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Abstract

In this paper, we study the impact of edge weights on
distances in diluted random graphs. We interpret these
weights as delays, and take them as i.i.d exponential
random variables. We analyze the weighted flooding
time defined as the minimum time needed to reach all
nodes from one uniformly chosen node, and the weighted
diameter corresponding to the largest distance between
any pair of vertices. Under some regularity conditions
on the degree sequence of the random graph, we show
that these quantities grow as the logarithm of n, when
the size of the graph n tends to infinity. We also derive
the exact value for the prefactors.

These allow us to analyze an asynchronous random-
ized broadcast algorithm for random regular graphs.
Our results show that the asynchronous version of the
algorithm performs better than its synchronized version:
in the large size limit of the graph, it will reach the whole
network faster even if the local dynamics are similar on
average.

1 Introduction

Driven by the distributed nature of modern network
architectures, there has been intense research to devise
algorithms to ensure effective network computation.
Of particular interest is the problem of global node
outreach, whereby some major event happening in one
part of the network has to be communicated to all
other nodes. In this context, gossip protocols have been
identified as simple, efficient and robust mechanisms
for disseminating and retrieving information for various
network topologies. These mechanisms rely on simple
periodic local operations between neighboring nodes
[18].

Flooding corresponds to the most commonly used
such process: a source node that first records the event
notifies all the nodes within its reach. Subsequently,
each of these neighbors forwards information to all of
its neighbors and so on. If the underlying network
is connected such information will eventually reach all
the nodes. The performance of this procedure can be
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evaluated in terms of the time it takes to complete.
This in particular depends on the underlying network
topology, namely the existence of short paths between
different vertices of the network. In practice, one
may imagine that there are other parameters, besides
the network topology, to be taken into account such
as the communication delays between nodes due for
example to congestion. In this context, the spread of the
information in the network can be thought of as a fluid
penetrating the network reminiscent of the problem of
first-passage percolation in a random medium. In this
paper, we will consider an asynchronous model in which
each edge of the network is equipped with a random
delay modeled by an exponential random variable with
mean one.

One of the main motivations of our work comes
from peer-to-peer networks. In particular, to motivate
our random graph model, we recall that the most rel-
evant properties of peer-to-peer networks are connec-
tivity, small average degree, and approximate regular-
ity of the degrees of the vertices. The random graph
model considered in this paper, explained in detail in
Section 2, has these properties, and covers the classi-
cal G(n, r) model, which is the random graph model in
which a graph is drawn uniformly at random from the
set of n-vertex r-regular graphs, where r is a constant
not depending on n. For this model of networks, we
consider the push model for disseminating information:
initially, one of the nodes obtains some piece of infor-
mation. Then every node which has the information
passes it to another node chosen among its neighbors.
The classical model goes iteratively and all nodes have
the same clock. In each successive round, the nodes
having the information choose independently and uni-
formly at random the neighbor they transmit to. In this
paper, we analyze an asynchronous randomized broad-
cast algorithm. Namely nodes are not anymore assumed
to be synchronized, so that each node has an indepen-
dent Poisson clock. A node receiving the information
will transmit it to a random neighbor at each tick of its
own clock. When the graph of neighbors is a random
r-regular graph, we show that the asynchronous version
of the algorithm performs better than its synchronized
version (see Section 3). To the best of our knowledge,
our work is the first to study this model in an asyn-



chronous version.
From a more theoretical point of view, our work

contributes to the general theory of random graphs by
providing new results for the weighted diameter of con-
nected random graphs. The analysis of the asymptotic
of distances in edge weighted graphs has received much
interest. In [13], Janson considered the special case of
the complete graph with fairly general i.i.d. weights on
edges, including the exponential distribution with pa-
rameter 1. It is shown that, when n goes to infinity, the
asymptotic distance is log n/n for two given points, that
the maximum if one point is fixed and the other varies is
2 logn/n, and the maximum over all pairs of points (i.e.
the weighted diameter) is 3 log n/n. Janson also derived
asymptotic results for the corresponding number of hops
or hopcount (the number of edges on the paths with
the smallest weight). More recently, a number of pa-
pers provide a detailed analysis of the scaling behavior
of the joint distribution of the first passage percolation
and the corresponding hopcount for the complete graph.
In particular, in [3, 20], the authors derive limiting dis-
tributions for the first passage percolation on both the
complete graph and dense Erdős-Rényi random graphs
with exponential and uniform i.i.d. weights on edges.
More closely related to the present work, Bhamidi, van
der Hofstad and Hooghiemstra [4] study first passage
percolation on random graphs with finite average de-
gree, minimum degree greater than 2 and exponential
weights, and derive explicit distributional asymptotic
for the total weight of the shortest-weight path between
two uniformly chosen vertices in the network. We com-
pare their results to ours in Section 2.2. We also explain
in Section 4.3 why the analysis made in [4] is not suf-
ficient to obtain results for the diameter and how we
extend it.

The remainder of the paper is organized as follows.
In Section 2, we define our model for the random graphs
and state our main result for the weighted diameter
and flooding time. We also compare it to existing
works on distances in random graphs. In Section 3,
we restrict ourselves to the important class of random
regular graphs and analyze a model for asynchronous
randomized broadcast. We also compare it to its more
classical synchronized version. The main ideas of the
proof are given in Section 4, while technical lemmas are
deferred to the Appendix.

2 Models and Results

Given a finite connected graph G = (V, E), the distance
dist(a, b) between two nodes a and b in V is the number
of edges in the shortest path connecting these two
vertices. The diameter of G, denoted by diam(G), is the
maximum graph distance between any pair of vertices

in V , i.e.

diam(G) = max{dist(a, b), a, b ∈ V } .(2.1)

For a graph G with vertex set V , the flooding time is
defined by:

flood(G) = max{dist(a, b), b ∈ V } ,

where a is chosen uniformly at random in V .
In this paper, we study the impact of the introduc-

tion of edge weights on the distances in the graph and, in
particular, on its diameter. Such weights can be thought
of as economic costs, congestion delays or carrying ca-
pabilities that can be encountered in real networks such
as transportation systems and communication networks
[22, Chapter 16].

For a graph G = (V, E), we assign to each edge
e ∈ E a weight we. For any a, b ∈ V , a path between
a and b is a sequence π = (e1, e2, . . . ek) where ei =
(vi−1, vi) ∈ E and vi ∈ V for i ∈ [1, k], with v0 = a and
vk = b. We write ei ∈ π to denote the fact that edge ei

belongs to the path π. For a, b ∈ V , we define

distw(a, b) = min
π∈Π(a,b)

∑

e∈π

we ,

where Π(a, b) denotes the set of all paths from a to b
in the graph. The weighted diameter and the weighted
flooding time are given by

diamw(G) = max{distw(a, b), a, b ∈ V }, and,

floodw(G) = max{distw(a, b), b ∈ V },

where in the definition of flooding, a is chosen uniformly
at random in V .

Our main results consist of precise asymptotic ex-
pressions for the weighted diameter and weighted flood-
ing time of sparse random graphs on n vertices with (i) a
given degree sequence satisfying asymptotic properties
similar to those imposed in [17], and (ii) i.i.d. exponen-
tially distributed weights with parameter 1.

2.1 Configuration model. For n ∈ N, let (di)
n
1 =

(d
(n)
i )n

1 be a sequence of non-negative integers such
that

∑n
i=1 di is even. For notational simplicity, we

will usually not show the dependency on n explicitly.
By means of the configuration model [5], we define a
random multigraph with given degree sequence (di)

n
1 ,

denoted by G∗(n, (di)
n
1 ) as follows. To each node i we

associate di labeled half-edges. All half-edges need to
be paired to construct the graph, this is done by a
uniform random matching. When a half-edge of i is
paired with a half-edge of j, we interpret this as an
edge between i and j. The graph G∗(n, (di)

n
1 ) obtained



following this procedure may not be simple, i.e., may
contain self-loops due to the pairing of two half-edges
of i, and multi-edges due to the existence of more than
one pairing between two given nodes. Conditional on
the multigraph G∗(n, (di)

n
1 ) being a simple graph, we

obtain a uniformly distributed random graph with the
given degree sequence, which we denote by G(n, (di)

n
1 ),

[14].

For r ∈ N, let u
(n)
r = |{i, d

(n)
i = r}| be the number

of vertices of degree r and m(n) be the total degree
defined by

m(n) =
n
∑

i=1

di =
∑

r≥0

ru(n)
r .

From now on, we assume that the sequence (di)
n
1

satisfies the following regularity conditions analogous to
the ones introduced in [17] and an additional constraint
on the minimal degree.

Condition 1. There exists a distribution p = {pk}∞k=0

such that

(i) u
(n)
r /n → pr for every r ≥ 0 as n → ∞;

(ii) λ :=
∑

r rpr ∈ (0,∞);

(iii)
∑n

i=1 d2
i = O(n);

(iv) for some τ > 0, ∆n := maxi∈V di = O(n1/2−τ );

(v) mini=1...n di = dmin ≥ 3, and pdmin > 0.

We define q = {qr}∞r=0 the size-biased probability
mass function corresponding to p, by

qr =
(r + 1)pr+1

λ
,(2.2)

and let ν denote its mean, i.e. ν =
∑∞

r=0 rqr ∈ (0,∞).
The condition ν > 1 is equivalent to the existence

of a giant component in the configuration model, the
size of which is proportional to n (see e.g. [15, 17]). By
our Condition 1 point (v), we have ν ≥ 2 and actually,
the following lemma, proved in Section A.4, shows that
under Condition 1 the constructed graph is connected
with high probability (w.h.p.). We say that an event En

holds w.h.p. if P(En) → 1 when n tends to infinity.

Lemma 2.1. Consider a random graph G(n, (di)
n
1 )

where the degree sequence (di)
n
1 satisfies Condition 1.

Then G(n, (di)
n
1 ) is connected w.h.p.

2.2 Weighted flooding time and diameter. We
now state our main first result concerning the weighted
flooding time and diameter of G(n, (di)

n
1 ) with i.i.d.

exponential 1 weights on the graph edges.

Theorem 2.1. Consider a random graph G(n, (di)
n
1 )

with i.i.d. exponential 1 weights on its edges, where the
degree sequence (di)

n
1 satisfies Condition 1. Then we

have

diamw(G(n, (di)
n
1 ))

log n

p−→ 1

ν − 1
+

2

dmin
, and

floodw(G(n, (di)
n
1 ))

log n

p−→ 1

ν − 1
+

1

dmin
,

where
p−→ is the convergence in probability.

In the particular case where G is a random r-regular
graph with r ≥ 3, we recover a result first proved in [6]
concerning the weighted diameter. We refer to [1] for an
extension of this result when dmin can be smaller than
3.

In order to further compare our result with existing
ones, we reproduce here a result of Bhamidi, van der
Hofstad, Hooghiemstra [4]:

Theorem 2.2. ([4]) Consider a random graph
G(n, (di)

n
1 ) where the degrees di satisfy Condition 1.

Let a, b be two uniformly chosen vertices in this graph.
Then there exists a random variable V such that

distw(a, b) − log n

ν − 1

d−→ V,(2.3)

where
d−→ is the convergence in distribution.

For completeness, we also include results of van der

Hoftstad, Hooghiemstra, Mieghem [21] and Fernholz, Ra-

machandran [8] for the typical distance and the diameter
in G(n, (di)

n
1 ):

Theorem 2.3. ([21, 8]) Consider a random graph
G(n, (di)

n
1 ) where the degree sequence (di)

n
1 satisfies

Condition 1. Let a, b be two uniformly chosen vertices
in this graph. Then we have

dist(a, b)

log n

p−→ 1

log ν
, and

diam(G(n, (di)
n
1 ))

log n

p−→ 1

log ν
.

Our Theorem 2.1 is obviously consistent with the
asymptotic for the typical weighted distance on random
graphs given by (2.3). However contrary to the case
without weight, we see that the asymptotics for the
weighted flooding time or diameter are not the same as



for the typical weighted distance between two uniformly
chosen vertices. The appearance of the common factor
log n
ν−1 is quite easy to understand at an heuristic level:
if one explores the neighborhood of a given vertex
consisting of all vertices at (weighted) distance less
than t, then this exploration process behaves like a
continuous time Markov branching process (see [2] for a
precise definition) which is known to grow exponentially
fast like e(ν−1)t. In particular at time log n

2(ν−1) , it

reaches the size of the order of
√

n. In particular, if
one considers two such exploration processes started
from a and b, then by that time they should intersect
with great probability. This explains why the typical
weighted distance is of the order log n

ν−1 . We give a more
precise statement of this heuristic in Section 4.3. When
considering the weighted flooding time, we consider
a case where one exploration process is started from
a typical vertex whereas the other starting point is
chosen in order to get a bad scenario in the sense
that the exploration process started from this vertex
grows slowly. Indeed, the bad scenario corresponds to a
starting point having degree dmin and large weights on
all its incident edges. This event gives the contribution
log n
dmin

. We refer to Section 4.5 for a formal treatment
of this argument. Of course, to compute the weighted
diameter, one has to consider a case where both starting
points correspond to bad scenarios and then obtains the
contribution 2 log n

dmin
. We see that if one is interested in

passing the information between two typical vertices,
it can be achieved in time of the order log n

ν−1 and

there is a price (in time) of log n
dmin

to pay if one wishes
to pass the information to everyone from a typical
vertex and another price (in time) of log n

dmin
to pay if

one wishes to pass the information to everyone from
a vertex in a worst case scenario. As shown by
Theorem 2.3, there is no such discrepancy when there
are no weights, i.e. if the vertices are synchronized
so that the process can be run in slotted rounds. In
such a case, the exploration process behaves like a
standard Galton-Watson branching process and bad
scenarios (corresponding to slow growth) have very low
probability [9] so that they do not contribute in the large
n limit.

3 Broadcasting in random regular graphs

In this section we elaborate on another aspect of our
result. By comparing our main Theorem 2.1 with The-
orem 2.3 in the case of random regular graphs, we see
that the weighted flooding time is actually smaller than
the graph distance flooding time. As for the diameter,
this is also valid if r ≥ 6. With previous discussion, the
heuristic explanation of this phenomenon is clear: the

random weights introduce variance that allows for the
branching process (approximating the exploration pro-
cess) to grow faster than without weights. Even if the
weights have an average of one, weights with small val-
ues allow the branching process to grow faster than with
constant weight equal to one. Of course the variabil-
ity of the weights has also a drawback when one looks
at worst case scenario which correspond to the factors
log n
dmin

. However in the case of random regular graphs
the advantages of variance exceeds its drawback, and
the weighted flooding time is smaller than the graph-
distance flooding time. Note that this will not be always
true in the general case, e.g. when ν is much bigger than
dmin. We now concentrate on one important practical
implication of this phenomenon.

We consider the asynchronous analogue of the stan-
dard phone call model [19]. In continuous-time, we as-
sume that each node is endowed with a Poisson process
with rate 1 and that at the instants of its correspond-
ing Poisson process a node wakes up and contacts one
of its neighbors uniformly at random. We consider the
well-studied push model. In this model, if a node i holds
the message it passes it to its randomly chosen neighbor
regardless of its state. Note that this may yield an un-
necessary transmission (if the receiver already had the
message). As in the case of the standard discrete-time
phone call model, we are interested in the performance
of such an information dissemination routine in terms of
the time it takes to inform the whole population. We de-
note this time by ABT(G) for asynchronous broadcast
time with one initial informed node chosen uniformly at
random among the vertices of G.

We restrict ourselves to r-regular graphs, i.e. graphs
where each node has degree r ≥ 3, so that pr = 1 in
Condition 1. As shown in Section 4.6, the dynamic
evolution of informed nodes then corresponds to the
flooding time with i.i.d. weights on edges distributed
according to an exponential distribution with mean r.
The fact that the graph is regular, is crucial to get this
property and this is the reason why we require G to be
a r-regular graph. Hence, our Theorem 2.1 allows us to
analyze the asynchronous broadcast algorithm for these
graphs and we get the following corollary:

Corollary 3.1. Let G ∼ G(n, r) be a random r-
regular graph with n vertices. Then w.h.p.

ABT(G) = 2

(

r − 1

r − 2

)

log n + o(log n).

The classical randomized broadcast model was first
investigated by Frieze and Grimmett [12]. Given a
graph G = (V, E), initially a piece of information is
placed on one of the nodes in V . Then in each time



step, every informed node sends the information to an-
other node, chosen independently and uniformly at ran-
dom among its neighbors. The question now is how
many time-steps are needed such that all nodes be-
come informed. Note that this model requires nodes
to be synchronized. It was shown by Frieze and Grim-
mett [12] and Pittel [19] that for the complete graph
Kn the number of steps needed to inform the whole
population scales as log2 n + log n + o(log n) with high
probability. Fountoulakis et al. [10] proved that in
the case of Erdős-Rényi random graphs G(n, pn), if the
average degree, npn, is slightly larger than log n, then
the broadcast time essentially coincides with the broad-
cast time on the complete graph. For any r-regular
graphs it has been shown in [7] that this algorithm re-

quires at least
(

1
log(2−1/r) − 1

r log(1−1/r)

)

log n+o(log n)

rounds to inform all nodes of the graph, w.h.p. (the
randomness comes here from the choice of the neigh-
bor to which the information is pushed). Fountoulakis
and Panagtotou in [11] have recently shown that in the
case of random regular graphs, the process completes

in
(

1
log(2(1−1/r)) − 1

r log(1−1/r)

)

log n + o(log n) rounds

w.h.p.
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Figure 1: Comparison of the time to broadcast in
the synchronized version (dashed) and with exponential
random weights (plain)

Note that if instead of independent Poisson clocks
of rate one, we take a deterministic process with slots
of size one, our model is exactly the one studied in [11].
Hence locally, both processes behave similarly: when a
node receives the information, it will need on average a

time of
(

r + r
2 + · · · + r

r−1 + 1
)

to transmit it to all its

neighbors (including possibly informed ones). Figure 1
shows the comparison between results in [11] and our
Theorem 3.1: in both cases, the time to broadcast is
of the order of log n but the prefactors differ and are
given by the two curves for various values of r. We
see that the asynchronous version is always faster than
the synchronized one. This result while surprising is in
agreement with the discussion comparing our Theorem
2.1 with Theorem 2.3. The process of diffusion takes
advantage of the variance of the exponential random
delays and allows to broadcast the information faster in
a decentralized and asynchronous way!

4 Proof of Theorem 2.1

In this section we present the main steps of the proof
of Theorem 2.1. The main idea of the proof is to
grow simultaneously balls from each vertex so that
the diameter is twice the time when the last two
balls intersect. Indeed, instead of taking a graph at
random and then analyzing the balls, we use a standard
coupling argument in random graphs theory consisting
in building the balls and in the same time the graph.
We present this coupling in the following Section 4.1
and Section 4.2. We then present the branching process
approximation in Section 4.3. This section is not
technically required for the proof and is not written in
a rigorous way. It is included to give some intuition
for the proof of the upper bound in Section 4.4 and the
lower bound in Section 4.5.

4.1 The exploration process. For t > 0, we define
the t-radius neighborhood of a vertex a as

Bw(a, t) = {b, distw(a, b) ≤ t},

and the first time at which the set Bw(a, t) reaches size
k is denoted by:

Ta(k) = min{t : |Bw(a, t)| ≥ k}.

Fix a vertex a, and consider the continuous-time
exploration process: at time t = 0, we have a neighbor-
hood consisting only of a, and for t > 0, the neighbor-
hood is precisely Bw(a, t).
We now give an equivalent description of the process:

• Start with B = {a}, where a has da half-edges.
Reveal any matchings and weights of these da half-
edges connecting them amongst themselves (creat-
ing self-loops at a). The remaining unmatched half-
edges are stored in a list L.

• Repeat the following exploration step as long as the
list L is not empty:



Given there are ℓ ≥ 1 half-edges in the current
list, say L = (h1, . . . , hℓ), let Ψ ∼ Exp(ℓ) be
an exponential variable with parameter ℓ. After
time Ψ select a half-edge from L uniformly at
random, say hi. Remove hi from L and match
it to a uniformly chosen half-edge in the entire
graph excluding L, say h. Add the new vertex
(connected to h) to B and reveal the matchings
(and weights) of any of its half-edges whose match
is also in B. More precisely, let d be the degree of
this new vertex and 2x the number of matched half-
edges in B (including the matched half-edges hi

and h). There is a total of m− 2x unmatched half-
edges. Consider one of the d − 1 half-edges of the
new vertex (excluding h which is connected to hi);
with probability (ℓ− 1)/(m− 2x− 1) it is matched
with a half-edge in L and with the complementary
probability it is matched with an unmatched half-
edge outside L. In the first case, match it to a
uniformly chosen half-edge of L and remove the
corresponding half-edge from L. In the second case,
add it to L. We proceed in the same manner for all
the d − 1 half-edges of the new vertex.

Let B(a, t) and L(a, t) be respectively the set of
vertices and the list generated by the above procedure
at time t. Considering the usual configuration model
and using the memoryless property of the exponential
distribution, we have that Bw(a, t) = B(a, t) for all t.

Let τi denote the time of the i-th exploration step
in the above continuous-time exploration process, i.e.
Ta(i) = τi−1. Assuming L(a, τi) is not empty, at time
τi+1, we match a uniformly chosen half-edge from the
set L(a, τi) to a uniformly chosen half-edge among all
other half-edges, excluding those in L(a, τi). Let Ft

be the σ-field generated by the above process until
time t. Given Fτi

, τi+1 − τi is an exponential random
variable with rate Si(a) = |L(a, τi)| the size of the
list consisting of unmatched half-edges in B(a, τi). Let
i∗ = min{i, Si(a) = 0} ≤ n, then we set Si(a) = 0 for
all i∗ ≤ i ≤ n.

For i ∈ [1, i∗], we define d̂i the forward degree i.e.
the degree minus one, of the vertex added during the
i-th exploration step and let

Ŝi(a) := da + d̂1 + ... + d̂i − i.(4.4)

For a connected set H , we denote by tx(H) the tree
excess of H which is the maximum number of edges that
can be deleted from the induced subgraph on H while
still keeping it connected. Let Xi(a) := tx(B(a, τi)) for
i ≤ i∗, so that we have for i ≤ i∗:

Si(a) = Ŝi(a) − 2Xi(a).(4.5)

Note that i∗ and the sequence d̂i depend on a.
We define

αn = log3 n and, βn = 3

√

λ

ν − 1
n log n.(4.6)

An important ingredient in the proof will be the
comparison of the variables {d̂1, ..., d̂k}, for an appro-
priately chosen k , to an i.i.d. sequence.

4.2 Coupling the forward degrees sequence d̂i.

The sequence (d̂i)i≤i∗ can be constructed as follows.
Initially, associate to vertex j a bin containing a set of
dj white balls. At step 0, color the balls corresponding
to vertex a in red. Subsequently, at step k ≤ i∗, choose
a ball uniformly at random among all white balls; if the
ball is drawn from node j’s bin then set d̂k = dj − 1,
and color all the balls in the bin in red. If i∗ < n, there
are still white balls at step i∗ + 1 and we complete the
sequence d̂i for i ∈ [i∗+1, n] by continuing the sampling

described above, so that we obtain a sequence (d̂i)
n
i=1

coinciding with the sequence defined in Section 4.1 for
i ≤ i∗. We also extend the sequence Ŝi(a) for i > i∗

thanks to (4.4) and we set Xi(a) = Xi∗(a) for all i > i∗.
Note that with these conventions, the relation (4.5) is
not valid for i > i∗ but we have Si(a) ≤ Ŝi(a)− 2Xi(a).

We now present a coupling of the variables
{d̂1, ..., d̂k} valid for k ≤ βn defined in (4.6), with an
i.i.d. sequence, that we now define. First, we denote
the order statistics of the degrees of the nodes of the
graph by

d(1) ≤ d(2) ≤ · · · ≤ d(n) .

Let m(n) =
∑n−βn

i=1 d
(n)
(i) and π(n) the size-biased empir-

ical distribution with the βn highest degrees removed,
i.e.

π
(n)
k =

∑n−βn

i=1 (k + 1)1“

d
(n)

(i)
=k+1

”

m(n)
.

Similarly, let m̄(n) =
∑n

i=(βn+1)∆n
d
(n)
(i) and π̄(n) the

size-biased empirical distribution with the (βn + 1)∆n

lowest degrees removed, i.e.

π̄
(n)
k =

∑n
i=(βn+1)∆n

(k + 1)1“

d
(n)

(i)
=k+1

”

m̄(n)
.

Note that by Condition 1, we have βn∆n = o(n)
implying that both distributions π(n) and π̄(n) converge
to size biased distribution q defined in (2.2).

For two real-valued random variables A and B, we
write A ≤st B if for all x, we have P(A > x) ≤ P(B >
x). If C is another random variable, we write A ≤st B|C
if for all x, P(A > x) ≤ P(B > x|C) a.s.



Lemma 4.1. For an uniformly chosen vertex a and for
i ≤ βn, we have

D
(n)
i ≤st d̂i|(da, d̂1, . . . , d̂i−1) ≤st D̄

(n)
i(4.7)

where D
(n)
i (resp. D̄

(n)
i ) are i.i.d. with distribution π(n)

(resp. π̄(n)). In particular, we have

i
∑

k=1

D
(n)
k ≤st

i
∑

k=1

d̂k ≤st

i
∑

k=1

D̄
(n)
k .

Proof. We fix the sequence of degrees d
(n)
i and the

initial vertex a. We now prove that conditionally on
the values of (da, d̂1, ..., d̂j−1), the random variable d̂j is

stochastically smaller than D̄
(n)
j . This can be seen by

a simple coupling argument as follows. First order the
balls from 1 to m consistently with the order statistics,
i.e. start by numbering the balls in the bin with the
fewest balls and then move to the larger ones as ordered
by the number of balls they contain.

Given the sequence (da, d̂1, ..., d̂j−1), color in red
the balls of bins of the corresponding sizes. In order

to get a sample for D̄
(n)
j , pick a ball at random among

all balls in the last n − (βn + 1)∆n bins and set D̄
(n)
j

to be equal to the size of the selected bin minus one.

If the ball picked is white set d̃j = D̄
(n)
j . If there are

red balls in the last n − (βn + 1)∆n bins and if such
a ball is picked, say this is the ℓ-th ball among these
red balls for the induced order, then set d̃j to be the
size of the bin containing the ℓ-th white ball, minus
one. Since da + d̂1 + · · · + d̂j−1 ≤ βn∆n, this ball is in
one of the first (βn + 1)∆n bins. In all cases, we have:

d̂j ≤st d̃j ≤ D̄
(n)
j given the sequence (da, d̂1, ..., d̂j−1).

A similar argument allows to prove that D
(n)
j ≤st d̂j

given the sequence (da, d̂1, ..., d̂j−1).
The second statement follows from the following

lemma [8, Lemma A.3] .

Lemma 4.2. Let X1, ..., Xt be a random process adapted
to a filtration F0 = σ[∅],F1, ...,Ft, and let Σt =
X1 + ... + Xt. Consider a distribution µ such that
(Xs+1|Fs) ≥st µ (resp. (Xs+1|Fs) ≤st µ) for all
0 ≤ s ≤ t − 1. Then Σt is stochastically greater (resp.
smaller) than the sum of t i.i.d. µ-distributed random
variables.

4.3 Branching process approximation. In this
section, we consider the continuous-time Markovian
branching process Zt approximating the exploration
process defined in Section 4.1. As we will see, the tree
excess Xi(a) remains small (compared to Ŝi(a)) with
very high probability at least when i is not too large.

The branching process approximation consists in ne-
glecting this term and considering that the sequence of
d̂ is a sequence of i.i.d. random variables with distribu-
tion given by (2.2) (which is true asymptotically). Zt

is started with one ancestor. Each of the members of
the population has an exponential lifetime (with mean
one) and upon her death she gives birth to a random
number D̂ of particles, where D̂ has distribution (2.2).
We assume that dmin ≥ 3 so that D̂ ≥ 2 a.s. We now
define the split times: the times at which the particles
split (see [2] III.9). Let Σ̂i = D +

∑i
j=1 D̂j − i (where

D is the degree of the vertex the process starts from,
i.e. P(D = r) = pr) and Ei a sequence of independent
exponential random variables with mean one. Under
the assumption dmin ≥ 3, the split times are defined by
T0 = 0 and for i ≥ 1,

Ti =
i−1
∑

j=0

Ei

Σ̂i

.(4.8)

Note that E[Σ̂i] ≈ (ν − 1)i and it is shown in [2] that:
limn→∞

Tn

log n = 1
ν−1 . In particular at time log n

2(ν−1) , the

process reaches size
√

n, so that for two given vertices of
the graph, there is a high probability that the two balls
intersect (see Proposition 4.1 below). This heuristic
argument allows to understand the typical distance
given by (2.3) in [4].

In order to be able to compute the diameter, we
need to find x such that P(T√

n+ ≥ x) ≈ 1
n (here n+

is an informal notation to denote a sequence growing
slightly faster than n, like n log n, see the parameter
βn). Hence we need to study large deviations results
for the sequence {Ti}i∈N. Moreover we have to take
care of the error introduced by the branching process
approximation. This is done by a coupling argument
given in Section 4.2. We now give the main technical
steps of the proof.

4.4 Proof of the upper bound. The following
proposition, proved in Section A.2, shows that to bound
the distance between any pair of nodes it suffices to

bound the time when βn := 3
√

λ
ν−1n logn nodes have

been reached in the exploration process defined in
Section 4.1 starting from these two nodes.

Proposition 4.1. We have w.h.p.

distw(u, v) ≤ Tu(βn) + Tv(βn) , for all u and v.

Now we give an upper bound (which holds w.h.p.) for
the time needed to explore βn nodes from any vertex a.



Proposition 4.2. For a uniformly chosen vertex u
and any ǫ > 0, we have

P

(

Tu(βn) ≥ (1 + ǫ) log n

2(ν − 1)
+ l

)

= o(n−1 + e−dminl).

A proof of this proposition is given in Section A.1. We
give here a heuristic based on the branching process
approximation defined in the last section. Note that for
Ti defined by (4.8), we have

E

[

eθTn |Σ̂
]

=

n−1
∏

i=0

(

1 +
θ

Σ̂i − θ

)

≤ exp

(

n−1
∑

i=0

θ

Σ̂i − θ

)

.

Then for small values of i ≤ αn, where αn = log3 n
grows slower than any power of n, we use the lower
bound:

Σ̂i ≥ i(dmin − 2) + dmin,

so that we get with θ = dmin:

P(Tαn
≥ x log n) ≤ E

[

edminTαn

]

exp(−xdmin log n)

≈ α
dmin

dmin−2

n n−xdmin.

Now for larger values of i, we can use the approximation
Σ̂i ≥ i(ν − 1 − ǫ) so that we get

P(Tβn
− Tαn

≥ y log n) ≤ E

[

eθ(Tβn−Tαn )
]

exp(−θy log n)

≈
(

βn

αn

)
θ

ν−1−ǫ

n−yθ ≈ nθ( 1
2(ν−1−ǫ)

−y),

so if we choose y ≈ 1
2(ν−1) , we get

P

(

Tβn
− Tαn

≥
(

1

2(ν − 1)

)

log n

)

≈ n−1.

We refer to Section A.1 for the technical details.
By Proposition 4.2, we have for a uniformly chosen
vertex u and any ǫ > 0:

P

(

Tu(βn) ≥
(

1 + ǫ

2(ν − 1)

)

log n

)

= o(1), and

P

(

Tu(βn) ≥
(

1 + ǫ

2(ν − 1)
+

1 + ǫ

dmin

)

log n

)

= o(n−1).

By taking a union bound over u, it follows that

P

(

Tu(βn) ≤
(

1 + ǫ

2(ν − 1)
+

1 + ǫ

dmin

)

log n, for all u

)

= 1 − o(1).

Combining this with Proposition 4.1 finishes the proof
of the upper bound.

4.5 Proof of the lower bound. To prove the lower
bound, it suffices to prove that for any ǫ > 0, there
exists w.h.p. two vertices u and v such that

distw(u, v) ≥
(

1

ν − 1
+

2

dmin

)

(1 − ǫ) log n.

Let Gn ∼ G(n, (di)
n
1 ), and

B′
w(u, t) := {v : distw(N(u), v) ≤ t} ,

where N(u) denotes the neighbors of u in Gn . Let Vdmin

be the set of vertices with degree dmin. The following
proposition, proved in Section A.3, gives a lower bound
for the distance between the neighbors of a uniformly
chosen vertex u ∈ Vdmin from the neighbors of another
uniformly chosen vertex v ∈ Vdmin .

Proposition 4.3. Let u, v be two uniformly chosen
vertices of the graph Gn, with degree dmin, i.e. u, v ∈
Vdmin, and let tn = (1−ǫ) log n

2(ν−1) . We have w.h.p.

B′
w(u, tn) ∩ B′

w(v, tn) = ∅.

Now let sn := 1−ǫ
dmin

log n, and call a vertex in Vdmin bad
if the weights on all the dmin edges connected to it are
larger than sn. Let Au denote the event that u is bad,
and let Y :=

∑

u 1Au
be the number of bad vertices.

Then we have for u ∈ Vdmin :

P(Au) = P(Exp(dmin) ≥ sn) = n−1+ǫ.

Then it is easy to see that

E(Y ) =
∑

u

P(Au) = pdmin(1 + o(1))nǫ, and

Var(Y ) =
∑

u,v∈Vdmin

Cov (1Au
,1Av

)

=
∑

u∈Vdmin

Var (1Au
) +

∑

uv∈E

Cov (1Au
,1Av

)

≤ (dmin + 1)E(Y ).

Then by Chebyshev’s inequality, we have

Y ≥ 2

3
pdminn

ǫ

with high probability.
Let Y ′ denote the number of bad vertices that are of

distance at most sn + (1−ǫ)
ν−1 log n from vertex a (chosen

uniformly). By Proposition 4.3 for a uniformly chosen
vertex i we have w.h.p. B′

w(a, tn) ∩ B′
w(i, tn) = ∅. In

particular, conditioning on the event Ai, the probability
that B′

w(i, tn) does not intersect B′
w(a, tn) remains the

same. Hence, for a uniformly chosen vertex i we have

P (Ai, B
′
w(a, tn) ∩ B′

w(i, tn) 6= ∅) = o(P(Ai)),



and then we deduce

E(Y ′) = o(E(Y )) = o(log n).

By Markov’s inequality, Y ′ ≤ 1
3pdminn

ǫ w.h.p., and
hence Y − Y ′ is w.h.p. positive. This implies the
existence of a vertex i whose distance from a is at least
(

1
ν−1 + 1

dmin

)

(1 − ǫ) log n. Then for any ǫ > 0 we have

w.h.p.

floodw(Gn) := max
1≤i≤n

distw(a, i)

≥
(

1

ν − 1
+

1

dmin

)

(1 − ǫ) log n.

Let R denote the number of pairs of distinct bad
vertices. Then Y ≥ 2

3pdminn
ǫ gives

R ≥ 1

4
p2

dmin
n2ǫ

w.h.p. By Proposition 4.3 for two uniformly chosen
vertices u, v we have w.h.p.

B′
w(u, tn) ∩ B′

w(v, tn) = ∅.

In particular, conditioning on the events Au, and
Av, the probability that B′

w(u, tn) does not intersect
B′

w(v, tn) remains the same. Hence, for two uniformly
chosen vertices u, v we have,

P (Au, Av, B
′
w(u, tn) ∩ B′

w(v, tn) 6= ∅) = o(P(Au, Av)).

Let R′ denote the number of pairs of bad vertices

that are of distance at most 2sn + (1−ǫ)
ν−1 log n. Then we

have
ER′ = o(EY 2) = o(n2ǫ).

By Markov’s inequality, R′ ≤ 1
6p2

dmin
n2ǫ w.h.p, and

hence R − R′ is w.h.p positive. This implies that for
any ǫ > 0 we have w.h.p.

diamw(Gn) := max
1≤i,j≤n

distw(i, j)

≥
(

1

ν − 1
+

2

dmin

)

(1 − ǫ) log n,

which completes the proof.

4.6 Proof of Corollary 3.1. First we prove that for
a r-regular graph G = (V, E) the dynamic evolution
of informed nodes in continuous-time broadcast when
each node is endowed with a Poisson process with
rate 1 corresponds exactly to the flooding time with
exponential random weights on edges with mean r.
Let I(a, t) denote the set of informed nodes at time
t when we start the broadcast process from node a ∈ V .

Indeed we show that random map I(a, .) from [0,∞)
to subsets of V has the same law as Bw(a, .) when the
weights are exponential with mean r using a coupling
argument: from the asynchronous broadcasting model,
we construct weights on the edges of the graph and
show that these weights are independent exponential
with mean r.

Let T (v) denote the time at which node v becomes
informed in the asynchronous broadcast model and let
τi(u, v), for (u, v) ∈ E, denote the i-th time that node u
contacts node v. Now we define the weight of the edge
e = (u, v) as follows:

• if T (u) ≤ T (v) then

we := min
i
{ τi(u, v) − T (u) | τi(u, v) > T (u) }.

• if T (u) > T (v) then

we := min
i
{ τi(v, u) − T (v) | τi(v, u) > T (v) }.

Thanks to the memoryless property of the Poisson
process, {we, e ∈ E} are independent exponential ran-
dom variables with mean r and are such that we have
I(a, t) = Bw(a, t) for all t ≥ 0.

Hence the asynchronous broadcast time corre-
sponds to the flooding time with exponential weights
with mean r and it is easy to conclude the proof by
Theorem 2.1, that is w.h.p.,

ABT(G) = r

(

1

r − 2
+

1

r

)

log n + o(log n)

= 2

(

r − 1

r − 2

)

log n + o(log n).
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A Proofs

Recall that βn = 3
√

λ
ν−1n log n, and αn = log3 n.

Now we consider the exploration process defined in
Section 4.1.

A.1 Proof of Proposition 4.2. Before getting to
the main part of the proof, we need to prove some
technical lemmas.

We start by some simple remarks. The process
i 7→ Xi(a) is non-decreasing in i ∈ [1, n]. Moreover,
given Fi, the increment Xi+1(a)−Xi(a) is stochastically
dominated by a binomial variable:

Bin

(

d̂i+1,
(Si(a) − 1)+

m(n) − 2(Xi(a) + i)

)

.(A.1)

Note that if i > i∗, then Si(a) = 0 and Xi+1(a) −
Xi(a) = 0 so that (A.1) is still valid. For i < n/2, we
have

(Si(a) − 1)+

m(n) − 2(Xi(a) + i)
≤ Ŝi(a) − 2Xi(a)

m(n) − 2(Xi(a) + i)

≤ Ŝi(a)

m(n) − 2i

≤ maxℓ≤i Ŝℓ(a)

n − 2i
.

Hence, we obtain for i < n/2:

Xi(a) ≤st Bin

(

max
ℓ≤i

Ŝℓ(a) + i,
maxℓ≤i Ŝℓ(a)

n − 2i

)

.(A.2)

Lemma A.1. For any k < n/2, we have

P

(

2Xk(a) ≥ x | Ŝk(a), i∗ ≥ k
)

≤

P

(

Bin

(

Ŝk(a),

√

Ŝk(a)/n

)

≥ x | Ŝk(a)

)

.

Proof. Note that given a set of k edges connecting the
k + 1 vertices in Bw(a, Ta(k + 1)) and given Ŝk(a),
the remaining edges of the graph are obtained by an
uniform matching of the remaining half-edges; the total
remaining number of half-edges is m(n) − 2k (which
is greater than n by dmin ≥ 3) and the number of
unmatched half-edges in Bw(a, Ta(k + 1)) is exatly
Ŝk(a).

The proof follows from the following lemma proved
in [8, Lemma 3.2]:

Lemma A.2. Let A be a set of m points, i.e. |A| = m,
and let F be a uniform random matching of elements of
A. For a ∈ A, we denote by F (a) the point matched to
a, and similarly for B ⊂ A, we write F (B) for the set
of points matched to B. Now assume B ⊂ A, and let
k = |B|. We have

|B ∩ F (B)| ≤st Bin(k,
√

k/m).



We define the events :

R(a) := {Sk(a) ≥ dmin + (dmin − 2)k, for all 1 ≤ k ≤ αn} ,

R′(a) := {Sk(a) ≥ 1 + (dmin − 2)k, for all 1 ≤ k ≤ αn} .

Lemma A.3. For a uniformly chosen vertex a, we have

P(R(a)) ≥ 1 − o((log10 n/n)),(A.3)

P(R′(a)) ≥ 1 − o(n−3/2).(A.4)

Proof. Note that Since dmin ≥ 3, the sequence Ŝk(a) is
non-decreasing in k. We also have for all k ≤ αn,

dmin + (dmin − 2)k ≤ Ŝk(a) ≤ αn∆n = o(n).

Hence we have

{Xk(a) = 0} ⊂ R(a), {Xk(a) ≤ 1} ⊂ R′(a).

We distinguish two cases:

• Case 1: Ŝαn
(a) < 2dminαn. Then given this event

denoted by Q1, by (A.2), we have

Xαn
(a) ≤st Bin

(

(2dmin + 1)αn,
2dminαn

n − 2αn

)

.

Hence we have

P (Xαn
(a) ≥ 1 | Q1) ≤ O(α2

n/n),

and

P (Xαn
(a) ≥ 2 | Q1) ≤ O(α4

n/n2).

Then we have

P(R(a)c | Q1) ≤ O(α2
n/n),

P(R′(a)c | Q1) ≤ O(α4
n/n2).

• Case 2. if Ŝαn
(a) ≥ 2dminαn, we have

Ŝαn
(a) ≤ αn∆n = o(n).

Let k = max{i, Ŝi(a) < 2dminαn}. Then on
the event Qc

1, we have k ≤ αn and by a similar
argument as in case 1, given the event Qc

1, we
obtain

Xk(a) ≤st Bin

(

(2dmin + 1)αn,
2dminαn

n − 2αn

)

.

Then given the event Qc
1, we have by (A.2):

Xαn
(a) ≤st Bin

(

αn(∆n + 1),
αn∆n

n − 2αn

)

.

Then letting M = ⌈2τ−1⌉, and by Chernoff’s
inequlaity we have

P (Xαn
(a) ≥ M | Qc

1) ≤ O
(

(∆2
nα2

n/n)M
)

= o(n−3).

Note that for n large enough

2dminαn − 2M > dmin + (dmin − 2)αn.

Hence we have

{Xk(a) = 0, Xαn
(a) ≤ M, Qc

1} ⊂ R(a) ∩ Qc
1,

{Xk(a) ≤ 1, Xαn
(a) ≤ M, Qc

1} ⊂ R′(a) ∩ Qc
1

Then we have

P (R(a)c | Qc
1) ≤ O(α2

n/n),

P (R′(a)c | Qc
1) ≤ O(α4

n/n2).

The lemma follows.

We will use the following properties: if Y is an
exponential random variable with mean µ−1, then for
any θ < µ, we have E

[

eθY
]

= µ
µ−θ . Given the sequence

Sk(a), for k < i∗, the random variables τk+1− τk are iid
exponential random variables with mean Sk(a)−1 .

Lemma A.4. For a uniformly chosen vertex a, and any
ǫ > 0, we have

P (Ta(αn) ≥ ǫ logn + l) = o(n−1 + e−dminl).

Proof. Assume that R′(a) holds and consider the fol-
lowing two cases:
Case 1: R(a) holds.

In this case, for any k < αn we have conditioning on
R(a) ∩ R′(a),

τk+1 − τk ≤st Yk = Exp (dmin + (dmin − 2)k) ,

and all Yk’s are independent. Hence, we have

E

[

edmin(Ta(αn)−Ta(1)) | R(a) ∩ R′(a)
]

≤
αn−1
∏

i=1

(

1 +
dmin

(dmin − 2)i

)

≤ exp

[

dmin

dmin − 2

αn−1
∑

i=1

1

i

]

≤ αdmin
n = (log n)3dmin,

for n large enough. Then for ǫ > 0, by Markov’s
inequality, we have

P (Ta(αn) − Ta(1) ≥ ǫ log n + l | R(a) ∩ R′(a))

≤ (log n)3dmin exp(−dmin(ǫ log n + l))

=
(log n)3dmin

nǫdmin
e−dminl = o(e−dminl).



We also have Ta(1) ≤st Exp(dmin); hence

P(Ta(1) ≥ ǫ log n + l) ≤ exp(−ldmin)

nǫdmin
,

and we have

P (Ta(αn) ≥ ǫ log n + l | R(a) ∩ R′(a)) = o(e−dminl).

Case 2: R(a) doesn’t hold.

In this case, for any k < αn we have conditioning on
R(a)c ∩ R′(a),

τk+1 − τk ≤st Yk = Exp(1 + (dmin − 2)k),

and all the Yk’s are independent. We have

E

[

e(Ta(αn)−Ta(1)) | R(a)c ∩ R′(a)
]

≤
αn−1
∏

i=1

(

1 +
1

(dmin − 2)i

)

≤ exp

[

1

dmin − 2

αn−1
∑

i=2

1

i

]

≤ αn = log3 n,

for n large enough. Again by Markov’s inequality, we
have

P (Ta(αn) − Ta(1) ≥ ǫ log n + l | R(a)c ∩ R′(a))

≤ log3 n exp(−ǫ logn − l) = o(n−ǫ/4).

We also have Ta(1) ≤st Exp(1), and we conclude in this
case

P (Ta(αn) ≥ ǫ log n + l | R(a)c ∩ R′(a)) = o(n−ǫ/4).

Putting all these together we have

P (Ta(αn) ≥ ǫ logn + l) ≤ 1 − P(R′(a)) +

(1 − P(R(a)))n−ǫ/4 + o(e−dminl)

≤ o(n−1 + e−dminl),

as desired.

We continue with a simple large deviation estimate.

Lemma A.5. Let D
(n)
i be i.i.d. with distribution π(n).

For any η < ν, there is a constant γ > 0 such that for
n large enough we have

P

(

D
(n)
1 + · · · + D

(n)
k ≤ kη

)

≤ e−γk.(A.5)

Proof. Let D∗ be a random variable with distribution
P(D∗ = k) = qk given in (2.2) so that E[D∗] = ν. Let

φ(θ) = E[e−θD∗

]. For any ǫ > 0, there exists θ0 > 0
such that for any θ ∈ (0, θ0), we have

log φ(θ) < (−ν + ǫ)θ.

By Condition 1 and the fact that βn∆n = o(n), i.e.
∑n

i=n−βn+1 d
(n)
(i) = o(n), we have, for any θ > 0,

lim
n→∞

φ(n)(θ) = φ(θ),

where φ(n)(θ) = E[e−θD
(n)
1 ]. We have for θ > 0,

P

(

D
(n)
1 + · · · + D

(n)
k ≤ ηk

)

≤ exp
(

k
(

θη + log φ(n)(θ)
))

.

Fix θ < θ0 and let n be sufficiently large so that
log φ(n)(θ) ≤ log φ(θ) + ǫ. This yields

P

(

D
(n)
1 + · · · + D

(n)
k ≤ ηk

)

≤ exp (k (θη + log φ(θ) + ǫθ))

≤ exp (kθ (η − ν + 2ǫ)) ,

which concludes the proof.

We now prove:

Lemma A.6. For any ǫ > 0, we define the event

R′′(a) :=

{

Sk(a) ≥ ν − 1

1 + ǫ
k, for all αn ≤ k ≤ βn

}

.

For a uniformly chosen vertex a, we have

P(R′′(a)) ≥ 1 − o(n−3/2).

To prove this, we need the following intermediate result
proved in [16, Theorem 1]:

Lemma A.7. Let n1, n2 ∈ N and p1, p2 ∈ (0, 1). We
have Bin(n1, p1) ≤st Bin(n2, p2) if and only if the
following conditions hold

(i) n1 ≤ n2,

(ii) (1 − p1)
n1 ≥ (1 − p2)

n2 .

In particular, we have

Corollary A.1. If x ≤ y = o(n), we have

x − Bin(x,
√

x/n) ≤st y − Bin(y,
√

y/n).

Proof. By the above lemma, it is sufficient to show

(x/n)x/2 ≥ (y/n)y/2,

and this is true because ss is decreasing near zero (for
s < e−1).



Now, we go back to the proof of Lemma A.6.

Proof. [Proof of Lemma A.6] Note that by Lemma A.3
we have

P(i∗ ≥ αn) ≥ P(R′(a)) ≥ 1 − o(n−3/2).

Then we get

P(R′′(a)) ≥ 1 − P(i∗ < αn) − P(R′′(a)c, i∗ ≥ αn)

≥ 1 − o(n−3/2) − P(R′′(a)c | i∗ ≥ αn).

Then to prove Lemma A.6 it suffices to prove

P(R′′(a) | i∗ ≥ αn) ≥ 1 − o(n−3/2).

By Lemmas 4.1 and A.5, for any ǫ > 0, k ≥ αn and n
large enough, we have

P

(

d̂1 + ... + d̂k ≤ ν

1 + ǫ/2
k

)

≤ e−γk = o(n−6).

Then with probability at least 1 − o(n−6), for any
k ≤ βn,

dmin+
ν − 1

1 + ǫ/2
k < da+d̂1+...+d̂k−k < (k+1)∆n = o(n).

By the union bound on k, with probability at least
1 − o(n−5), we have for all αn ≤ k ≤ βn,

dmin +
ν − 1

1 + ǫ/2
k < Ŝk(a) < (k + 1)∆n = o(n).(A.6)

Then in the remaining of the proof we can assume that
the above condition is satisfied.

By Lemma A.1, Corollary A.1 and (A.6), condition-
ing on Ŝk(a) and {i∗ ≥ k}, we have:

Sk(a) ≥st dmin +
ν − 1

1 + ǫ/2
k −

Bin

(

dmin +
ν − 1

1 + ǫ
k,

√

(

dmin +
ν − 1

1 + ǫ
k

)

/n

)

≥st dmin +
ν − 1

1 + ǫ/2
k − Bin

(

νk,
√

νk/n
)

.

Corollary A.1 and (A.6) imply that

Sk(a) | {i∗ ≥ k} ≥st dmin +
ν − 1

1 + ǫ
k −

Bin

(

dmin +
ν − 1

1 + ǫ
k,

√

(

dmin +
ν − 1

1 + ǫ
k

)

/n

)

≥st dmin +
ν − 1

1 + ǫ
k − Bin

(

νk,
√

νk/n
)

.

By Chernoff’s inequality, and as k
√

k/n =
o(k/

√
αn), we have

P(Bin(νk,
√

νk/n) ≥ k/
√

αn) ≤ exp

(

−1

3
k/

√
αn

)

= o(n−6).

Moreover, with probability at least 1 − o(n−6), condi-
tioned on {i∗ ≥ k}, we have

Sk(a) ≥ dmin +
ν − 1

1 + ǫ
k − k√

αn
≥ ν − 1

1 + 2ǫ
k,

for n large enough. Then letting

R′′
k = {Sk(a) ≥ ν − 1

1 + 2ǫ
k},

we have

P(R′′
k | i∗ ≥ k) ≥ 1 − o(n−6).(A.7)

Then R′′(a) =
⋂βn

k=αn
R′′

k(a), and by using the fact
that R′′

k−1(a) ⊂ {i∗ ≥ k} we get

P(R′′(a)) | i∗ ≥ αn) = 1 − P

(

βn
⋃

k=αn

R′′
k(a)c | i∗ ≥ αn

)

= 1 − P

(

R′′
αn

(a)c

βn
⋃

k=αn+1

(

R′′
k(a)c ∩ R′′

k−1(a)
)

| i∗ ≥ αn

)

≥ 1 − P

(

R′′
αn

(a)c

βn
⋃

k=αn+1

(R′′
k(a)c ∩ {i∗ ≥ k}) | i∗ ≥ αn

)

≥ 1 −
βn
∑

k=αn

P(R′′
k(a)c|i∗ ≥ k) ≥ 1 − o(n−5),

which concludes the proof.

Lemma A.8. For a uniformly chosen vertex a and any
ǫ > 0, we have

P

(

Ta(βn) − Ta(αn) ≥ (1 + ǫ) log n

2(ν − 1)

)

= o(n−1).

Proof. Conditioning on the event R′′(a) defined in
Lemma A.6, we have that, for any αn ≤ k ≤ βn,

τk+1 − τk ≤st Yk ∼ Exp(Sk(a)) ≤st Exp

(

ν − 1

1 + ǫ
k

)

,

and all the Yk’s are independent.
Then we let s =

√
αn, and for n large enough we

obtain that



E

[

es(Ta(βn)−Ta(αn)) | R′′(a)
]

≤
βn−1
∏

i=αn

(

1 +
s

(ν−1)i
1+ǫ − s

)

≤
βn−1
∏

i=αn

(

1 +
s(1 + 2ǫ)

(ν − 1)i

)

≤ exp

[

s(1 + 2ǫ)

ν − 1

βn−1
∑

i=αn

1

i

]

≤ exp

[

s(1 + 3ǫ) log n

2(ν − 1)

]

.

Then we have by Markov’s inequality

P

(

Ta(βn) − Ta(αn) ≥ (1 + 4ǫ) logn

2(ν − 1)

)

≤ 1 − P(R′′(a))

+P(R′′(a))Ees(Ta(βn)−Ta(αn)) exp

(

−s(1 + 4ǫ) logn

2(ν − 1)

)

≤ exp

(

− sǫ logn

2(ν − 1)

)

+ o(n−5) = o(n−1),

which concludes the proof.

Then combining Lemma A.8 and A.4 finishes the
proof.

A.2 Proof of Proposition 4.1. Fix two vertices
u and v. First consider the exploration process for
Bw(u, t) until reaching t = Tu(βn). We know by
Lemma A.6 that,

Sβn
(u) ≥ (ν − 1 − o(1))βn

with probability at least 1−o(n−3/2). Thus there are at
least (ν−1−o(1))βn half-edges in Bw(u, Tu(βn)) except
with probability n−3/2.

Next, begin exposing Bw(v, t); each matching adds
a uniform half-edge to the neighborhood of v. There-
fore, the probability that Bw(v, Tv(βn)) does not inter-
sect with Bw(u, Tu(βn)) is at most

(

1 − (ν − 1 − o(1))βn

m

)βn

≤ exp[−(9−o(1)) logn] < n−4

for large n (recall that β2
n = 9 λ

ν−1n logn). The union
bound over u and v completes the proof.

A.3 Proof of Proposition 4.3. We fix a vertex
u ∈ Vdmin . Let d̂′1, ..., d̂

′
dmin

be the froward degree (i.e.
the degree minus one) of neighbors of u. Now we
consider the exploration process defined in Section 4.1
from the set N(u). Let d̂′dmin+i be the forward degree

of the vertex added at i’s exploration step, with i ≥ 1,
and let

Ŝ′
i(u) := d̂′1 + ... + d̂′dmin+i − i.(A.8)

Again let τi be the time of the i’th matching. We have

τi+1 − τi ≥st Yi ∼ Exp
(

Ŝ′
i(u)

)

,

and all the Yi’s are independent. This follows from the
fact that the worst case is when the explored set forms
a tree. Also by Lemma 4.1, we have

dmin+i
∑

j=1

d̂′j ≤st

dmin+i
∑

j=1

D̄
(n)
j ,

where D̄
(n)
j are i.i.d with distribution π̄(n). Let ν̄(n) be

the expected value of D̄
(n)
1 which is:

ν̄(n) :=
∑

k

kπ̄
(n)
k ,

and let zn =
√

n/ logn. Now we show that τzn
≥ tn

with high probability.
Let us define

T ′(k) ∼
k
∑

i=1

Exp





dmin+i
∑

j=1

D̄
(n)
j − i



 ,

where all the exponential variables are independents.
Then we have τzn

≥st T ′(zn).

Lemma A.9. Let X1, ..., Xt be a random process
adapted to a filtration F0 = σ[ø],F1, ...,Ft, and let
µi = EXi, Σi = X1 + ... + Xi, Λi = µ1 + ... + µi. Let
Yi ∼ Exp(Σi), and Zi ∼ Exp(Λi), where all exponential
variables are independents. Then we have

Y1 + ... + Yt ≥st Z1 + ... + Zt.

Proof. By Jensen’s inequality it is easy to see that for
positive random variable X , we have

Exp(X) ≥st Exp(EX).

Then by induction, it suffices to prove that for a pair of
random variables X1, X2 we have Y1 + Y2 ≥st Z1 + Z2.
We have

P(Y1 + Y2 > s) = EX1 [P(Y1 + Y2 > s|X1)]

≥ EX1 [P(Exp(X1) + Exp(X1 + µ2) > s)]

≥ P(Z1 + Z2 > s).



Then by Lemma A.9, we have

T ′(zn) ≥st T ∗(zn) :=

zn
∑

i=0

Exp
(

dminν̄
(n) + (ν̄(n) − 1)i

)

,

where all exponential variables are independents. Let
b := dminν̄(n) − (ν̄(n) − 1). Then similarly to [6], we
have

P(T ∗(zn) ≤ t) ≤
∫

P

xi≤t

e−
Pzn

i=1((ν̄
(n)−1)i+b)xidx1...dxzn

zn
∏

i=1

((ν̄(n) − 1)i + b)

=

∫

0≤y1≤...≤t

e−(ν̄(n)−1)
Pzn

i=1 yie−byzn dy1...dyzn

zn
∏

i=1

((ν̄(n) − 1)i + b),

where yk =
∑k−1

i=0 xzn−i. Letting y play the role of yzn

and accounting for all permutations over y1, ..., yzn−1

(giving each such variable the range [0, y]),

P(T ∗(zn) ≤ t) ≤
∫ t

0

e−(ν̄(n)−1+b)ydy

∏zn

i=1(i + b
ν̄(n)−1

)

(zn − 1)!

.

∫

[0,y]zn−1

(ν̄(n) − 1)zne−(ν̄(n)−1)
Pzn−1

i=1 yidy1...dyzn−1

≤
∫ t

0

e−(ν̄(n)−1+b)ydy

∏zn

i=1(i + b
ν̄(n)−1

)

(zn − 1)!
zn−1
∏

i=1

∫ y

0

(ν̄(n) − 1)e−(ν̄(n)−1)yidyi

≤
∫ t

0

e−dminν̄(n)

(1 − e−(ν̄(n)−1)y)zn−1dy

c(ν̄(n) − 1)z
b

ν̄(n)
−1

+1

n ,

where c > 0 is an absolute constant. Then we obtain

P(T ∗(zn) ≤ tn) ≤ c(ν̄(n)−1)z
b

ν̄(n)
−1

n

∫ t

0

e−nǫ

dy = o(n−4).

Then w.h.p. we have |B′
w(u, tn)| ≤ zn. Choosing

another vertex v, at random, and exposing B′
w(v, tn),

again w.h.p we obtain a set of size at most zn. Now
because each matching is uniform among the remaining
half-edges, then its probability of hitting B′

w(u, tn) is at
most Ŝ′

zn
(u)/n.

Let ǫn := log log n. By Markov’s inequality we have

P

(

Ŝ′
zn

(u) ≥ znǫn

)

≤ EŜ′
zn

(u)/znǫn

≤ dminν̄
(n) + (ν̄(n) − 1)zn

znǫn
= o(1).

We conclude

P(B′
w(u, tn)(u) ∩ B′

w(v, tn) 6= ∅) ≤ ǫnz2
n/n = o(1),

which completes the proof.

A.4 Proof of Lemma 2.1. By Lemma A.3, R′(a)
holds with probability at leat 1 − o(n−1). Then with
probability 1 − o(n−1), for an uniformly chosen vertex
a, we have Sk(a) ≥ 1 for all 1 ≤ k ≤ αn. Then by union
bound with probability 1 − o(1), for all nodes a ∈ V ,
the size of the cluster Ca, starting from a reaches αn.
Then we use Lemma A.6 to show that for all nodes, this
cluster also reaches βn. Now it is easy to conclude by
Proposition 4.1.


