo-
nents of (W1i(d), . . . , Wdi(d)) are exchangeable;

• for each d ∈ N, let (K̃i(d))∞i=1 be a sequence of i.i.d.
random variables in R.

For node i with degree di, the non-negative weight Wki(di)
indicates the influence that its k’s neighbor exerts on i and
the threshold K̃i(di) indicates the weighted fraction of i’s
neighbors that must adopt the behavior before i does. Given
a node i of degree di and a bijective mapping v from the
set of neighbors of i to {1, 2, . . . , di}, if the set of active
nodes is given by Xj = 1 for j 6= i, then i becomes active if
P

j∼i XjWv(j)i(di) > K̃i(di). Thanks to exchangeability, we
have

P

 

X

j∼i

XjWv(j)i(di) > K̃i(di)|
X

j∼i

Xj = k

!

= P

 

k
X

ℓ=1

Wℓi(di) > K̃i(di)

!

.

Hence this model corresponds to our general threshold model
with P(Ki(d) ≤ k) = P(

Pk
ℓ=1 Wℓ1(d) > K̃1(d)).

2.3 Attack and Vaccination strategies
We first describe the vaccination strategy. We assume

that a perfect vaccine is available. By this, we mean that an
individual who is vaccinated is completely protected from
the virus and is not able to spread the virus further. She re-
mains inactive for the whole period of time. We assume that
a part of the population is vaccinated before the epidemic
starts. The epidemic progresses as defined above with the
only difference that activated individuals can only activate
a neighbor who has not been vaccinated. For the study of
the epidemic in the vaccinated population, we may simply
remove all vaccinated individuals from G (and edges con-
nected to these individuals) but keeping the same thresh-
olds (ki)

n
1 . We will consider the two following vaccination

strategies:
Degree based vaccination: randomly inoculate vertex

i with probability βP
di

, where di is the degree of the vertex.
In order to select high-degree nodes (as explained above),

the whole graph (or at least the degrees of all nodes) has to
be known and this is rarely the case [25]. Our next strategy
aims at targeting nodes with high degree but only uses local
graph-knowledge from selected nodes. The main underly-
ing idea (first proposed in [7]) is to use the following bias:
an edge points to a node with ’larger’ degree in the sense



that its degree distribution is rpr/λ, the size-biased degree
distribution.

Acquaintance vaccination: sample each node with prob-
ability c′. If the node is of degree d, inoculate each of
her neighbors (in the graph G) at random with probabil-
ity p′

d ≤ 1 (independently from each other). Consequently,
a node with degree d will target and vaccinate each of her
neighbors with probability βA

d := c′p′
d.

We now describe the attack. In our model, the initial
set of active nodes S corresponds to the attacked nodes:
these nodes will remain active during the whole process of
the infection. We will suppose that the attacker is able to
detect vaccinated nodes and do not attack them. In other
words, the initial attack (and the epidemic) takes place on
the graph from which we removed the vaccinated nodes. The
initial set S of active nodes depends on the attacker strategy.
We will look at the following attack strategies:

Degree based attack: randomly attack vertex i with
probability αdi

, where di is the degree of the vertex. In other
words, each non-vaccinated node i draws independently of
each other a Bernoulli random variable σi with parameter
αdi

and is considered as active if σi = 1 and not initially
active otherwise.

In particular, if αd = α for all d, then the attacker suc-
cessfully contaminates a fraction α chosen uniformly in the
population (before the epidemic takes place). It is intuitively
clear that a better attack strategy would be to contaminate
the individuals with the highest degrees. This case would
correspond to a parameter αd ≥ αd′ whenever d ≥ d′, but
it requires a global knowledge of the graph.

3. MAIN RESULTS
In this section, we present our main technical results. The

practical insights about the interplay between attack and
vaccinations follow from these results and will be described
in Section 4 (which can be read while skipping this section).
In Section 3.1, we show how to modify the parameter of
the degree distribution of the graph when vaccinated nodes
are removed. In Section 3.2, we compute the size of the
epidemic on a general graph for a degree based attack. By
applying this last result to the modified graph (where vac-
cinated nodes are removed), we can measure the interplay
between the attack and vaccination strategies. Finally in
Section 3.3, we provide more physical meanings for our for-
mula thanks to the local mean field approximation (shown
to be exact in our case in [17]).

We first need to introduce some notations. For d, ℓ ∈ N,
we denote tdℓ = P(K(d) = ℓ) the probability distribution
of the threshold for a node of degree d. For integers ℓ ≥ 0
and 0 ≤ r ≤ ℓ let bℓr denote the binomial probabilities
bℓr(p) := P(Bi(ℓ, p) = r) =

`

ℓ
r

´

pr(1 − p)ℓ−r.
All unspecified limits and other asymptotics statement are

for n → ∞. For example, w.h.p. (with high probability)
means with probability tending to 1 as n → ∞ and →p

means convergence in probability as n → ∞. Similarly, we
use op and Op in a standard way. For example, if X is
a parameter of the random graph, X = op(n) means that
P(X > ǫn) → 0 as n → ∞ for every ǫ > 0; equivalently
X/n →p 0.

3.1 Vaccination
The vectors α = (αd)

∞
d=1, βP = (βP

d )∞d=1 and βA =
(βA

d )∞d=1 are the parameters for the attack strategy, the de-

gree based vaccination strategy and the acquaintance vacci-
nation strategy respectively (introduced in Section 2.3).

Proposition 2. Consider the random graph G∗(n, (di, ki)
n
1 )

for a sequence (di)
n
1 satisfying Condition 1.

Let G∗(nP , (dP
i , kP

i )nP

1 ) (resp. G∗(nA, (dA
i , kA

i )nA

1 )) be the
random graph obtained when removing all vaccinated nodes
from G∗(n, (di, ki)

n
1 ) for the degree based (res. acquaintance)

vaccination with parameter βP (resp. βA).
For the degree based vaccination, we have:

• nP = ζP n + op(n) with ζP =
P

j(1 − βP
j )pj;

• let x = 1
λ

P

s≥1 s(1 − βP
s )ps, then we have

|{i : dP
i = j; kP

i = ℓ}|

nP

→p pP
jℓ =

1

ζP

X

s≥j

(1 − βP
s )pstsℓbsj(x). (1)

For the acquaintance vaccination, we have:

• nA = ζAn + op(n) with ζA =
P

ℓ pℓy
ℓ, where y =

1
λ

P

s≥1 s(1 − βA
s )ps;

• let p̂ =
P

ℓ ℓpℓyℓ(1−βA
ℓ )

λy2
, then we have

|{i : dA
i = j; kA

i = ℓ}|

nA

→p pA
jℓ =

1

ζA

X

s≥j

yspstsℓbsj((1 − βA
s )p̂). (2)

If in addition,
P

i d2
i = O(n), then all the conclusions hold

also for the (simple) random graphs G(n, (di, ki)
n
1 ),

G(nP , (dP
i , kP

i )nP

1 ) and G(nA, (dA
i , kA

i )nA

1 ).

Proposition 2 is a direct consequence of Lemmas 11 and
12 proved in Sections 5.3 and 5.4.

Corollary 3. For the degree based vaccination, the asymp-
totic fraction of vaccinated nodes is 1 − ζP and the asymp-
totic degree distribution in the graph where vaccinated nodes
have been deleted is

pP
j =

1

ζP

X

s≥j

(1 − βP
s )psbsj(x),

where ζP and x are defined in Proposition 2.
For the acquaintance vaccination, the asymptotic fraction

of vaccinated nodes is 1−ζA and the asymptotic degree distri-
bution in the graph where vaccinated nodes have been deleted
is

pA
j =

1

ζA

X

s≥j

yspsbsj((1 − βA
s )p̂),

where ζA, y and p̂ are defined in Proposition 2.

3.2 Epidemic spread
Given a distribution p = (psℓ = pstsℓ) , we define the

functions:

h(z; α, p, π) :=
X

s,r≥s−ℓ

r(1 − αs)psℓbsr(1 − π + πz),

g(z;α, p, π) := h(z; α,p, π) − λ(p)z(1 − π + πz),

h1(z; α, p, π) :=
X

s,r≥s−ℓ

(1 − αs)psℓbsr(1 − π + πz),



where λ(p) =
P

s s
P

ℓ psℓ. For a parameter of the attack
α, we define

ẑ(p, α, π) := max {z ∈ [0, 1] : g(z;α, p, π) = 0} .

The next result allows to compute for any parameter α of
the attack, the final proportion of infected nodes: Φ(α) =

limn→∞

Pn
i=1

Xi

n
(defined in Section 2.2).

Theorem 4. Consider the random graph G∗(n, (di, ki)
n
1 )

for a sequence (di)
n
1 satisfying Condition 1 and let p =

(pstsℓ). For the percolated threshold epidemic on the graph
G∗(n, d,k), we have:

(i) If ẑ(p, α, π) = 0, then w.h.p. Φ(α) = 1−h1(0, α,p, π).

(ii) If ẑ(p, α, π) ∈ (0, 1], and further ẑ is not a local max-
imum point of g(z;α, p, π), then w.h.p. Φ(α) = 1 −
h1(ẑ, α, p, π).

If in addition,
P

i d2
i = O(n), then all the conclusions hold

also for the (simple) random graph G(n, d, k).

A proof of this theorem is given in [17]. Comparison with
existing results in the literature is given in Section 4.

We now state our main results concerning the interaction
between vaccination and attack strategies.

Theorem 5. For the degree based vaccination, the con-
clusions of Theorem 4 hold for the random graph
G∗(nP , (dP

i , kP
i )n

1 ) with the parameter pP = (pP
jℓ) defined in

(1).
For the acquaintance vaccination, the conclusions of The-

orem 4 hold for the graph G∗(nA, (dA
i , kA

i )n
1 ) with the param-

eter pA = (pA
jℓ) defined in (2).

In words, Theorem 5 shows that for the percolated thresh-
old epidemic, the graphs obtained by deletion of the vac-
cinated nodes, behave like random graphs obtained by the
configuration model with the appropriate asymptotic degree-
threshold sequence. The proof of Theorem 5 follows directly
from Theorem 4 and Lemmas 11 and 12 (proved in Section
5).

3.3 Local Mean Field approximation
In this subsection, we describe an approximation to the

local structure of the graph and present a heuristic argu-
ment which leads quickly to a prediction for the asymptotic
probability of being active which is verified rigorously in
[17]. This branching process approximation is standard in
the random graphs literature [9] and we called it Local Mean
Field (LMF) in [21, 20] for contact epidemics. In this case,
we were able to turn the LMF approximation into a rigorous
argument. For our percolated threshold model, this seems
unlikely to be straightforward and our proof will not use the
LMF approximation. However, for certain random graphs,
this sort of approach was made to work as in [28].

The LMF model is characterized by its connectivity dis-
tribution pr. We now construct a tree-indexed process. Let
T be a Galton-Watson branching process with a root which
has offspring distribution pr and all other nodes have off-
spring distribution p∗

r given by p∗
r−1 = rpr

λ
for all r ≥ 1. Re-

call that p∗
r−1 corresponds to the probability that an edge

points to a node with degree r [9]. The tree T describes
the local structure of the graph G (as n tends to infinity):
the exploration of the successive neighbourhoods of a given

vertex is approximated by the branching process T as long
as the exploration is local (typically restricted to a finite
neighbourhoods independent of n).

We denote by ⊘ the root of the tree and for a node i, we
denote by gen(i) ∈ N the generation of i, i.e. the length of
the minimal path from ⊘ to i. Also we denote i → j if i
belongs to the children of j, i.e. gen(i) = gen(j) + 1 and
j is on the minimal path from ⊘ to i. For an edge (i, j)
with i → j, we denote by Ti→j the sub-tree of T with root
i obtained by the deletion of edge (i, j) from T .

We now consider the percolated threshold model on the
tree T , where the initial set of active nodes is given by a
vector σ = (σi) as described in Section 2.3. Thanks to the
tree structure, it is possible to compute the probability of
being active recursively as follows: for any node i 6= ⊘, let
Yi = 1 if node i is active on the sub-graph Ti→j ∪ {(i, j)}
with initial set of active nodes given by the restriction of σ
to individuals in Ti→j and with individual j held fix in the
inactive state. Then for any i 6= ⊘, we get

Yi = 1 − (1 − σi)11

 

X

ℓ→i

BℓiYℓ ≤ K(di)

!

, (3)

where the Bℓi’s are independent Bernoulli random variables
with parameter π. Then the state of the root is given by

X⊘ = 1 − (1 − σ⊘)11

 

X

i→⊘

Bi⊘Yi ≤ K(d⊘)

!

. (4)

In order to compute the distribution of X⊘, we first solve
the Recursive Distributional Equation (RDE) associated to
the Yi’s: thanks to the tree structure, the random variables
Yℓ in (3) are i.i.d. and have the same distribution as Yi.
Hence their distribution solve the RDE given by

Y
d
= 1 − (1 − σ(D∗ + 1))11

 

D∗
X

i=1

BiYi ≤ K(D∗ + 1)

!

, (5)

where for a given d, the random variable K(d) is defined
in Section 2.2, σ(d) is Bernoulli with parameter αd, Bi’s
are independent Bernoulli with parameter π, D∗ has distri-
bution p∗

r, Y and the Yi are i.i.d. copies (with unknown
distribution).

Lemma 6. Let x = P[Y = 1], where the distribution of
Y solves the RDE (5), then we have λ(1 − x)(1 − xπ) =
h(1−x; α, p, π). Moreover X⊘ in (4) is a Bernoulli random
variable with parameter 1 − h1(1 − x; α,p, π).

Proof. Taking expectation in (5), we get

1 − x =
X

s≥0

p∗
s(1 − αs+1)P

 

s
X

i=1

BiYi ≤ K(s + 1)

!

=

(

(1 − α1)
p1

λ

+
X

s≥1

(s + 1)ps+1

λ
(1 − αs+1)

X

ℓ

ts+1ℓ

X

j≤ℓ

bsj(xπ)

9

=

;

=
1

λ

(

(1 − α1)p1

+
X

s≥1;j≥s−ℓ

(1 − αs+1)ps+1ts+1ℓ(s + 1)bsj(1 − xπ)

9

=

;

.



Note that (s+1)bsj(1−xπ) = j+1
1−xπ

bs+1j+1(1−xπ) for s ≥ 1,
so that

1 − x =
1

λ

(

(1 − α1)p1

+
X

s≥1;j≥s−ℓ

(j + 1)

1 − xπ
(1 − αs+1)ps+1ℓbs+1j+1(1 − xπ)

9

=

;

=
1

λ(1 − xπ)

X

s≥1;j≥s−ℓ

j(1 − αs)psℓbsj(1 − xπ),

where in the last equality we used the fact that for s = 1,
we have t1ℓ = 11(ℓ = 0). Hence, we get

(1 − xπ)(1− x)λ =
X

s≥1;j≥s−ℓ

j(1 − αs)psℓbsj(1 − xπ).

This establishes the first part of the lemma. Taking expecta-
tion in (4) gives: E[X⊘] = 1−

P

s;j≥s−ℓ(1−αs)pstsℓbsj(1−

xπ), and the second part of the lemma follows.

By the change of variable z = 1 − x, we see that Lemma
6 is consistent with Theorem 4. Clearly the crucial point
in recursion (3) is the fact that the Yi can be computed
“bottom-up”. The Yi’s in (4) encode the information that i
is activated by a node in the subtree of T “below” i (and not
by the root). If one considers a node in the original graph
and runs a directed contagion model on a local neighborhood
of this node where only ’directed’ contagion toward this node
are allowed, then the state of the graph seen from this node
is well approximated by the Yi’s.

4. APPLICATIONS
We now show how our Theorems 4 and 5 give new results

and insights for vaccination strategies. We first derive the
cascade condition (rigorously establishing a result of [30]):
if the parameters of the original graph and epidemics sat-
isfy this condition, a single active node can trigger a global
cascade. We then analyze the impact of the vaccinations
and compare the efficiency of the various strategies. In the
last two subsections, we show that our Theorem 4 allows to
recover standard results about random graphs.

4.1 Cascade condition
We now look at the possible damages caused by a small

attack, made on a negligible fraction of the population. In
our model it corresponds to the case where α → 0. Let D
be a random variable with distribution P(D = r) = pr. We
call the following condition the cascade condition:

πE[D(D − 1)11(K(D) = 0)] > E[D]. (6)

Proposition 7. If the cascade condition (6) is satisfied,
then a single initial active node can activate a strictly posi-
tive fraction (as n → ∞) of the population for the percolated
threshold model. If the condition is not satisfied, then for
any finite set S of initially active nodes, the final fraction of
active nodes is op(n).

Before proving this proposition, we make some remarks:

• note that if K does not depend on d, then the condition
becomes

πP(K = 0) >
E[D]

E[D(D − 1)]
.

In particular, if K ≡ 0, then we find the well-known
epidemic threshold condition for the contact model
(see (9) below).

• in the case, where K(d) = qd and π = 1, [19]. Watts
obtained the same condition by an heuristic argument
validated through simulations (see the cascade condi-
tion Eq. 5 in [30]).

Proof. We consider the case αr = α and introduce the
following threshold: Ki(d) = (d+1)11(Ki(di) ≥ 1). In words,
a node i becomes active if one of his neighbor is active and
Ki(di) = 0. Clearly the nodes that become active in this
model need to have only one active neighbor in the original
contagion model with parameter Kj(dj). For any node i, let
Ci be the final set of active nodes when starting with only i
as active node. Clearly, if j ∈ Ci, then we have Ci\{i} ⊂ Cj .
Now if we prove that Φ(0+) = limα→0 Φ(α) > 0, then it is
easy to show that there is a node i such that |Ci| ∼ Φ(0+)n
(see [17] for details). Then any point in Ci will activate at
least the set Ci\{i} in the original contagion model. We
now prove that for under condition (6), we have Φ(0+) > 0.
This will implies the first statement of the proposition. We
have

h(z; α) = h(z; α, p, π)

= (1 − α)

 

X

s

spsts0(1 − π + πz)s

+
X

s

(1 − ts0)sps(1 − π + πz)

!

.

Let φ(z) = λz(1−π+πz)−h(z; 0). The condition Φ(0+) > 0
is equivalent to for ǫ > 0 small enough φ(1−ǫ) > 0. A simple
computation shows that

φ(1 − ǫ) = ǫ

 

−λ + π
X

s

s(s − 1)ts0ps

!

+ o(ǫ),

which is the condition of the proposition.
We need now to prove that if (6) is not satisfied, then a

single active node cannot activate a positive fraction of the
population. We now consider the original threshold model
with αr = α. Firs note that as ǫ → 0, we have for ℓ ≥ 1,

X

r≥s−ℓ

rbsr(1 − ǫπ) ∼ s(1 − ǫπ).

Hence, with the same notation as above, we have as ǫ → 0,

h(1 − ǫ; α) ∼ (1 − α)

 

X

s

sps0(1 − sǫπ)

+
X

s,ℓ≥1

s(1 − πǫ)psℓ

1

A

= (1 − α)

 

λ − πǫ(λ +
X

s

s(s − 1)psts0)

!

so that we get

φ(1 − ǫ) ∼ ǫ

 

−λ + π
X

s

s(s − 1)ts0ps

!

Hence we see that if (6) is not satisfied, then we have
limα→0 Φ(α) = 0 which implies the claim.



4.2 Impact of vaccination
We now compare the degree based vaccination and the ac-

quaintance vaccination. To do this, we compute the impact
of each vaccination on the cascade condition (6).

Proposition 8. For the degree based vaccination, the cas-
cade condition becomes:

π
X

s

s(s − 1)(1 − βP
s )ts0

ps

λ
> 1, (7)

where ts0 = P(K(s) = 0). For the acquaintance vaccination,
the cascade condition becomes:

π
X

s

s(s − 1)(1 − βA
s )2ys−2ts0

ps

λ
> 1. (8)

In the SIR case, where K(d) = 0, i.e. ts0 = 1 and for a

choice βA
s = 1 − e−c/s (explained below), our condition (8)

corresponds to Equation (9) of [7] or Equation (3.12) of [5].

Proof. This proposition follows from simple computa-
tions based on Lemmas 11 and 12.
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Figure 1: Fraction of vaccinated population in the
acquaintance vaccination strategy vac(c) (red-solid
line) compared to the curve c 7→ min(c, 1) (dashed-
green line) for γ = 3.2 and N = 5.

From now on, we consider the following acquaintance vac-
cination: we suppose that each individual is sampled Po(c)
times, where Po(c) is a Poisson distribution with parameter
c ∈ [0,∞). Each time she reports a randomly chosen friend
who is vaccinated. For simplicity, we assume that each indi-
vidual does this with replacement. Consequently, this vacci-
nation scheme corresponds to the acquaintance vaccination
with βA

d = 1 − ec/d (studied in [7] and [5]).
All figures are done for a power-law graph where the de-

gree distribution is given by pr = r−γ/C(γ) for r ≥ N .
N ≥ 1 and γ > 2 are two parameters and C(γ) =

P

k≥N k−γ

is the normalizing constant.
In the acquaintance vaccination, it may happen that some

individuals are chosen more than once for immunisation (be-
ing selected as neighbors of more than one individual). As
a result, the fraction actually immunised denoted by vac(c)
is smaller than the fraction of sampled individuals. In our
model each individual is sampled c times on average. Figure
1 shows the fraction of population actually vaccinated as a

function of c ∈ [0,∞). We see that in order to vaccinate
90% of the population, i.e. vac(c) = 0.9, each individual
will have been randomly selected c = 3 times on average.

In the two following sections, we compare the impact of
the uniform vaccination, i.e. the degree based vaccination
with βP

d = β for all d and the acquaintance vaccination.

4.3 Vaccination for the contact model
Here we consider an epidemic modeled by a contact pro-

cess, i.e. K ≡ 0. In particular, the cascade condition boils
down to the epidemic threshold condition: if π > πc =

E[D]
E[D(D−1)]

then the rate of propagation is sufficiently large

for the virus to become epidemic. Note in particular that
if E[D2] = ∞, then the epidemic threshold is zero [26, 2]:
viruses with very small propagation rate become epidemic.

b or c
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Figure 2: Epidemic threshold as a function of β
for the random vaccination (red-solid), as a func-
tion of c (resp. vac(c)) for the acquaintance vaccina-
tion (green-dashed-dotted) (resp. (yellow-dashed))
for γ = 3.2 and N = 5.

From Proposition 8, we see that the uniform vaccination
increases the epidemic threshold from πc to πP (β) = πc

1−β
where β < 1 is the fraction of vaccinated nodes. In this
case, the acquaintance vaccination is much more efficient.
We rewrite (8) as follows: π > πA(c), where c is the average
number of times an individual is randomly selected. Figure
2 shows the curves of the epidemic threshold for the random
vaccination πP (β), for the acquaintance vaccination πA(c)
and for the acquaintance vaccination as a function of the
fraction of vaccinated population πA(vac−1(β)).

Note in particular that for any value of c < 0.8, the ac-
quaintance vaccination strategy performs better than the
uniform vaccination with parameter β = c. Even if the
fraction of vaccinated nodes in the acquaintance vaccina-
tion strategy vac(c) is lower than c, the efficiency of the
acquaintance vaccination is much higher than the uniform
vaccination because high-degree nodes have been targeted
(without any global information). Here is another example
of the efficiency of the acquaintance vaccination: when the
acquaintance vaccinaction has reached 25% of the popula-
tion, i.e. vac(c) = 0.25, the epidemic threshold is approxi-
mately 0.2 and would require almost 100% of the population
being vaccinated with the uniform vaccination.

In the extreme case where E[D2] = ∞, the uniform vac-
cination is useless: it requires to vaccinate the whole popu-
lation to protect it from the weakest virus (see [6]). The



acquaintance vaccination was proposed in [7] and shown
(heuristically) to be able to stop a contact epidemic on a
power-law graph even when the second moment of the dis-
tribution do not exist. We refer to [7] for more details. Our
work (see also [5]) gives a rigorous treatment of these results.

4.4 Vaccination for the threshold model
We now consider an epidemic with threshold given by

K(D) = qD, where q is a parameter. We examined the im-
pact of π in the last section and we assume now that π = 1.
Then q can be interpreted as a measure of the performance
of the virus: the lower q is, the more contagious the virus is.

We now define the contagion threshold:

qc := sup

8

<

:

q :
X

1≤s<1/q

s(s − 1)ps > λ

9

=

;

.

The cascade condition (6) becomes (recall that π = 1): if
q < qc, then a global cascade is possible. We now look at
the impact of the vaccinations on the contagion threshold.
Namely we define

qP (β) := sup

8

<

:

q : (1 − β)
X

1≤s<1/q

s(s − 1)ps > λ

9

=

;

,

qA(c) := sup

8

<

:

q :
X

1≤s<1/q

s(s − 1)e−2c/sy(c)s−2ps > λ

9

=

;

.
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Figure 3: Curves of the contagion threshold without
vaccination (qc solid), with uniform vaccination (qP

c

dashed), with acquaintance vaccination (qA
c dashed-

dotted) as a function of λ the mean degree.

For a fixed parameter c, Figure 3 gives the curves of qc,
qP (1− ζA) and qA(c) for various values of the mean degree.
Hence we compare the two vaccination strategies when the
asymptotic number of vaccinated nodes is the same, namely
1− ζA. We see that qA(c) < qP (1− ζA) < qc. In particular,
for any qA(c) < q < qP (1 − ζA), a single node can trigger
a large cascade if only uniform vaccination has been done
whereas he would not been able if acquaintance vaccination
had been done (with the same rate of vaccination).

Clearly previous figure shows that acquaintance vaccina-
tion is more efficient than the uniform one. Figure 4 quanti-
fies this difference and compares the effective benefit of both
vaccinations. Note that the values qc, qP and qA could be
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Figure 4: Efficiency gain (in %) of the uniform vacci-
nation (dashed) and of the acquaintance vaccination
(dashed-dotted) as a function of λ the mean degree.

used as a security metric (something like the inverse of the
’cost to break’: the higher qc the easier it is to attack the
system). In particular qc would be the reference and then
one can compare different security solutions by computing
by how much they increase the ’cost to break’. The curves
on Figure 4 are given by 1− qP /qc and 1− qA/qc and hence
are intrinsic measure of the efficiency of each vaccination.

4.5 Percolation in random graphs
We consider here the case where π ∈ [0, 1], K(d) = 0 for

all d and αs = α for all s. This model is an exploration
(from the initial condition) of the connected components of
the random graph after a standard bond percolation. A
simple computation shows that in this case, we have with
the notation of Section 3:

h(z; α, p, π) = (1 − α)(1 − π + πz)g′
D(1 − π + πz)

h1(z; α, p, π) = (1 − α)gD(1 − π + πz),

where gD(p) = E[pD] is the generating function of the asymp-
totic degree distribution.

Proposition 9. For α ∈ [0, 1], the final fraction of active
nodes is given by Φ(α) = 1 − h1(ẑ; α, p, π), where ẑ is the
largest solution in [0, 1) of λz = (1 − α)g′

D(1 − π + πz).

Proof. It follows from Theorem 4 by noting that
g(z;α, p, π) = (1−π+πz) ((1 − α)g′

D(1 − π + πz) − λz).

Consider now the limiting case α → 0. If there is a giant
component in the percolated random graph, then for any
α > 0 at least one node from the initial set S will fall in
this giant component and the final set of active nodes will
exactly corresponds to this giant component. In this case
we have:

g(z; 0, p, π) = (1 − π + πz)f(z), with,

f(z) = g′
D(1 − π + πz) − λz.

In particular, we have f(0) ≥ 0 and f(1) = 0 and f ′(1) =
πE[D(D − 1)] − E[D] and then, it is easy to see that if

π > πc :=
E[D]

E[D(D − 1)]
, (9)

then there is a unique solution in ẑ ∈ (0, 1) such that g(ẑ; 0, p, π) =
0 and then we have limα→0 Φ(α) > 0. This corresponds to



existing results in the literature [5, 10] (see in particular
Theorem 3.9 in [14]) which extend the standard result of
Molloy and Reed [23] for the giant component of random
graphs.

4.6 Bootstrap percolation in random regular
graphs

The bootstrap percolation in a random regular graph cor-
responds exactly to our epidemic with parameters pr = 1
for r ≥ 2, π = 1 and K(r) = k, where 1 ≤ k ≤ r − 1 is a
fixed parameter. Since all nodes have the same degree r, we
write αr = α. In this case we have

h(z; α, p(r), 1) = (1 − α)
X

ℓ≥r−k

ℓbrℓ(z)

= (1 − α)rzP(Bi(r − 1, 1 − z) ≤ k − 1),

and

h1(z; α, p(r), 1) = P(Bi(r, 1 − z) ≤ k − 1).

We see that if α > αc, with

αc = 1 − inf
0<z≤1

z

P(Bi(r − 1, 1 − z) ≤ k − 1)
,

then ẑ(p(r), α, 1) = 0 so that by Theorem 4, the epidemic
reaches all nodes (asymptotically). This result was first
proved in [1], see also Theorem 5.1 in [14] which corresponds
exactly to our Theorem 4 in this particular setting.

5. PROOF OF THE MAIN RESULTS
We firs give an overview of the proof of our main results

and then give the technical details of the proofs.

5.1 Sketch of the proof
It is well-known that it is often simpler to study the ran-

dom multigraph G∗(n, d) with given vertex sequence d =
(di)

n
1 defined in Section 2.1. We consider asymptotics as

the numbers of vertices tend to infinity and thus assume
throughout the paper that we are given, for each n, a se-

quence d(n) = (d
(n)
i )n

1 with
P

i d
(n)
i even. For notational

simplicity we will usually not show the dependency on n ex-
plicitly. We may obtain G(n, d) by conditioning the multi-
graph G∗(n, d) on being a simple graph. By [13], we know
that the condition

P

i d2
i = O(n) implies

lim inf P(G∗(n, d) is simple) > 0. In this case, many results
transfer immediately from G∗(n, d) to G(n, d), for example,
every result of the type P(En) → 0 for some events En, and
thus every result saying that some parameter converges in
probability to some non-random value. This includes every
result in the present paper.

We will in this paper study the random multigraph G∗(n, d)
and in a last step (left to the reader) transfer the results to
G(n, d) by conditioning. More precisely, we define the graph
G∗(n, d,k), i.e. we add a label to each vertex corresponding
to its threshold and say that it is the configuration model as-
sociated to the degree-threshold sequence (d, k) and asymp-
totic degree-threshold distribution p = (pstsℓ)sℓ.

The proof is now done in two steps:

• first, as explained in Section 2.3, we need to remove
from the graph G∗(n, d, k) the vaccinated nodes. We
denote the resulting graph G∗(n, d, k)βp for the degree
based vaccination and G∗(n, d, k)βA for the acquain-
tance vaccination. Our proof is inspired by ideas from

[10, 14]: in order to derive results for these percolation
models we show that they are again configuration mod-
els but for different degree-threshold sequence. This is
done in Sections 5.3 and 5.4, in particular we compute
the modified asymptotic degree-threshold distribution
for the two graphs G∗(n, d, k)βp and G∗(n, d, k)βA .

• then, we run the algorithm of Section 2.2 on a gen-
eral graph G∗(n, d, k) in order to compute the final
size of the epidemic in a similar way as in [15]. The
results for G∗(n, d, k)βp and G∗(n, d, k)βA follow di-
rectly from this general result applied to the modified
degree-threshold distribution. Due to the lack of space,
we omitted this last step and refer to [17] for a proof
with full details.

5.2 A Lemma for death processes
A pure death process with rate 1 is a process that starts

with some number of balls whose lifetime are i.i.d. rate 1
exponentials. We modify the life-time of the balls as fol-
lows: for each ball when it normally dies, with probability
π we set it as its real dead and with probability 1 − π we
set the dead to ∞. We call such a death process a death
process with immortal balls. Now consider n bins with in-
dependent death processes with immortal balls. To each
bin, we attach a couple (di, ki) where di is the number of
balls at time 0 in the bin and ki = Ki(di) is the corre-

sponding threshold. Let N
(n)
j (t) denote the number of balls

in bin j at time t, where j = 1, . . . , n and t ≥ 0. Let

nsℓ = |{i : di = s, Kdi
= ℓ}| and let U

(n)
sr,ℓ(t) be the number

of bins that have s balls at time 0 and r balls at time t and
threshold ℓ, U

(n)
sr,ℓ(t) = |{i, N

(n)
i (t) = r, di = s, Kdi

= ℓ}|.

In particular
P

r Usr,ℓ(0) = Uss,ℓ(0) = nsℓ. In what follows
we suppress the superscripts to lighten the notation. The
following Lemma is an extension of Lemma 4.4 of [15]:

Lemma 10. Consider n independent death process with
immortal balls Ni(t) such that nsℓ/n → psℓ, where ps :=
P

ℓ psℓ satisfies Condition 1. Then, with the above notation,
as n → ∞,

sup
t≥0

X

s,ℓ

s
X

r=0

r
˛

˛Usr,ℓ(t)/n − psℓbsr(1 − π + πe−t)
˛

˛→p 0. (10)

Proof. First fix integers j ≤ s. Consider the nsℓ bins
that start with s balls (and with threshold ℓ). For i =
1, . . . , nsℓ, let Ti be the time the jth ball is removed from
the ith such bin. Then |{i : Ti ≤ t}| =

Ps−j
r=0 Usr,ℓ(t).

Moreover, the number of balls remaining in one of these bins
at time t has a Binomial distribution with parameters s and
E[e−tB] = 1 − π + πe−t (where B is a Bernoulli r.v. with

parameter π). Thus P(Ti ≤ t) =
Ps−j

r=0 bsr(1 − π + πe−t).
Hence we have

sup
t≥0

˛

˛

˛

˛

˛

1

n

s−j
X

r=0

Usr,ℓ(t) −
nsℓ

n

s−j
X

r=0

bsr(1 − π + πe−t)

˛

˛

˛

˛

˛

→p 0.

Since nsℓ/n → psℓ we have for all j, s ≥ 0:

sup
t≥0

˛

˛

˛

˛

˛

1

n

s−j
X

r=0

Usr,ℓ(t) − psℓ

s−j
X

r=0

bsr(1 − π + πe−t)

˛

˛

˛

˛

˛

→p 0.

In particular each term in (10) tends to 0 in probability.
Let ǫ > 0 and S be such that

P∞

s=S sps < ǫ. By Condition
(iii) of Condition 1, we have

P

s,ℓ snsℓ/n → λ =
P

s sps.



Hence, also
P

s≥S

P

ℓ snsℓ/n →
P∞

s=S sps < ǫ. So that for

sufficiently large n, we get
P

s≥S

P

ℓ snsℓ/n < ǫ and

sup
t≥0

X

s≥S

X

ℓ

s
X

r=0

r
˛

˛Usr,ℓ(t)/n − psℓbsr(1 − π + πe−t)
˛

˛

≤ sup
t≥0

X

s≥S

X

ℓ

s
X

r=0

r
`

Usr,ℓ(t)/n + psℓbsr(1 − π + πe−t)
´

≤
X

s≥S

X

ℓ

s(ksℓ/n + psℓ) < 2ǫ.

Hence (10) holds.

5.3 Degree based vaccination
The degree based vaccination corresponds exactly to the

site percolation described in [14], but as explained in Section
5.1, we need to keep track of the mark k. More precisely,
we do the deletions in two steps as in [14]: for each vertex i,
replace it with probability βP

di
by di new vertices of degree

1; we further colour the new vertices red. Then clean up
by removing all red vertices. Note that the (random) explo-
sions change the number of vertices, but not the number of
half-edges. Moreover, given the set of explosions, there is
a one-to-one correspondence between configurations before
and after the explosions, and thus, if we condition on the
new degree, threshold sequence, the exploded graph is still
described by the configuration model. Furthermore, by sym-
metry, when removing the red vertices, all vertices of degree
1 are equivalent (note that the threshold of a degree 1 node
is always 0), so we may just as well remove the right number
of vertices of degree 1, but choose them uniformly at ran-
dom. Hence we can obtain G∗(n, d, k)βP as follows: for each

vertex i, replace it with probability βP
di

by di new vertices of
degree 1. Let (dβP , kβP ) be the resulting (random) degree-
threshold sequence. Note that kβP is obtained from k by
adding a zero threshold to all new degree 1 vertices. Let ñ
be the length of dβP and let n+ be the number of new ver-
tices. Construct the random graph G∗(ñ, dβP , kβP ). Finish
by deleting n+ randomly chosen vertices of degree 1.

The degree sequence dβP is computed in Section 2.1 of

[14]. Let ñjℓ = |{i : d̃i = j, Ki(di) = ℓ}| the number of
vertices in G∗(ñ, dβP , kβP ) with degree j and threshold ℓ.

We have ñ ∼ ζn where ζ =
P∞

j=0(1 − βP
j + jβP

j )pj and

n+ ∼
∞
X

j=1

jβP
j pjn (11)

ñjℓ ∼ (1 − βP
j )pjtjℓn, j 6= 1 (12)

ñ10 ∼

 

(1 − βP
1 )p1 +

∞
X

j=1

jβP
j pj

!

n, and, (13)

ñ1ℓ = 0 for ℓ 6= 0. (14)

We now consider the deletion process as follows: start with
all half-edges white. Color red n+ half-edges of degree 1.
Each half-edge has a lifetime which is exponentially dis-
tributed with mean 1. Each time an half-edge dies sponta-
neously, we kill a living red half-edge. We stop when there
is no more living red half-edge. Let A(t) be the number of
living white half-edges at time t and B(t) be the number of
living red half-edges.

We have

A(t) + B(t) ∼ nλe−2t,

and

A(t) =
X

s≥1,r,ℓ≥0

rUsr,ℓ(t),

where the processes Usℓ,r are as in Lemma 10 with psℓ =

lim ñsℓ

ñ
for s 6= 1 and p10 = (1 − βP

1 )p1/ζ. Hence we have

B(t)

n
∼ λe−2t − (1 − βP

1 )p1e
−t −

X

s≥2,r≥0

r(1 − βP
s )psbsr(e

−t)

= λe−2t −

0

@

X

s≥1

s(1 − βP
s )ps

1

A e−t,

so that B(τ ) ∼ 0 iff e−τ = 1
λ

P

s≥1 s(1 − βP
s )ps = x.

Note that the number of nodes in the final graph is

nP = ñ − n+ ∼
“

X

(1 − βP
j )pj

”

n.

Hence we proved

Lemma 11. The random graph obtained after deletion of
the vaccinated nodes in the degree based vaccination with
parameter βP is a configuration model with nP = ζP n +
op(n) nodes and

pP
jℓ =

1

ζP

X

s≥j

(1 − βP
s )pstsℓbsj(x),

where ζP =
P

(1 − βP
j )pj, x = 1

λ

P

s≥1 s(1 − βP
s )ps.

5.4 Acquaintance vaccination
We consider the acquaintance vaccination and prove the

following lemma

Lemma 12. The random graph obtained after deletion of
the vaccinated nodes in the acquaintance vaccination with
parameter βA is a configuration model with nA = ζAn +
op(n) nodes and

pA
jℓ →

1

ζA

X

s≥j

yspstsℓbsj((1 − βA
s )p̂),

where y = 1
λ

P

s≥1 s(1 − βA
s )ps, ζA =

P

ℓ pℓy
ℓ and p̂ =

P

ℓ ℓpℓyℓ(1−βA
ℓ )

λy2 .

Proof. The proof proceeds in two phases: we first study
the ’propagation’ of the vaccination and then remove the
vaccinated nodes.

Phase 1: we start with all half-edges white. We color
red each half-edge of degree k with probability βA

k . A red
half-edge will propagate the inoculation to the vertex it will
be associated with. We now study this propagation pro-
cess using standard coupling methods. Each half-edge has
a lifetime which is exponentially distributed with mean 1.
Each time an half-edge dies spontaneously, we kill a living
red half-edge (meaning that these two half-edges are paired).
We stop when there is no more living red half-edge. Let A(t)
be the number of living white half-edges at time t and B(t)
be the number of living red half-edges.

As in previous section (or in [14]), we can compute nℓj

the number of vertices of degree ℓ with j white edges:

nℓj ∼ bℓj(1 − βA
ℓ )pℓn.



By an easy application of Lemma 10, we have

A(t) ∼
X

ℓ≥j≥r

rnℓjbjr(e
−t)

∼ n
X

ℓ≥r

rpℓ

X

j≥r

bℓj(1 − βA
ℓ )bjr(e

−t)

= n
X

ℓ≥r

rpℓbℓr((1 − βA
ℓ )e−t)

= n
X

ℓ

ℓ(1 − βA
ℓ )e−tpℓ = nλe−ty,

with y =
P

ℓ ℓ(1 − βA
ℓ ) pℓ

λ
.

By considering the death process without taking into ac-
count the colors, we get

A(t) + B(t) ∼ nλe−2t.

Hence we have B(t)
n

∼ λe−2t − e−tλy and the process stop
when B(τ ) = 0, so that we have τ ∼ − log y.

At the end of this phase 1, we have A(0) − A(log y) ∼
nλy(1 − y) dead of white half-edges. All these deaths are
spontaneous hence the number of spontaneous dead of red
half-edges D is such that nλy(1 − y) + 2D ∼ B(0), so that,

D ∼ nλ(1−y)2

2
.

We now add a color: each time a red half-edge dies spon-
taneously, it is paired with another red half-edge. We color
both these half-edges blue. Clearly the number of blue half-
edges is twice the number of spontaneous dead of red half-
edges and hence is nλ(1− y)2 + op(n). Since the number of
red half-edges at the beginning of phase 1 is nλ(1−y)+op(n),
we have: given the fact that an half-edge is red at the start
of phase 1, it has probability (1− y)+ o(1) to be blue at the
end of the phase 1 with this new coloring scheme. Let n̄ℓj

be the number of degree ℓ vertices with j white edges at the
beginning of phase 1 and no blue half-edges at the end of
phase 1. We have n̄ℓj ∼ npℓbℓj(1− βA

ℓ )yℓ−j . Note also that
the total number of deaths is equal to the number of deaths
of white half-edges nλy(1−y)+o(n) plus the number of red
half-edges nλ(1−y)+o(n), hence the number of living edges
at the end of phase 1 is nλy2 + o(n).

Phase 2: we start from the end of phase 1. A vertex with
white half-edges which are all alive (i.e. not paired yet) and
no blue half-edges is colored green. All other vertices (and
corresponding half-edges) are colored black. The interpre-
tation is as follows: all black vertices have been paired with
at least one red half-edge and hence correspond to the vac-
cinated nodes. The green vertices have not been paired to a
red half-edge and are not vaccinated. Note however that all
red half-edges are by definition dead (i.e. have been paired
in phase 1). Hence the red half-edges of the green vertices
are paired to vaccinated nodes. We now remove all vacci-
nated nodes and their incident edges in continuous time in
a similar fashion as in phase 1: each time a live half-edge
dies, we kill a living black half-edge.

Let C(t) be the number of living green half-edges and D(t)
the number of living black edges. Since the number of living
half-edges at the end of phase 1 is nλy2 + o(n), we have

C(t) + D(t) ∼ nλy2e−2t.

By a standard application of Lemma 10, we have

C(t) ∼
X

ℓ≥j≥r

rn̄ℓjy
jbjr(e

−t),

because the number of degree ℓ green vertex with j living
edges at the end of phase 1, is n̄ℓjbjj(y)+o(n) = n̄ℓjy

j+o(n).
Hence we get

C(t) ∼ n
X

ℓ≥j

pℓbℓj(1 − βA
ℓ )yℓ

X

r≤j

rbjr(e
−t)

= ne−t
X

ℓ

pℓy
ℓ
X

j≤ℓ

jbℓj(1 − βA
ℓ )

= ne−t
X

ℓ

ℓpℓy
ℓ(1 − βA

ℓ ).

Let

p̂ =

P

ℓ ℓpℓy
ℓ(1 − βA

ℓ )

λy2
,

so that the process stop when D(τ ) = 0 with τ ∼ − log p̂.
As explained above, the number of vaccinated vertices is

the number of black vertices:

v ∼ n − n
X

ℓ≥j

pℓbℓj(1 − βA
ℓ )yℓ = n

“

1 − ζA
”

,

with the notation of the lemma.
At the end of phase 2, the dead half-edges (which are

paired by definition) correspond exactly to the edges adja-
cent to a vaccinated graph and should be removed form the
graph. Clearly, once these edges are removed, the graph is
still a configuration model and we compute now the degree-
threshold sequence.

Let ñℓr be the number of vertices with degree ℓ in the
initial graph and degree r in the final graph (i.e. having r
living half-edges at the end of phase 2), then we have

ñℓr ∼
X

j≥r

n̄ℓjy
jbjr(p̂)

∼ npℓy
ℓbℓr((1 − βA

ℓ )p̂).

The number of remaining vertices is ñ = n−v ∼ n
P

ℓ pℓy
ℓ.

The statement of the lemma follows from: pA
jℓ ∼

P

s≥j ñsjtsℓ

ñ
.

6. SUMMARY
We have introduced a new model for the spread of epi-

demics combining neighborhood effects and random trans-
mission: the percolated threshold model. For a degree based
attack, we gave a rigorous analysis of the final size of the epi-
demic on a random graph with specified degree distribution.
We also analyzed rigorously the impact of a degree based
vaccination or a acquaintance vaccination. Our main theo-
rems give new results for the condition under which a single
node can trigger a large cascade (the cascade condition).
They allow to quantify the impact of the different vacci-
nations and allow to define a security metric which allow to
compare them. In particular, we show that the acquaintance
vaccination proposed in [7] has the advantage of requiring
no global information and allows a much better protection
of the network than the uniform vaccination in all cases.
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