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Abstract

We address the problem of visual object class recognition and localization in
natural images. Building upon recent progress in the field we show how histogram-
based image descriptors can be combined with a boosting classifier to provide a
state of the art object detector. Among the improvements we introduce a weak
learner for multi-valued histogram features and show how to overcome problems
of limited training sets. We also analyze different choices of image features and
address computational aspects of the method. Validation of the method on recent
benchmarks for object recognition shows its superior performance. In particular,
using a single set of parameters our approach outperforms all the methods reported
in VOC05 Challenge for 7 out of 8 detection tasks and four object classes while
providing close to real-time performance.
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1 Introduction

Among the vast variety of existing approaches to object recognition there is
a remarkable success of methods using histogram-based image descriptors.
An influential work by Swain and Ballard [26] proposed colour histograms as
a simple and efficient image descriptor for object recognition. The idea was
further developed by Schiele and Crowley [23] who recognised objects using
histograms of local filter responses. Histograms of Textons were proposed by
Leung and Malik [14] as well as by Varma and Zisserman [27] for texture
recognition. Schneiderman and Kanade [24] computed histograms of wavelet
coefficients over localised object parts and were among the first to address
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Fig. 1. Rectangles on the left and right image are examples of possible regions
for histogram features. Stable appearance in A,B and C on both images makes
corresponding features to be good candidates for a motorbike classifier. On the
contrary, regions D are unlikely to contribute for the classification due to the large
variation in appearance.

object class detection in images of natural scenes. In a similar spirit the well-
known SIFT descriptors [18] and Shape Context [1] as well as more recent
HOG descriptor [2] and Spatial Pyramid representations [13] make an effec-
tive use of position-dependent histograms to describe local and global image
content.

Histograms represent distributions of spatially unordered image measurements
in a region and provide relative invariance to several variations of object ap-
pearance. The invariance and the descriptive power of histograms, however,
crucially depend on (i) the type of local image measurements and (ii) the
image regions used to accumulate histograms. Regarding the type of measure-
ments, different alternatives have been proposed and investigated that may
have better performance depending on the task [26,23]. As a general purpose
image descriptor, the choice of Histograms of Oriented Gradients (HOG) is
well supported by successful applications of SIFT descriptor [18,21] and other
related methods [2].

Besides the question what to measure, the question where to measure obviously
has a large impact on recognition performance. Global histograms [26,23] have
recently achieved impressive performance for scene categorization [13,31]. Ob-
ject recognition and localization, however, is currently better addressed by
local methods [24,18,2] computing histograms over local image regions. As
illustrated in Figure 1, different regions of an object may have different de-
scriptive power and, hence, different impact on the learning and recognition.
In the previous work histogram regions were often selected either a-priori using
fixed grids [24,2] or by applying region detectors of different kinds [18,3,19].
None of these two alternatives, however, guarantees an optimal choice of his-
togram regions for subsequent recognition. An arguably more attractive ap-
proach proposed by Levi and Weiss [15] and confirmed in [12,32] consists of
learning class-specific histogram regions from the training data. We follow this
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approach and note its conceptual similarity to other methods making attempt
to discover discriminative object parts for visual recognition [5].

In this work, similar to [15], we select the position and the shape of histogram
features to minimise the training error for a given recognition task. During
training, we consider an exhaustive set of rectangular regions in the normalised
object window and compute histogram descriptors for each of them efficiently
using integral histograms [22]. We then apply AdaBoost [8,29] to select his-
togram features and to learn an object classifier. As a part of our contribution
to object learning, we adapt the boosting framework to vector-valued his-
togram features and design a weak learner based on Weighted Fischer Linear
Discriminant (WFLD). We in addition deploy position-dependent histogram
features and artificially enlarge the size of the training set by adding spatial
noise to the annotation. These extensions demonstrate a substantial improve-
ment with respect to [15].

To validate the proposed method, we test it on the task of object detection
in natural images and evaluate the performance on PASCAL Visual Object
Category datasets VOC 2005 and VOC 2006 [7,6]. Using a single set of pa-
rameters we demonstrate our approach to outperform all methods reported
in the competition [7] for 7 out of 8 detection tasks and four object classes.
Among the advantages of the method we emphasise (i) its ability to learn from
a small number of samples, (ii) stable performance for different object classes,
and (iii) close to real-time performance.

We further investigate the framework by comparing performance of alternative
histogram features and feature selection mechanisms. Evaluation on several
object classes confirms the high performance of HOG descriptors, however, the
best performance is demonstrated by the combination of HOG features with
other histogram descriptors in terms of second-order image derivatives and
color. Given the popularity of interest point features in recognition methods,
we also compare regions selected by our method with Harris-Affine regions [20].
Notably, we find Harris-Affine regions to perform no better than random re-
gions in our framework tested on three different object classes. We finally
investigate computational aspects of the method and evaluate its precision-
speed trade-off.

The rest of the paper is organised as follows. In Section 2 we recall AdaBoost
algorithm and develop a weak learner for vector-valued features. Section 3
defines histogram features and integrates them with the boosting framework.
In Section 4 we evaluate and compare the method on the task of object detec-
tion. Sections 5 and 6 investigate alternative image features and computational
aspects of the method respectively. Section 7 concludes the paper.
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2 AdaBoost learning

AdaBoost [8] is a popular machine learning method combining properties of
an efficient classifier and feature selection. The discrete version of AdaBoost
defines a strong binary classifier H

H(z) = sgn(
T∑
t=1

αtht(z))

using a weighted combination of T weak learners ht with weights αt. At each
new round t, AdaBoost selects a new hypothesis ht that best classifies train-
ing samples with high classification error in the previous rounds. Each weak
learner

h(z) =

 1 if g(f(z)) > threshold

−1 otherwise
(1)

may explore any feature f of the data z. In the context of visual object recog-
nition it is attractive to define f in terms of local image properties over image
regions r and then use AdaBoost for selecting features maximising the classi-
fication performance. This idea was first explored by Viola and Jones [29] who
used AdaBoost to train an efficient face detector by selecting a discriminative
set of local Haar features. Here similar to [15], we will define f in terms of
histograms computed for rectangular image regions on the object.

2.1 Weak learner

The performance of AdaBoost crucially depends on the choice of weak learners
h. While effective weak learners will increase the performance of the final
classifier H, the potentially large number of features f prohibits the use of
complex classifiers such as Support Vector Machines or Neural Networks. For
one-dimensional features f ∈ R such as Haar features in [29], an efficient
classifier for n training samples can be found by selecting an optimal decision
threshold in (1) in O(n log n) time. For vector-valued features f ∈ Rm such
as histograms, however, finding an optimal linear discriminant would require
unreasonably long O(

(
n
m

)
) time.

One approach to deal with multi-dimensional features used in [15] is to project
f onto a pre-defined set of 1-dimensional manifolds using a fixed set of func-
tions gj : Rm → R. A weak learner can then be constructed for each combina-
tion of basis functions gj and features fi. Although efficient, such an approach
can be suboptimal if a chosen set of functions gj is not well suited for a given
classification problem. As an example of inefficient AdaBoost classifier consider
the problem of separating two diagonal distributions of points in R2 illustrated
in Figure 2(left). Using axis-parallel linear basis functions g1(f) = (1 0)f and
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Fig. 2. Classification of two diagonal distributions using (left): AdaBoost with weak
learners in terms of axis-parallel linear classifiers; (right): Fisher linear discriminant.

g2(f) = (0 1)f , the resulting AdaBoost classifier has poor generalisation and
requires T ≈ 50 weak hypotheses for separating n = 200 training samples.

An alternative and efficient choice for a multi-dimensional classifier is Fisher
Linear Discriminant (FLD) [4]. FLD has been used as a weak learner in the
context of AdaBoost in [30]. FLD guarantees optimal classification of normally
distributed samples of two classes using a linear projection function

g = w>f with w = (S(1) + S(2))−1(µ(1) − µ(2)) (2)

defined by the class means µ(1), µ(2) and the class covariance matrices S(1), S(2).
Illustration of FLD classification in Figure 2(right) clearly indicates its advan-
tage in this example compared to the classifier in Figure 2(left). A particular
advantage of using FLD as a weak learner is the possibility of re-formulating
FLD to minimise a weighted classification error as required by AdaBoost.
Given the weights di corresponding to samples zi, the Weighted Fischer Lin-
ear Discriminant (WFLD) can be obtained using a function g in (2) with the
means µ and covariance matrices S substituted by the weighted means µd and
the weighted covariance matrices Sd defined as

µd =
1

n
∑
di

n∑
i

dif(zi), Sd =
1

(n− 1)
∑
d2
i

n∑
i

d2
i (f(zi)− µd)(f(zi)− µd)>.

(3)
Using WFLD as an AdaBoost weak learner eliminates the need of re-sampling
training data required by classifiers that do not make use of sample weights.

In practice, the distribution of image features f(xi) will mostly be non-Gaussian
and multi-modal. Given a large set of features f , however, we can assume
that the distribution of samples at least for some features will be close to
Gaussians yielding the good performance of the resulting WFLD classifier.
Experimental validation of this assumption and the advantage of WFLD will
be demonstrated in Section 4 on real classification problems. In this work we
use WFLD to find 1-dimensional projections of histogram features according
to (2) and then determine an optimal classification threshold as in [29].
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3 Image features

During training we assume a rough alignment of object samples within a
rectangular window (see Figure 5). Under this assumption we rely on the
correspondence of object parts and learn the appearance of parts from cor-
responding image regions. To avoid a heuristic selection of such regions, we
initially consider an exhaustive set of rectangular sub-windows r on the object
for AdaBoost learning as illustrated in Figure 3(Left).

3.1 Histogram features

We represent each feature by a histogram of local image measurements within
a region r. Following previous work [18,2], we initially adopt Histograms of
Oriented Gradients (HOG) features and consider histograms of alternative
image measurements such as color and second order image derivatives later
in Section 5. To construct HOG features, we compute orientation γ of local
image gradient at each point (x, y) ∈ r

γ(x, y) = arctan
Lx(x, y)

Ly(x, y)
, Lξ = I ∗ ∂

∂ξ

(
1

2πσ2
e−(x2+y2)/2σ2

) ∣∣∣∣
ξ=x|y

(4)

using Gaussian derivatives Lx, Ly [16] of image I computed for scale parameter
σ. We discretize γ into m = 4 equal orientation bins and increment histograms
by the values of the gradient magnitude ||(Lx, Ly)||2. The histograms are nor-
malized to the l1 unit norm.

To preserve rough location of image measurements within a region, we sub-
divide regions into parts as illustrated in Figure 3(Right) and compute his-
tograms separately for each part. Four types of image features fk,r(I) with
spatial grids k = {1x1, 1x2, 2x1, 2x2} are then computed for each region r by
concatenating part-histograms into feature vectors of dimensions m, 2m, 2m
and 4m respectively. We use integral histograms [15,22] for efficient computa-
tion of histogram features.

1x1 1x2 2x1 2x2

Fig. 3. Histogram features. (Left): Sample regions from an exhaustive set of regions
defined by different spatial extents and positions within the object window. (Right):
histogram features computed for each region according to four types of spatial grids.
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1x1 1x2 2x1 2x2

Fig. 4. Selected features for the motorbike class. (Left): Regions of the first three
selected and most discriminative features; (Middle): All selected features superim-
posed using transparent color. Bright areas correspond to the high feature density;
(Right): Relative frequency of features with different spatial grids.

3.2 Feature selection

At the training we compute features fk,r(I) for normalised training images and
apply AdaBoost to select a set of features fk,r and the corresponding weak clas-
sifiers h(fk,r) optimizing classification performance. A few features selected for
the motorbike class at first rounds of AdaBoost are shown in Figure 4(Left).
Superposition of all selected features in Figure 4(Middle) illustrates the em-
phasis of the final strong classifier on image regions with prominent appearance
such as the regions of the front wheel and of the seat. 1 Figure 4(Right) illus-
trates the high number of selected features with 2x2 spatial grids and indicates
the preference of position-dependent histograms for classification.

4 Evaluation

We evaluate the described classifier on the problem of object detection in natu-
ral images. To train the classifier for a particular object class, we use positive
training set with scale and position-normalised images of objects in similar
views. We obtain new negative training samples for each training cascade by
collecting false positive detections from training images. For the detection we
use the standard window scanning technique and apply the classifier to the
large number of image sub-windows with densely sampled positions and sizes.
To suppress multiple detections we cluster detected image windows with re-
spect to their positions and sizes in the image and use the size of resulting
clusters as a confidence measure of detections.

1 The asymmetry of selected features in Figure 4(Middle) is explained by the right-
alignment of all motorbike image samples used for training.
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Fig. 5. (Left): Positive training samples are obtained using crop-and-resize proce-
dure applied to training images with rectangular objects annotations. (Right): The
same procedure is applied to training images using the large number of automati-
cally generated noisy annotations. Note how annotation noise adds simulated affine
deformations to the novel training samples.

To overcome the frequently limited number of positive training samples, we
found it particularly useful to artificially enlarge the positive training set as
follows. Given annotation rectangles for objects in training images, we generate
similar rectangles for each annotation by adding noise to the position and the
size of original rectangles. We use noisy annotation to generate new positive
image samples and in this way enlarge the positive training set. The procedure
is illustrated in Figure 5.

Comparison to Levi and Weiss [15]. Our method differs from the one
proposed by Levi and Weiss [15] in three main respects: (i) we introduce
WFLD weak learner for vector-valued features, (ii) we use position-dependent
histogram features and (iii) we artificially enlarge the positive training set. To
evaluate these extensions we compare our method with [15] on the problem
of detecting motorbikes in natural images. To train and to test the detectors
we use training and validation sets of VOC 2005 challenge and adopt VOC
evaluation procedure [7].

Precision-recall evaluation in Figure 6(Left) illustrates gradual improvement
of the method in [15] (1-bin) with our extensions in terms of wfld, position-
dependent histograms (grid) and the 16 times enlarged training set (x16). In
addition to the improved performance, wfld results in a more efficient classi-
fier with about 25% less features compared to 1-bin. Surprisingly the largest
improvement comes from the increased training set. We further compare the
effect of different training set sizes in Figure 6(Right) using 1-bin classifier.
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Fig. 6. Detection results for motorbikes on VOC 2005 validation set in terms of
Precision-Recall curves and Average Precision (AP) values. (Left): Evaluation of
improvements introduced in this paper compared to “1-bin” method [15]; (Right):
Evaluation of artificially enlarged training sets.

Comparison on VOC 2005 and VOC 2006 benchmarks. We evaluate
the proposed method on PASCAL VOC 2005 and VOC 2006 challenges [7,6] on
the task of detecting selected object classes: motorbikes, bicycles, people, cars,
horses and cows. The training and the test sets contain substantial variation
of objects in terms of scale, pose occlusion and within-class variability. For
comparison we select methods with the best detection performance reported
in [7,6]. These include (i) INRIA-Dalal/INRIA Douze based on HOG features
and linear SVM [2], (ii) TU-Darmstadt based on interest points, ISM and
SVM [9], (iii) Edinburgh using interest points and logistic regression and (iv)
TKK using image segments and SOM [28].

In Figure 7 and Tables 1,2 our method (boosted histograms) demonstrates best
results in seven out of eight detection tasks of VOC 2005. The few parameters
of our detector (e.g. the number of gradient orientation bins m = 4 and
the scale of Gaussian derivatives σ = 1) were optimised on the motorbike
validation set and were fixed for the rest of the evaluation. Notably, boosted
histograms greatly outperform results reported in [7] for people and bicycles.
For motorbikes and cars our method has comparable performance to the best
results reported by INRIA-Dalal [2] and TU-Darmstadt [9]. Note also the
difference in relative performance of [2,9] on these two classes and the stable
corresponding performance of our method.

Figure 8 shows examples of detection results for motorbikes and people. In
Figure 8(Top) the gradual decrease of detection confidence is consistent with
the increasing complexity of detected motorbikes. The frequent presence of
bicycles within false positives is also intuitive. The detection performance
for people is lower in Figure 8(Bottom), however, many high confident false
detections (red rectangles) overlap with people in test images. These detections
are classified as false positives due to the insufficient overlap with ground truth
(green rectangles) or due to the missing annotation.
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motorbikes: test1 motorbikes: test2

bicycles: test1 bicycles: test2

people: test1 people: test2

cars: test1 cars: test2

Fig. 7. PR-curves for eight object detection tasks in PASCAL VOC 2005 Challenge.
The proposed method (Boosted Histograms) is compared to the best performing
methods reported in [7] (better viewed in colour).
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Fig. 8. Examples of true positive (TP) and false positive (FP) detections of mo-
torbikes and people. The location of illustrated detections on PR-curves is marked
with crosses. (Top): FP motorbike detections (red) frequently correspond to bicy-
cles. (Bottom): many high confident person detections overlap with people in test
images but are frequently classified as FP due to the insufficient overlap with (partly
missing) annotation rectangles (green). Better viewed in colour.
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Method Motorbikes Bicycles People Cars

Boosted Histograms 0.896 0.370 0.250 0.663
TU-Darmstadt 0.886 – – 0.489

Edinburgh 0.453 0.119 0.002 0.000
INRIA-Dalal 0.490 – 0.013 0.613

Table 1. Average precision for object detection on test1 VOC 2005 image set.

Method Motorbikes Bicycles People Cars

Boosted Histograms 0.400 0.279 0.230 0.267
TU-Darmstadt 0.341 – – 0.181

Edinburgh 0.116 0.113 0.000 0.028
INRIA-Dalal 0.124 – 0.021 0.304

Table 2. Average precision for object detection on test2 VOC 2005 image set.

Method bicycle cow horse motorbike person

INRIA Douze 0.414 0.212 – 0.390 0.164
INRIA Laptev 0.440 0.224 0.140 0.318 0.114

TKK 0.303 0.252 0.137 0.265 0.039

Table 3. Average precision for object detection in task 3 of VOC 2006.

Fig. 9. Detection results for horses, bicycles, cows, people, motorbikes and cars.

The PASCAL VOC Challenge 2006 [6] contains ten object classes. We actively
participated in the challenge and submitted results for five object classes:
bicycle, cow, horse, motorbike and person. Among these five classes the boosted
histogram method obtained best results for classes bicycle and horse while
second-best results were obtained for three other object classes as summarised
in Table 3. Example detections for a few test images are illustrated in Figure 9.
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Fig. 10. Alternative histogram features. (Left): Filter banks used to construct four
types of histogram features in this paper. Each filter corresponds to one bin of the
histogram. (Right): Relative performance of different histogram features and their
combinations applied to the detection of three object classes.

5 Alternative image features

In this section we consider alternative histogram features and feature selection
mechanisms and evaluate our method augment with such extensions on object
detection tasks.

5.1 Histograms of color and second order image derivatives

We investigate whether the histograms of alternative image properties can
provide better or complementary performance with respect to HOG features.
For this purpose in addition to HOGs we introduce three histogram descrip-
tors defined by local image measurements in terms of (i) multi-scale Laplacian
responses, (ii) second order jet responses and (iii) color as illustrated in Fig-
ure 10(Left). The choice of Laplacian features is motivated by their rotation
invariance and scale selection property [17,18]. Second order jets [11] capture
local second order differential image structure while color is discriminative
e.g. for certain animal classes. To construct histograms, we maximize responses
over associated filters at every image point and increment corresponding his-
togram bins. The training and the detection then follows the same procedure
as described for HOG features in previous sections.

Relative performance of different histogram features in Figure 10(Right) illus-
trates superior performance of HOG compared to other gray-scale descriptors.
Color histograms outperform HOG for horses but result in poor training con-
vergence for other two object classes. The best performance for all tested
classes is achieved by the combination of all features. The combination was
achieved by clustering multiple responses of alternative detectors trained sep-
arately for each type of features.
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Fig. 11. Comparison of boosted histogram regions with Harris-Affine features [20].
(Left): Harris-Affine regions detected for a motorbike image. (Right): Distribution
of Harris values for different types of features.

5.2 Alternative feature selection

Interest point features have been a popular choice of local image descriptors
in many recognition methods [9,19,25,31]. We investigate if these descriptors
bear similarity with histogram features selected by our method. For this pur-
pose we choose Harris-Affine features [20] as an example of a popular region
detector illustrated in Figure 11(Left). We then compare the values of Harris
function [10] computed for Harris-Affine features, boosted regions and ran-
dom regions on motorbike images. Distributions of Harris values for these
three types of regions are illustrated in Figure 11(Right). As expected, the
responses of Harris function are higher for Harris-Affine features compared
to random regions. Notably, boosted regions show low responses for Harris
function and, hence, bear low similarity to Harris-Affine features.

We next investigate whether the boosted histogram detector can be improved
by using Harris interest regions for training. For this purpose we pre-select
fractions of features using (a) random selection of regions and (b) selection of
interest regions maximising the Harris function. We train classifiers for three
VOC 2005 object classes using different fractions of pre-selected features and
different selection methods and evaluate the detection performance in Fig-
ure 12(Top). Notably, the performance of random features is similar or better
compared to Harris features. At the same time the complexity of classifiers
trained on Harris regions is higher compared to random regions according to
Figure 12(Bottom). This indicates that image features selected by the popular
Harris function may not always be the best choice in a recognition system.

In Figure 12 we also observe the very stable performance and complexity of
detectors trained on 10% randomly selected regions only. This implies the
opportunity to speed up the training procedure without penalizing the per-
formance and the complexity of the detection.
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Fig. 12. (Top): Detection performance of boosted histogram detectors trained on
different fractions of regions selected either randomly or by maximizing responses
of the Harris function. (Bottom): Complexity of corresponding detectors measured
by the number of selected features. (Better viewed in colour.)

6 Computational aspects

In their face detection method Viola and Jones [29] introduced integral im-
ages for the fast computation of rectangular grey-level features. This idea was
further developed to integral histograms [15,22] to enable fast computation
of histograms in rectangular image regions of arbitrary positions and sizes. A
major difference to the original approach in [29] arises, however, when com-
puting histograms of filter responses for multi-scale tasks such as for object
detection at multiple image resolutions.

Filter responses such as the responses of Gaussian derivatives are known to
change over image scales [16]. Hence, to enable unbiased computation of his-
tograms at different scales, either the size of filter kernels or the image res-
olution has to be adapted to the scale parameter. This, however, implies
additional computational cost due to a separate filtering step and the re-
computation of integral histograms at each scale level.

Given the high correlation of filter responses at adjacent image scales, com-
putation of integral histograms for a limited set of sparse scale levels is likely
to imply a speed up at the cost of a limited decrease of performance. To in-
vestigate this issue in the context of our detection algorithm we introduce the
following parameters. We denote the number of scale levels in octave by α
implying a scale factor of 21/α between adjacent scale levels. We recompute
integral histograms at each βth scale level c = nβ, n ∈ Z only. At other scale
levels ci we accommodate for scale changes by resizing rectangular features of
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Fig. 13. Precision-speed tradeoff. Average precision values (Left) and the detection
speed (Right) are illustrated for different densities of scale sampling (α) and different
scale steps of integral histograms (β). Higher speed of detection can be achieved by
means of a coarse scale sampling without compromising precision.

the object classifier similar to [29] while deriving histogram features from an
integral histogram at scale level c = βbci/βc.

To study the tradeoff between the speed and the accuracy of our detection
method we perform a set of experiments using different values of parameters α
and β while measuring average precision of detection on the VOC05 motorbike
validation dataset. As illustrated in Figure 13(left) the precision of detection
remains stable for α = 5, 10 and β = 1, 5, 10 while the detection speed in-
creases more than twice (see Figure 13,right). Choosing two scale levels in
octave (α = 2) while recomputing integral histograms at each 5th scale level
only (β = 5) seems to give a near optimal precision-speed tradeoff on this
dataset. We have observed similar behaviour for detectors trained on other
object classes. Our current implementation of object detection runs at about
10fps frame rate on 320 × 240 images on a modest PC. The implementation
source code is available for download 2 .

7 Conclusion

We presented a method for object detection that combines AdaBoost learning
with local histogram features. While being conceptually similar to [15] our
method provides a number of extensions that significantly improve the results
of object detection. We evaluated the method on recent benchmarks for object
recognition [7,6] and demonstrated its competitive performance compared to
the state-of-the-art. We also addressed computational aspects of the method
by analysing precision-seed tradeoff of detection.

2 http://www.irisa.fr/vista/Equipe/People/Laptev/objectdetection.html
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