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Abstract

Blur from camera shake is mostly due to the 3D rota-
tion of the camera, resulting in a blur kernel that can be
significantly non-uniform across the image. However, most
current deblurring methods model the observed image as
a convolution of a sharp image with a uniform blur ker-
nel. We propose a new parametrized geometric model of
the blurring process in terms of the rotational velocity of
the camera during exposure. We apply this model to two
different algorithms for camera shake removal: the first one
uses a single blurry image (blind deblurring), while the sec-
ond one uses both a blurry image and a sharp but noisy im-
age of the same scene. We show that our approach makes
it possible to model and remove a wider class of blurs than
previous approaches, including uniform blur as a special
case, and demonstrate its effectiveness with experiments on
real images.

1. Introduction
Everybody is familiar with camera shake, since the re-

sulting blur spoils many photos taken in low-light condi-
tions. While significant progress has been made recently
towards removing this blur from images, almost all ap-
proaches model the blurred image as a convolution of a
sharp image with a spatially uniform filter [5, 10, 24, 29].
However, real camera shake does not in general cause uni-
form blur [13], as illustrated by Figure 1.

In this paper we propose a geometrically consistent
model of non-uniform image blur due to camera shake, aris-
ing from rotations of the camera. We develop a global rep-
resentation of such parametrically non-uniform blur, using
a single “blur kernel” analogous to (but different from) a
convolution kernel, and demonstrate its ability to model a
more general class of blurs than previous approaches. We
demonstrate the effectiveness of our model by using it to re-
place the uniform blur model in two existing approaches to
camera shake removal, and show quantitative and qualita-
tive improvements in the results. In addition, we show that
uniform blur is a special case of our model.
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Figure 1. Visible non-uniformity of blur in a shaken image.
Left: The blurry image. Right: Close-ups of different parts of
the image. Note the differences in shape of the blur between the
middle and bottom close-ups.

Specifically, we consider the problems of “blind” deblur-
ring, where only a single blurred image is available, and the
case where an additional sharp but noisy image of the same
scene is available. To approach these two problems, we ap-
ply our model within the frameworks proposed by Miskin
& MacKay [16] and Fergus et al. [10] for the blind case,
and Yuan et al. [29] for the case of a noisy / blurred image
pair.

1.1. Related Work
Previous work on non-uniform deblurring has focused

on piecewise-uniform blurs arising from multiple moving
objects in the scene [7, 12], spatially varying combinations
of localized uniform blurs [17, 27], or blur arising from ro-
tations of planar objects in the scene [24]. However, apart
from Sawchuk [22], who assumes a known transformation,
these approaches generally rely on the assumption that the
blur is locally uniform, and do not consider global models
for continuously varying blur, such as those arising from ar-
bitrary rotations of the camera about its optical center dur-
ing exposure, as modelled in our work.

If the blur kernel is known, standard deblurring tech-
niques such as the Wiener filter (for uniform blur) or the
Richardson-Lucy algorithm (for general blur) can be used
to recover the original sharp image [3, 8, 14, 19, 21]. How-
ever, blind image deblurring with an unknown blur kernel
is a difficult problem, which is typically addressed by first



estimating the kernel, and then estimating the sharp image
assuming the kernel is known. Blind camera shake removal
from a single image using a uniform blur model and priors
on image statistics has been addressed in [10, 13, 16, 23].
To simplify the deblurring problem, others have considered
using additional information in the form of additional blurry
images [6, 20], or a sharp but noisy image of the same
scene [29].

2. Geometric Model
To motivate our approach, we begin with the assertion

that in most cases of camera shake, the rotation of the cam-
era during exposure has a significantly larger effect than its
translation [13]: Typical consumer cameras have a field of
view of about 50◦, and rotating the camera by only a small
fraction of this, e.g. 1◦ = 1

50 × 50◦, during exposure will
cause an image blur whose size in the image approximately
follows the same proportion, i.e., a 20 pixel blur on a 1000
pixel-wide image. Translation of the camera, on the other
hand, will cause a blur whose size is inversely proportional
to the depth of the scene, and reaching the same 20 pixel
blur for an object at a depth of 2m would require translat-
ing the camera by about 4cm. The rotation of 1◦ represents
a significantly smaller motion of the camera and, in most
cases, camera rotation can be assumed to be the only signif-
icant source of camera shake blur.

2.1. Motion Blur and Homographies
We assume from now on that the only significant motion

of the camera is a rotation about its optical center, and that
the scene being photographed is static. It is well known that
in this case, under the pinhole model of a camera, all views
seen by the camera are projectively equivalent, excluding
boundary effects. This means that the image at one cam-
era orientation is related to the image at any other by a 2D
projective transformation, or homography. For an uncali-
brated camera, this is a general 8-parameter homography,
but in the case of a camera with known internal parameters,
the homography H is parameterized by the 3 × 3 rotation
matrix R describing the rotation of the camera [11]:

H = KRK−1, (1)

where K is the camera’s internal calibration matrix.

The matrix R requires only 3 parameters, and we adopt
here the “angle-axis” representation, in which a rotation is
described by the angle θ moved about an axis a (a unit-
norm 3-vector), summarized by the vector θ = θa =
(θX , θY , θZ)>. We fix our 3D coordinate frame to have
its origin at the camera’s optical center, with the XY -plane
aligned with the camera sensor’s coordinate frame and the
Z-axis parallel to the camera’s optical axis. R is given by

the matrix exponential

R(θ) = e[θ]× , where (2)

[θ]× =

 0 −θZ θY
θZ 0 −θX
−θY θX 0

 . (3)

Having defined the type of image transformation we ex-
pect, we now assume that when the shutter of the camera
opens, there is a sharp image f : R2 → R of a static scene
that we would like to capture. The camera’s sensor accu-
mulates photons while the shutter is open, and outputs an
observed image g : R2 → R. In the ideal case, each point
on the sensor would see a single scene point throughout the
exposure, giving us a sharp image. However if, while the
shutter is open, the camera undergoes a sequence of rota-
tions, parametrized by θ(t), each ray from the static scene
will trace a sequence of points on the image. For each point
x in the observed blurred image we can trace the record of
rays x′(t) contributing to it as:

x′(t) ∼ Htx, (4)

where Ht is the homography induced by the rotation θ(t),
and ∼ denotes equality up to scale. The observed image
g is thus the integral over the exposure time T of all the
projectively-transformed versions of f , plus some observa-
tion noise ε:

g(x) =
∫ T

0

f
(
Htx

)
dt+ ε, (5)

where, with a slight abuse of notation, Htx denotes inho-
mogeneous coordinates of a point in f .

In general, a single blurry image has no temporal infor-
mation associated with it, so it is convenient to replace the
temporal integral in (5) by a weighted integral over the set
of all possible rotationsR:

g(x) =
∫
R
f
(
Hθx

)
w(θ) dθ + ε, (6)

where the weight function w(θ) corresponds to the time the
camera spends at the orientation θ while the shutter is open.

According to this model, the apparent motion of pixels
may be significantly non-uniform across the image. Fig-
ure 2 demonstrates this, showing the paths followed by
points in an image under rotations about either the Y or
Z axis of the camera. Under the (in-plane) Z-axis rotation,
the paths vary significantly across the image. Under the
(out-of-plane) rotation about the Y -axis, the paths, while
varying considerably less, are still non-uniform. As the fo-
cal length increases, this out-of-plane blur becomes more
uniform, however most consumer cameras operate at focal
lengths of the same order as the sensor width. In addition,
as argued by Levin et al. [13], the assumption of zero in-
plane rotation is often violated. From this, it is clear that
modelling camera shake as a convolution is insufficient to
fully describe its effects.



Figure 2. The paths followed by image points under single-axis
rotations. Left: Rotation about the Y -axis. Right: Rotation about
the Z-axis. Under single-axis camera rotations, the paths followed
by points in the image are visibly curved and non-uniform across
the image. The focal length of the camera in this simulation is
equal to the width of the image, the principal point is at the image’s
center, and the pixels are assumed to be square.

2.2. Camera Calibration
In order to compute the homography in Equation (1), we

need to know the camera’s internal parameters. We recover
the pixel size and focal length of the camera from the im-
age’s EXIF tags, and assume that the principal point is at
the center of the image.

The radial distortion present in many consumer-grade
digital cameras can represent a significant deviation from
the pinhole camera model. Rather than incorporating the
distortion explicitly into our model, we pre-process images
with the commercially available PTLens tool [2], which
uses a database of lens and camera parameters to correct
for the distortion.

3. Restoration Model
So far, our model has been defined in terms of the con-

tinuous functions f and g, and the weight function w. Real
cameras are equipped with a discrete set of pixels, and out-
put an observed blurry image g ∈ RN , with N = H ×W
pixels for an image with H rows and W columns. We con-
sider g to be generated by a sharp image f ∈ RN and a set of
weights w ∈ RK , whose size K = NX ×NY ×NZ is con-
trolled by the number of rotation steps about each axis that
we consider. By analogy with convolutional blur, we refer
to w as the blur kernel. Each element wk corresponds to a
camera orientation θk, and consequently to a homography
Hk, and in general w will be very sparse, since the camera
will have passed through only a few of these orientations
during exposure. Discretizing Eqn. (6), each observed pixel
gi is modelled as:

gi =
∑
k

(∑
j

Cijkfj

)
wk + ε, (7)

where i, j and k index into the observed image, the sharp
image and the blur kernel, respectively. For an observed
pixel gi with coordinate vector xi, the sum

∑
j Cijkfj in-

terpolates the point f(Hkxi) in the sharp image, with Cijk
being the coefficients of, for example, bilinear interpolation.

Thanks to the bilinear form of Eqn. (7), note that when
either the blur kernel or the sharp image is known, the blurry
image is linear in the remaining unknowns, i.e.

g = Af + ε, (8)
or g = Bw + ε, (9)

where Aij =
∑
k Cijkwk, and Bik =

∑
j Cijkfj . In the

first form, A ∈ RN×N is a large sparse matrix, whose
rows each contain a local blur filter acting on f to generate
a blurry pixel. In the second form, when the sharp image is
known, each column of B ∈ RN×K contains a projectively
transformed copy of the sharp image. We will use each of
these forms in the following.

4. Applications
In this section, we outline two applications of our blur

model, where the aim is to recover an estimate f̂ of the
true sharp image f . Generally, blind deblurring algorithms
approach this by also attempting to estimate a blur ker-
nel ŵ such that together, f̂ and ŵ are able to accurately
reconstruct the observed blurry image g. We denote this
reconstruction as ĝ(f̂ , ŵ), where under our model ĝi =∑
k(
∑
j Cijkf̂j)ŵk.

Blind deblurring. In Section 5, we examine the case of
blind deblurring, where we have only a single blurred im-
age g from which to estimate f̂ . In this work, we modify the
algorithms of Miskin & MacKay [16] and Fergus et al. [10],
which attempt to estimate the blur kernel ŵ using a varia-
tional inference approach. The estimated kernel ŵ is then
used to deblur g directly, using the Richardson-Lucy (RL)
algorithm, to give f̂ . In this algorithm, the kernel estimation
step uses the model in Eqn. (7), then, assuming the kernel to
be known, the image reconstruction step attempts to invert
Eqn. (8).

Deblurring with noisy / blurry image pairs. In Sec-
tion 6, we apply our model to the case where, in addition
to g, we have a sharp but noisy image fN of the same scene,
as proposed by Yuan et al. [29]. The noisy image is first
used as a proxy for the sharp image in order to estimate the
blur kernel ŵ, using the form in Eqn. (9). In the second
step, the kernel is again assumed to be known, and used to
deblur g, inverting (8). However, in this case we also mod-
ify the RL algorithm (as proposed by Yuan et al.) using fN
to suppress ringing.

4.1. Constraints and Priors for Blur Kernels
The problem of finding the sharp image and blur kernel

that best reconstruct the observed image is in general ill-
posed, since we have fewer equations than parameters. To
obtain a useful solution, it is thus necessary to add some
regularization and/or constraints on the quantities being es-
timated.



The first thing to note is that the elements of w and f
must be non-negative, since each coefficient wk records an
elapsed time, and each pixel value fj records a number of
incident photons. Furthermore, we may only recover f and
w up to scale, since ĝ(f̂ , ŵ) = ĝ( 1

α f̂ , αŵ), so we may fix
the norm of either one. A natural choice is to constrain the
`1 norm of ŵ to be unity, so that f̂ will occupy the same
range of values as g.

A final useful observation about the kernel is that it is
caused by the camera following a path through the set of ro-
tations. Thus a natural prior is that it should be sparse, since
the camera will have only passed through a small subset of
all possible rotations. This sparsity prior has been a feature
of previous camera shake removal algorithms, and has also
been leveraged for the alignment of blurred / non-blurred
images [28]. Fergus et al. [10] encourage sparsity by plac-
ing a mixture-of-exponentials prior on the kernel values,
while Yuan et al. [29] proceed by hysteresis thresholding
in scale-space.

5. Blind Deblurring
One of the most successful [13] algorithms for blind de-

blurring is the variational inference approach of Miskin &
MacKay [16], designed for simultaneous deblurring and
source separation, which has been adapted by Fergus et
al. [10] to the removal of camera shake blur. Fergus et al.
use this algorithm to estimate the blur kernel, and obtain the
final sharp image by “deconvolving” the blurry image with
this kernel, using the Richardson-Lucy algorithm. In this
section, we show that the convolutional blur model in the
original algorithm can be replaced with our non-uniform
blur model, leading to new update equations for the opti-
mization process, and that doing so improves the deblurred
results.

Kernel Estimation. The algorithm proposed by Miskin &
MacKay [16] attempts to marginalize the posterior distribu-
tion for both the kernel and the sharp image p(f ,w|g) over
the sharp image f to obtain an estimate of the blur kernel ŵ,
using a variational method to approximate the true posterior
by a simpler, factorized distribution. Fergus et al. [10] suc-
cessfully adapted this algorithm to the removal of uniform
camera shake blur from photographs by applying it within
a multiscale framework and in the gradient domain, using
priors on the kernel and sharp image learnt from real data.

We apply the priors learnt by Fergus et al. directly in our
own implementation. The observation noise ε is assumed
to be Gaussian, and to free the user from manually tuning
the noise variance σ2, the inverse variance βσ = σ−2 is also
considered as a latent variable.

We follow [16] and collect the latent variables f , w, and
βσ into an “ensemble” Θ. The aim is to find the factorized
distribution q(Θ) = q(βσ)

∏
j q(fj)

∏
k q(wk) that best ap-

proximates the true posterior p(Θ|g), by minimizing the

following cost function ([16, Eqn. (10)]) over both the form
and the parameters of q(Θ):

CKL =
∫
q(Θ)

[
ln
q(Θ)
p(Θ)

− ln p(g|Θ)
]

dΘ. (10)

Minimizing this cost function is equivalent to minimizing
the Kullback-Leibler (KL) divergence between the posterior
and the approximating distribution [4], and this is tackled
by first using the calculus of variations to derive the opti-
mal forms of q(fj), q(wk) and q(βσ), then iteratively op-
timizing their parameters. For our blur model, the optimal
q(Θ) has the same form as in [16]. However the param-
eter update equations differ significantly and we have cal-
culated these afresh (the equations and their derivation are
given at [1]). Having found the optimal q(Θ), the expec-
tation of q(w) is taken to be the optimal blur kernel, i.e.,
ŵ = 〈w〉q(w), where 〈·〉q represents the expectation with
respect to the distribution q, while the latent image distribu-
tion q(f) is discarded.

Image Reconstruction. Having estimated the blur kernel
for the blurry image, we wish to invert Eqn. (8) in order to
estimate the sharp image f̂ . This process is often referred
to as deconvolution, and while classical algorithms exist for
this process [3, 8, 19], they are generally applicable only to
uniform blur, relying on convolutions or the ability to work
in the Fourier domain. One method frequently used for
deconvolution is the Richardson-Lucy algorithm [14, 21].
This algorithm can be applied to general linear systems as
well as to convolutional blurs, using the notation of Eqn. (8)
for a known blur [25]. The algorithm iteratively improves
the estimate f̂ using the following update equation:

f̂ ← f̂ �
(
A>

(
g �Af̂

))
, (11)

where g is the observed blurry image, and the matrix A
depends on the estimated non-uniform blur. Here, u � v
represents the element-wise product and u�v the element-
wise division of two vectors u and v.

5.1. Results
We compare in this section our results to those obtained

with the code provided by Fergus et al. [10] on both syn-
thetic and real data. Implementation details are discussed in
Section 7.

Figures 3 and 4 show blind deblurring results on images
blurred by real camera shake. Our approach is able to cap-
ture and remove the blur, while the uniform algorithm of
Fergus et al. fails to find meaningful kernels or good de-
blurred results. This is explained by both the short focal
length (typical of compact cameras), and the fact that the
kernels estimated using our algorithm exhibit significant in-
plane components.

Figure 5 shows results for blind deblurring of synthetic
images using the two methods, and demonstrates two im-
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Figure 3. Blind deblurring of real camera shake, example 1.
The result of blind deblurring on a real camera shake image, cap-
tured with a shutter speed of 1

2
second, using the algorithm of Fer-

gus et al. and our non-uniform approach. Our approach is able to
recover a useful kernel and a good deblurred image, while the uni-
form algorithm of Fergus et al. fails to find a meaningful kernel.
The rotational kernel visualized in the right-hand column shows
the non-zero kernel elements plotted as points in the 3D rotational
parameter space (θX , θY , θZ ). Each of the cuboid’s faces shows
the projection of the kernel onto that face. Note that our estimated
rotational kernel has a significant in-plane component (non-zeros
over many values of θZ ).

portant points: first, small out-of-plane (e.g. Y -axis) com-
ponents of a blur are sufficiently uniform that the two mod-
els both perform well, although the rotational model per-
forms better. Second, only our approach is able to re-
move in-plane (Z-axis) blurs, which cannot be represented
as convolutions. In this case, and also for the largest out-
of-plane blurs, we are able to recover a good sharp image,
whereas the uniform approach breaks down due to the non-
uniformity of the blur.

In Figure 6, we compare our approach to that of Fergus et
al. [10] on a real blurred image, taken from the dataset of
Levin et al. [13], where the true blur is known, and also
known to be uniform. This demonstrates the fact that our
model includes uniform blur as a special case; by setting
the focal length to be large and applying the constraint that
θZ = 0, we obtain results indistinguishable from those
of [10]. When we do not apply the constraint on θZ , our
algorithm still produces a good result, but unsurprisingly
does not perform as well, since there is a much larger num-
ber of parameters to estimate (K is increased by a factor of
8).
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Figure 4. Blind deblurring of real camera shake, example 2. A
hand-held image with camera shake, captured with a shutter speed
of 1 second, with the results of blind deblurring using the algo-
rithm of Fergus et al. and our approach. Also shown for illustra-
tion is the estimated latent image from the variational inference in
the non-uniform case (calculated as 〈f〉q(f) then converted from
gradients to intensities using Poisson reconstruction [18]). Our re-
sult shows much more detail than that of the uniform model, and
while our deblurred result exhibits some “ringing”, these artifacts
are not present in the latent image, suggesting that they are largely
a product of the Richardson-Lucy image reconstruction.

6. Deblurring with Noisy / Blurry Image Pairs
Another successful method for removing camera shake,

proposed by Yuan et al. [29], takes an additional input in the
form of a noisy image fN of the scene. The motivation for
this is that in low light, blurry images occur at long shutter
speeds, however it is often also possible to use a short expo-
sure at a high ISO setting to obtain a sharp but noisy image
of the same scene. While the noisy image may be degraded
too badly to allow direct recovery of a good sharp image,
it can be used as a proxy for the sharp image in order to
accurately estimate the blur kernel, and can also be used to
improve the subsequent image reconstruction process.

Kernel Estimation. As discussed in Section 4.1, some
prior knowledge must be applied to recover a good kernel
estimate. In their algorithm, Yuan et al. [29] constrain the
kernel to have unit `1 norm, however they simultaneously
penalize the `2 norm of the kernel, reducing the sparsity-
inducing effect of the constraint, and giving rise to the need
for thresholding. In our approach, we opt to use the `1 and
positivity constraints alone, since they lead naturally to a
sparse kernel [26], a fact also exploited by Shan et al. [24]



10px Y -axis blur +
σ = 5/255 noise

Sharp image
10px Z-axis blur +
σ = 5/255 noise

Deblurred with ground-truth kernel

Deblurred with our estimated non-uniform kernel

Deblurred with estimated uniform kernel [10]
10px 20px 30px

Y -axis R U R U R U
σ = 0 23.1 (1.4) 23.2 (1.4) 27.2 (1.1) 58.1 (2.4) 32.2 (1.1) 129.3 (4.4)
σ = 5 24.9 (1.3) 25.8 (1.3) 29.0 (1.1) 56.8 (2.2) 33.4 (1.1) 62.9 (2.1)
σ = 10 27.0 (1.2) 30.1 (1.3) 30.7 (1.1) 48.7 (1.8) 41.9 (1.3) 57.8 (1.8)
Z-axis R U R U R U
σ = 0 14.4 (1.3) 21.8 (2.0) 18.1 (1.0) 26.1 (1.6) 25.4 (1.2) 57.6 (2.7)
σ = 5 17.4 (1.2) 24.8 (1.7) 23.2 (1.2) 54.5 (2.8) 30.6 (1.3) 58.6 (2.5)
σ = 10 22.0 (1.1) 50.9 (2.7) 26.5 (1.1) 55.8 (2.4) 30.0 (1.2) 57.5 (2.2)

RMS errors between deblurred results and true sharp image

Figure 5. Blind deblurring of synthetic single-axis blurs. A
sharp image (center) with examples of synthetic blur by rotation of
the camera about its Y and Z-axis, and the kernels and deblurred
results for different cases. We compare the results of blind deblur-
ring on a range of blur sizes and noise levels, and the reconstruc-
tion errors are summarized in the tables at the bottom. For each
single-axis blur, the table contains the root-mean-square (RMS)
errors between the deblurred results and the ground-truth sharp
image for 10, 20, and 30 pixel blurs, using our model (R) and the
uniform model (U). In each cell we also show, in parentheses, the
ratio between the RMS error and the corresponding error for that
blurry image deblurred with the ground-truth kernel.

for blur kernel estimation.
In order to estimate the blur kernel, we solve the follow-

ing problem:

min
ŵ
‖g− ĝ(fN , ŵ)‖22, s.t. ‖ŵ‖1 = 1, ŵk ≥ 0 ∀k (12)

where, by analogy with Eqn. (9), ĝ(fN , ŵ) = BN ŵ, where
BN is the matrix whose columns contain all the projectively
transformed copies of fN . This least-squares formulation
with non-negative `1 constraints is an instance of the Lasso
problem [26], for which efficient optimization algorithms

Sharp image Blurred image

D
eb

lu
rr

ed
K

er
ne

l

Fergus et al.
Ours, with
θZ = 0

Ours,
unconstrained

Ground-truth

Figure 6. Blind deblurring of a real uniform blur. A real cam-
era shake blur from the dataset of [13], with the deblurred results
and kernels for four cases; the original algorithm of Fergus et al.,
our approach with a large focal length and no in-plane rotation
(θZ = 0), our approach with θZ unconstrained, and the ground-
truth (uniform) kernel. Notice that this unconstrained kernel has
the same diagonal shape as the true blur, and that the non-zeros are
centered around a single value of θZ .

exist [9, 15], and we use these algorithms here.
For comparison, we have also implemented this algo-

rithm for uniform blurs, using a matrix BN in Eqn. (12)
whose columns contained translated versions of fN , rather
than projectively transformed versions.

Image Reconstruction. Having estimated the blur ker-
nel, Yuan et al. [29] propose several modifications to the
Richardson-Lucy (RL) algorithm, which take advantage of
the fact that it is possible to recover much of the low-
frequency content of f from a denoised version of fN . Im-
ages deblurred with the standard RL algorithm often ex-
hibit “ringing” artifacts – low-frequency ripples spreading
across the image, such as in Figure 4 – but using the de-
noised image it is possible to disambiguate the true low
frequencies from these artifacts, and largely remove them
from the result. We refer the reader to [29] for full details
of the modified RL algorithm, omitted here for brevity. We
have adapted the algorithm for our non-uniform blur model,
along the same lines as for the standard RL algorithm in
Section 5.

6.1. Results
In this section, we present results with noisy / blurry im-

age pairs, and refer the reader to Section 7 for implemen-
tation details. Figure 7 shows a comparison between the
uniform model and our rotational one, using the algorithm
described above to estimate the blur kernels. Having esti-
mated the kernel, we deblur the blurred images using the
modified RL algorithm of Yuan et al. [29]. As can be seen
from the deblurred images obtained with the two models,



our results exhibit more detail and fewer artifacts than those
using the uniform blur model.

7. Implementation
The implementation of the blind kernel estimation

method presented in Section 5 is based on the code made
available by Miskin & MacKay [16] and by Fergus et
al. [10]. We have modified the algorithm to use a kernel
defined over rotations of the camera rather than a convo-
lution kernel, and replaced the parameter update equations
with the corresponding versions derived for our bilinear blur
model (see [1]). The implementations of the Richardson-
Lucy algorithm, and the modified RL algorithm of Yuan et
al. [29] are our own, and we use these implementations for
both blur models when comparing results.

Sampling the set of rotations. One important detail to
consider is how finely to discretize the rotational parameter
θ. Undersampling the set of rotations will affect our ability
to accurately reconstruct the blurred image, but sampling
it too finely will lead to unnecessary calculations. Since
the kernel is defined over the 3 rotational parameters θX ,
θY and θZ , doubling the sampling resolution increases the
number of kernel elements by a factor of 8, so the choice
is an important one. In practice, we have found that a good
choice of sample spacing is one which corresponds approxi-
mately to a displacement of 1 pixel at the edge of the image.
Since we are fundamentally limited by the resolution of our
images, setting the resolution higher leads to redundant ro-
tations, that are indistinguishable from their neighbours. We
set the size of our kernel along each dimension in terms of
the size of the blur we need to model, typically a few de-
grees along each dimension of θ, e.g. [−5◦, 5◦]3.

Multiscale implementation. Both of the kernel estima-
tion algorithms presented here are applied within a multi-
scale framework, starting with a coarse representation of
image and kernel, and repeatedly refining the estimated ker-
nel at higher resolutions. In the case of blind deblurring, the
reason for this is that the variational algorithm is suscepti-
ble to poor local minima, and performing the optimization
at increasingly fine scales can help to avoid this. When de-
blurring with noisy / blurry image pairs, the problem is that
the kernel at the original resolution may have thousands or
tens of thousands of elements. However, very few of these
should have non-zero values. To solve Eqn. (12) directly at
full resolution would involve transforming fN for every pos-
sible rotation under consideration and storing all the copies
simultaneously in BN . This represents a significant amount
of redundant computation, since most of these copies will
correspond to zeros in the kernel, and this may furthermore
cause BN to become impractically large.

In both of the applications presented in this paper, we
use the solution ŵs at each scale s to constrain the solu-
tion at the next scale ŵs+1, by defining an “active region”

Noisy Blurred

Uniform kernel Rotational kernel Non-uniform filters

Uniform deblurred result Our rotational deblurred result

Noisy Blurred Uniform result Our result
Figure 7. Deblurring real camera shake blur using a noisy /
blurred image pair. A noisy / blurred pair of images captured
with a hand-held camera, with the estimated kernels, and deblurred
images obtained using the modified Richardson-Lucy algorithm
proposed by Yuan et al. [29]. Also shown for illustration are a
selection of the local filters generated by the rotational kernel. As
can be seen in the close-ups, our result contains more details and
fewer artifacts from the deblurring than when using the uniform
blur model.



where ŵs is non-zero, and constraining the non-zeros at the
next scale to lie within this region. We first build Gaussian
pyramids for the blurred image (and noisy image, if appli-
cable), and at the finest scale s = 0, define the active region
to cover the full kernel. At each scale s, we find the optimal
kernel ŵs for that scale. We then upsample ŵs to the next
scale (s + 1) using bilinear interpolation, find the non-zero
elements of this upsampled kernel, and dilate this region
using a 3 × 3 × 3 cube. When finding the optimal kernel
ŵs+1, we fix all elements outside the active region to zero.
We repeat this process at each scale, until we have found
the optimal kernel at the finest scale.

Geometric and photometric registration. For the case
of noisy / blurry image pairs, the two images are simply
taken one after the other with a hand-held camera, so they
may not be registered with each other. Thus, we estimate
an approximate registration θ0 between them at the coars-
est scale, using an exhaustive search over a large set of
rotations, for example ±10◦ about all 3 axes, and remove
this mis-registration from the noisy image. To compen-
sate for the difference in exposure between the noisy and
blurry images, at each scale s, after computing ŵs for that
scale, we estimate a linear rescaling a by computing the
linear least-squares fit between the pixels of gs and those
of ĝs(ŵs, fN,s), and apply this to the noisy image, i.e.
fN ← afN .

8. Conclusion
We have proposed a new model for camera shake, de-

rived from the geometric properties of cameras, and ap-
plied it to two deblurring problems within the frameworks
of existing camera shake removal algorithms. The model
assumes rotation of the camera about its optical center dur-
ing exposure, and is temporally-agnostic on the distribution
over camera orientations. Note, however, that camera rota-
tions that are off the optical center can be modeled by cam-
era rotations about the optical center together with transla-
tion; these translations should generally be small for rota-
tion centers that are not far from the optical center. The
model is not applicable for non-static scenes, or nearby
scenes with large camera translations where parallax effects
may become significant.

In the future, we plan to investigate the use of our general
bilinear model to other non-uniform blurs. Also, since our
model is valid over the whole image, it may be possible to
estimate the sharp image and blur kernel simultaneously, as
suggested by the result in Figure 4.

Acknowledgements. We are grateful for discussions with
Bryan Russell, and comments from Fredo Durand and the re-
viewers. Thank you to James Miskin and Rob Fergus for mak-
ing their code available. Financial support was provided by
ONR MURI N00014-07-1-0182, ANR project HFIBMR (ANR-
07-BLAN-0331-01) and the MSR-INRIA laboratory.

References
[1] http://www.di.ens.fr/willow/research/deblurring/.
[2] PTLens software. http://epaperpress.com/ptlens/.
[3] M. R. Banham and A. K. Katsaggelos. Digital image restoration.

IEEE Signal Processing Magazine, 14(2), 1997.
[4] C. M. Bishop. Pattern Recognition and Machine Learning (Informa-

tion Science and Statistics). Springer, 2006.
[5] T. F. Chan and C.-K. Wong. Total variation blind deconvolution.

IEEE Trans. Image Processing, 7(3), 1998.
[6] J. Chen, L. Yuan, C.-K. Tang, and L. Quan. Robust dual motion

deblurring. In CVPR, 2008.
[7] S. Cho, Y. Matsushita, and S. Lee. Removing non-uniform motion

blur from images. In ICCV, 2007.
[8] K. Dabov, A. Foi, V. Katkovnik, and K. Egiazarian. Image restora-

tion by sparse 3D transform-domain collaborative filtering. In SPIE
Electronic Imaging, 2008.

[9] B. Efron, T. Hastie, L. Johnstone, and R. Tibshirani. Least angle
regression. Annals of Statistics, 32, 2004.

[10] R. Fergus, B. Singh, A. Hertzmann, S. T. Roweis, and W. T. Freeman.
Removing camera shake from a single photograph. SIGGRAPH,
2006.

[11] R. I. Hartley and A. Zisserman. Multiple View Geometry in Computer
Vision. CUP, second edition, 2004.

[12] A. Levin. Blind motion deblurring using image statistics. In NIPS,
2006.

[13] A. Levin, Y. Weiss, F. Durand, and W. T. Freeman. Understanding
and evaluating blind deconvolution algorithms. In CVPR, 2009.

[14] L. B. Lucy. An iterative technique for the rectification of observed
distributions. Astron. Journal, 79(6), 1974.

[15] J. Mairal, F. Bach, J. Ponce, and G. Sapiro. Online learning for
matrix factorization and sparse coding. JMLR, 11:19–60, 2010.
http://www.di.ens.fr/willow/SPAMS/.

[16] J. W. Miskin and D. J. C. MacKay. Ensemble learning for blind
image separation and deconvolution. In Advances in Independent
Component Analysis. Springer-Verlag, 2000.

[17] J. G. Nagy and D. P. O’Leary. Restoring images degraded by spatially
variant blur. SIAM J. Sci. Comput., 19(4), 1998.
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