
Corrigé de l’examen écrit : Système Digital

Le 8 janvier 2009

There are two problems, and doing all would take me about 5h, while you
only have 3h. So, rather than try and do poorly a bit of all, choose what you
like, and do it well. The clarity and exactness of your circuits & programs
will be rewarded. Not their length !

1 Common rules

The following hardware & software models apply to both questions.

1.1 Memoryless Circuits

All circuits in these problems are combinatorial (i.e. memory-free). All
circuits will be presented explicitly in two equivalent ways, by :

Schema A Directed Acyclic Graph DAG of its structure, properly drawn
from inputs to outputs, and documented by the symbolic names from
the net-list.

Net-List The net-list v1 = e1, · · · vn = en defines each variable vi by an
expression ei ∈ {t ∩ t′, t ∪ t′, t ⊕ t′} in which terms t and t′ represent :
an input ; a constant 0,1 ; a previously defined variable, vj with j < i.

1.2 Straight Line Programs

A SSA (Single Static Assignement) program is a list of instructions

v1 = e1, · · · , vn = en.

Each instruction defines the symbolic integer variable vj by an expression

ej ∈ {t⊕ t′, t ∪ t′, t ∩ t′, t + t′, t− t′},
in which t and t′ represent terms which can be, either :

1



+ + + +

x1x0

p0 p1 p2 p3 p4

x2 x3 x4

Fig. 1 – Minimal size parity P5.

1. an input variable x ;

2. a 16 bits integer constant ;

3. a previously defined variable vi, with i < j.

A SSAS (SSA plus shifts) program is similarly defined, by adding zi(t) to
our instruction set. It expresses both up-shift zi(t) = 2it = (t << i) when
i ≥ 0, and down-shift zi(t) = t÷ 2−i = (t >> −i) when i < 0.

For this problem, all SSA/SSAS programs are executed on a 16 bits ma-
chine. Arithmetic operations are computed modulo 216, at the rate of one
instruction per cycle. Hence, the length k of the SSA/S code is equal to the
program time (number of execution cycles).

2 Parity

The parity p = Pn(x) of a n-bit binary word x = x0 · · · xn−1 ∈ Bn is the
word p ∈ Bn whose k-th bit is the sum modulo 2 of the previous bits of x :

pk = x0 ⊕ · · · ⊕ xk =
∑

j≤k

xj (mod 2). (1)

Question 1 (Minimal size Parity circuit)
Describe the minimal size parity circuit Pn, with n bits of input x0 · · ·xn−1,
and n bits of output p0 · · · pn−1.

1. Show that output pk in your circuit satisfies specification (1).

2. Show that it is the unique minimal size circuit for computing parity.

3. Analyze the combinatorial depth (maximal number of gates between in-
puts&outputs) of the circuit.

Answer 1 The net-list (schemas in fig. 1 )

v0 = x0 and vk = xk ⊕ vk−1 for k > 0 (2)

computes vn = Pn(x) within n− 1 xor gates (for n > 0).

2



1. Relation (1) follows simply by induction on k ∈ N.

2. By induction, we prove that n is the minimal size for any parity circuit
Pn+1, and that (2) yields the unique such circuit. The case n = 0 is
trivial. A parity circuit Pn+1 over n + 1 bits contains a prefix parity
circuit Pn over its n least-significant bits. The outputs p0 · · · pn−1 of the
sub-circuit are all independent of input xn. In a minimal size parity
circuit, the prefix parity sub-circuit must also be optimal : otherwise
the whole circuit would not be optimal. By induction, this sub-circuit
is therefore unique and equal to (2), up to pn−1. Output pn = xn ⊕
pn−1 depends on xn, and one extra xor gate is therefore necessary and
sufficient to compute pn.

3. The combinatorial depth of parity Pn is equal to n− 1, by (2).

Question 2 (Minimal Depth Parity circuit) 1. Show that the com-
binatorial depth q of any parity circuit Pn is bounded by q ≥ dlog2(n)e.

2. Construct a minimal depth parity circuit Pn, for n = 2q.

3. Analyze your circuit : number of gates, depth, wire area.

+

x1x0

+

x3x2

+ +

+ +

+

x5x4

+

x7x6

+ +

+ +

p0 p1 p2 p3 p4 p5 p6 p7

Fig. 2 – Minimal depth parity P8.

Answer 2 1. Bit pn−1 =
∑

j<n xj (mod 2) depends upon the n input
bits x0 · · · xn−1. It follows that the depth q (number of unary/binary
gates traversed through the net-list from some input to pn−1) of this
sub-circuit is such that 2q ≥ n, otherwise one could not reach all n
inputs. Applying logarithms yields : p ≥ dlog2(n)e.

2. For q = 0, n = 1 and the (0 gate, 0 depth) circuit is simply p0 = x0.

For n = 2q = m2, q > 1, we split the input in two parts lx = x0 · · · xm−1

and hx = xm · · · xn−1, of equal size m = 2q−1. For q > 0, the circuit
first computes recursively and in parallel, the parities lp = Pm(lx) and

3



hp = Pm(hx) within depth q − 1. Both halves are then combined into
full-length parities by pk = lpk for k < m, and by pk = hpm−k ⊕ pm
for m ≤ k < n, where pm = pm−1 represents the middle parity. The
schemas for circuit P8 are shown in fig. 2.

3. The circuit has q× n/2 xor gates ; its depth is q ; its wire area is q× n
(see fig. 2).

Question 3 (Optimal Parity software) 1. Provide an SSA program
for computing P16. Analyze its length.

2. Endow the machine with a 16 bits shifter. Add the expression zi(t) to
our SSA instructions. It expresses both up-shift zi(t) = 2it when i ≥ 0
(expression t << i in C), and down-shift zi = t ÷ 2−i when i < 0
(expression t >> −i in C). Provide a minimal length SSA program
(including shifts) for computing the parity over 16 bits.

3. Remove the shifter again, and go back to question 3.1. Is your SSA
code for P16 of minimal length ? If so, prove it ; else, provide a counter
example with (say) less than 30 SSA instructions (without shift).

Answer 3 The generating series x(z) =
∑

k<n xkz
k and p(z) =

∑
k<n xkz

k

are related by (1), hence p(z) =
∑

k x(z)zk = x(z)
1−z

(mod 2) (mod zn).

1. An SSA program for computing the parity results from this expression :
s0 = x, q0 = 0, sk+1 = sk + sk, qk+1 = qk ⊕ sk so that sk = x(z)zk and
qk =

∑
j<k x(z)zj. The parity qn over n bits is computed in 2(n − 1)

SSA instruction ; so the SSA program for the parity over 16 bits has 30
instructions.

2. Expression

1

1− z
=

1 + z

1− z2
=

(1 + z)(1 + z2)

1− z4
=

1

1− z2n

∏

k<n

(1 + z2k

)

modulo z2n
yields Euler’s identity :

1 + z + · · ·+ z2n−1 =
∏

k<n

(1 + z2k

).

It expresses the sum of 2n terms by a product of n terms.

There result an SSA code for a machine with shifts : r0 = x and rk+1 =
rk ⊕ z2k

rk for k ∈ N. The parity rn over 2n bits is computed in 2n
instructions (the above expressions amount to 2 atomic instructions).
For n = 16, the 8 atomic instructions program is :

r1 = x⊕ zx, r2 = r1 ⊕ z2r1, r3 = r2 ⊕ z4r2, r4 = r3 ⊕ z8r3 (3)

4



3. While it can no longer be computed in one machine cycle, the shift
operation si = z2i

t can be computed by the SSA sub-routine s0 = t + t
and sk+1 = sk + sk, so that si = z2i

t = 22i
t is computed in i + 1 cycles.

Substituting into the previous SSA code (3) (with shifts) yields an SSA
code (without shifts) of length 2 + 3 + 4 + 5 = 14 instructions. Can one
do with fewer instructions ? If you have a clue, let me know.

3 Population Count

The number ν(x) of bits equal to 1 in x = [x0 · · · xn−1] ∈ Bn is

ν(x) := x0 + · · ·+ xn−1.

In software, integer ν(x) ∈ N is known as the population count, and also
the sideways sum of x. A hardware circuit for solving the same problem is
named a n bit parallel counter.

The numbers inside the full-adders indicate the binary weights of the outputs.

Fig. 3 – Parallel counter over 15 bits.

Question 4 (Parallel Counter Circuit)
A parallel counter has n bits of input [x0 · · · xn−1] ∈ Bn and m bits of out-
put [s0 · · · sm−1] ∈ Bm which represent the population count s = ν(x) =∑

k<m sk2
k in binary.

1. Express m in terms of n, and give the explicit values of m for n = 15
and n = 16.

2. Provide a lower bound on the depth of all n bit parallel counters.

5



3. Construct a n bit parallel counter, for arbitrary n.

4. Cleanly draw the schemas of your circuit for n = 15.

5. For arbitrary n, analyze your circuit : number of gates, depth, area.

Answer 4 1. m = dlog2(n + 1)e is the binary length of n, hence m = 4
and m = 5 for n = 15 and n = 16.

2. As each output depends on all inputs, the depth of any n bit parallel
counters is at least m.

3. We first define a parallel counter c[0 · · ·m − 1] = Pm(x[0 · · · 2m − 1]),
over n = 2m − 1 bits. For m = 1, c[0] = P1(x[0]) = x[0] is the identity
circuit. For m > 1, divide & conquer :
– Let l[0 · · ·m− 2] = Pm−1(x[1 · · · 2m−1− 1]) be the recursively defined

left half, and r[0..m− 2] = Pm−1(x[2m−1 · · · 2m − 1]) the right.
– Adding l and r over m− 1 bits with initial carry x[0] yields the final

result c[0 · · ·m − 1] = add(m − 1)(x[0], l[0 · · ·m − 2], r[0 · · ·m − 2]
over m bits. Note that P2 is simply a full-adder.

When n is not equal to 2m − 1, i.e. 2m−1 ≤ n < 2m − 1, we first
construct Pm ; we then set all irrelevant inputs (namely x[n · · · 2m−1])
to ”symbolic zero” ; we then simplify away all full-adders with symbolic
zero inputs : if one input is zero, change the full-adder to a half-adder ;
if two inputs are zeroes, the sum is equal to the non zero input, and the
carry becomes a symbolic zero ; when all three inputs are zeroes, both the
sum and carry outputs become symbolic zeroes. Apply these rules until
all symbolic zeroes are simplified away. The result is our final parallel
counter over n bits.

For example, simplifying away bits x[9 · · · 15] from P4 (fig. 3) yields an
8 bits parallel counter with 5 full-adders and 2 half-adders.

4. See fig. 3.

5. For arbitrary n, analyze your circuit : number of gates, depth, area.

Question 5 (Population Count Program) 1. Provide a SSAS program
for counting the population over 16 bits.

2. Generalize your program an arbitrary number of bits n, assuming now
that the underlying computer has n rather than just 16 bits.

3. Analyze the length of your program. Is this minimal ?

Answer 5 We present a solution for arbitrary n, and then for n = 16.

6



2 We first extract from input x the even bits e = x ∩ 2(10), and the odd
bits o = z−1(x ∩ 2(01)) shifted down by one position. At this stage :

e = 2x00 · · · x2k0 · · · , o = 2x10 · · · x2k+10 · · ·

Next, we add these two numbers : s[1] = e+o. Pairs of consecutive bits
s[1]2ks[1]2k+1 in s[1] represent in binary the sum

s[1]2k + 2s[1]2k+1 = x2k + x2k+1

of the corresponding bits in x.

The second pass uses constants c[1] = 2(1100) and c′[1] = 2(0011)
to sum pairs of input bits : s[2] = (s[1] ∩ c[1]) + z−2(s[1] ∩ c′[1]). At
this stage, four consecutive bits in s[2] represent in binary the sum of
the corresponding bits in x :

∑
i<4 s[2]4k+i2

i =
∑

i<4 x4k+i. Note that
s[2]4k+3 = 0 for all k ∈ N, since the above sum is at most 4.

In general, pass p uses the periodic 2-adic constants1 :

c[p] = 2(1
2p

02p

) =
2p − 1

2p+1 − 1
and

c′[p] = 2(0
2p

12p

) = ¬c[p] = 2pc[p].

We extract the 2p consecutive bits of x and sum them (all in parallel)
in 4 instructions (2 and, 1 shift, 1 add) :

s[p + 1] = (s[p] ∩ c[p]) + z−2p

(s[p] ∩ c′[p]).

The invariant at stage p is, for all k ∈ N :

∑

i<2p

s[2]4k+i2
i =

∑

i<2p

x4k+i.

Within a computer of word size 2m, the computation terminates when
p = m after executing 4q SSAS instructions.

1 Based on the above, we first pre-compute, once and for all, 8 decimal
constants over 16 bits, namely ci = c[i] (mod 216) and ci′ = c′[i]
(mod 216) for 0 ≤ i < 4 :

c0 = 21845, c0′ = 43690, c1 = 13107, c1′ = 52428,
c2 = 3855, c2′ = 61680, c3 = 255, c3′ = 65280.

1Note that c[p] is output p from a binary counter.

7



The code for computing the population count over 16 bits is then :

s0 = x;
s1 = (s0 ∩ c0) + z−1(s0 ∩ c0′);
s2 = (s1 ∩ c1) + z−2(s1 ∩ c1′);
s3 = (s2 ∩ c2) + z−4(s2 ∩ c2′);
s4 = (s3 ∩ c3) + z−8(s3 ∩ c3′);

out = s4;

(4)

3 Computing the population count over n = 2m bits as above requires
exactly 4m SSAS instructions.

Is this minimal ? If you have a clue, let me know !

8


