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Abstract Given a large-scale collection of images our aim
is to efficiently associate images which contain the same en-
tity, for example a building or object, and to discover the sig-
nificant entities. To achieve this, we introduce the Geometric
Latent Dirichlet Allocation (gLDA) model for unsupervised
discovery of particular objects in unordered image collec-
tions. This explicitly represents images as mixtures of par-
ticular objects or facades, and builds rich latent topic models
which incorporate the identity and locations of visual words
specific to the topic in a geometrically consistent way. Ap-
plying standard inference techniques to this model enables
images likely to contain the same object to be probabilisti-
cally grouped and ranked.

Additionally, to reduce the computational cost of apply-
ing the gLDA model to large datasets, we propose a scal-
able method that first computes a matching graph over all
the images in a dataset. This matching graph connects im-
ages that contain the same object, and rough image groups
can be mined from this graph using standard clustering tech-
niques. The gLDA model can then be applied to generate a
more nuanced representation of the data. We also discuss
how “hub images” (images representative of an object or
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landmark) can easily be extracted from our matching graph
representation.

We evaluate our techniques on the publicly available Ox-
ford buildings dataset (5K images) and show examples of
automatically mined objects. The methods are evaluated
quantitatively on this dataset using a ground truth labeling
for a number of Oxford landmarks. To demonstrate the scal-
ability of the matching graph method, we show qualitative
results on two larger datasets of images taken of the Statue
of Liberty (37K images) and Rome (1M+ images).

Keywords Object discovery · Large-scale retrieval ·
Topic/generative models

1 Introduction

In image collections, and especially in collections of tourist
photographs collected from sites such as Flickr, certain
scenes and objects tend to be photographed much more fre-
quently than others. Our objective in this work is to obtain
an association based not on the entire image, but on the ob-
jects contained in the images – we want to associate a set
of images containing the same objects, even if a particular
pair of images is quite dissimilar. The objects may vary sig-
nificantly in scale, viewpoint, illumination or even be par-
tially occluded. The extreme variation in imaging conditions
presents serious challenges to the current state of the art in
image-based data mining.

The ability to associate images based on common ob-
jects has many potential applications: the frequently occur-
ring objects in a large collection can quickly be perused to
form a visual summary; the clusters can provide an access
mechanism to the collection; image-based particular object
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retrieval could use such methods as a filter to reduce data re-
quirements and so reduce search complexity at query time;
and techniques such as automatic 3D reconstruction which
take as an input multiple views of the same object can then
be applied to these image collections (Agarwal et al. 2009;
Schaffalitzky and Zisserman 2002; Snavely et al. 2006), and
can discover canonical views (Simon et al. 2007).

This work presents two contributions towards this objec-
tive: firstly, we introduce a geometrically consistent latent
topic model, that can discover significant objects over an
image corpus; secondly we propose methods for efficiently
computing a matching graph over the images, where the im-
ages are the nodes and the edge strength is given by the over-
lap in visual content between the images. Using this match-
ing graph together with inexpensive graph-based clustering
techniques allows us to partition the corpus into smaller sets
of images where our more expensive geometric latent topic
model can then be learned. This makes the entire process
scalable to large datasets.

Latent topic models such as probabilistic Latent Seman-
tic Analysis (pLSA) (Hofmann 2001) and Latent Dirichlet
Allocation (LDA) (Blei et al. 2002) have had significant im-
pact as methods for “semantic” clustering in the statistical
text community. Given a collection of documents such as
scientific abstracts, with each document represented by a
bag-of-words vector, the models are able to learn common
topics such as “biology” or “astronomy”. The models can
then be used to associate relevant documents, even though
the documents themselves may have few words in common.

Given the success of these models, several vision pa-
pers (Fei-Fei and Perona 2005; Quelhas et al. 2005; Russell
et al. 2006; Sivic et al. 2005) have applied them to the visual
domain, replacing text words with visual words (Csurka et
al. 2004; Sivic and Zisserman 2003). The discovered top-
ics then correspond to discovered visual categories, such as
cars or bikes in the image collection. However, in the vi-
sual domain, there are strong geometric relations between
images which do not exist in the text domain. There has
been only a limited exploration of these relations in visual
latent models: for incorporating segmentation (Cao and Fei-
Fei 2007; Russell et al. 2006; Wang and Grimson 2007;
Winn and Joijic 2005); or for a grid-based layout of im-
ages and objects (Bosch et al. 2008; Fergus et al. 2005;
Fritz and Schiele 2008; Li et al. 2007; Sivic et al. 2008).

In this paper we develop a generative latent model with
geometric relations at its core. It is an extension of LDA,
with a geometric relation (an affine homography) built into
the generative process. We term the model gLDA for “Geo-
metric Latent Dirichlet Allocation”. The latent topics repre-
sent objects as a distribution over visual word identities and
their positions on a planar facet, like a pinboard or bulletin
board (we will use the term “pinboard” from now on). The
visual words in an image (including location and shape) are

then generated by an affine geometric transformation which
projects words from the pinboard topic models. The genera-
tive process is illustrated in Fig. 1. We show that this model
can be learned in an unsupervised manner by a modification
of the standard LDA learning procedure which proposes ho-
mography hypotheses using a RANSAC-like procedure. The
results demonstrate that this model is able to cluster signifi-
cant objects in an image collection despite large changes in
scale, viewpoint, lighting and occlusions. Additionally, by
representing images as a mixture, the method effortlessly
handles the presence of multiple distinct objects. It is simi-
lar in spirit to Simon and Seitz’s (2008) use of pLSA for in-
ferring object segmentations from large image collections,
though we do not require the full 3D scene reconstruction
of their method, which is found by performing an expensive
bundle adjustment.

Our second contribution is a method to efficiently gen-
erate a sparse matching graph over a large image corpus.
Each image is a node in the graph, and the graph edges
represent the spatial consistency between sub-areas of the
pairs of images linked by the edge – if the images contain
a common object then the edge strength will reflect this.
The graph is used to reduce the computational complex-
ity of learning the gLDA model on large datasets. We can
generate this graph using efficient text-based query mech-
anisms (Nister and Stewenius 2006; Philbin et al. 2007;
Sivic and Zisserman 2003) coupled with accurate spatial
verification, using each image in turn as a query. Given this
graph, standard clustering methods can be applied to find
images containing the same object. We are then able to ef-
ficiently learn a gLDA model using only subsets of images
which are known to share a common object.

Until recently the two most convincing examples for
data-mining employing some spatial consistency were
(Quack et al. 2006; Sivic and Zisserman 2004) where the
methods were applied in video to cluster particular objects
(such as people or scenes). However, since 2008, four papers
(Chum and Matas 2008; Crandall et al. 2009; Li et al. 2008;
Quack et al. 2008) have appeared with differing approaches
to the large scale mining problem, all using Flickr image
collections.

Chum and Matas (2008) explore random sampling for
clusters on a 100K corpus using the min-hash method
of Chum et al. (2007a). This is a very efficient first step,
and avoids the more costly building of a complete match-
ing graph employed here. However, as the number of visual
words in common between images decreases, the chance
of discovering a cluster “seed” in Chum and Matas (2008)
decreases, so that potential clusters mined in the complete
graph can be missed.

Quack et al. (2008) mine a large Flickr corpus of 200K
photos, but as a first step use geo-tagging information to
decimate the corpus into sets no larger than 4K. The set is
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Fig. 1 The gLDA generative model. The two topic models (above)
generate the visual words and their layout in the three images (below).
Each topic model can be thought of as a virtual pinboard, with the
words pinned at their mapped location. Image (a) is generated only
from topic 1 with a single affine transformation, and image (c) from
topic 2, again with a single transformation. Image (b) is a composite of
topic 1 under one homography (for the rear building) and topic 2 under

a different homography (for the front building). This is a small subset
of the images and topics learned from the set of images shown in Fig. 9.
The lines show the inliers to each topic model. The gLDA model cor-
rectly identified the Georgian facade (topic 1) and cloisters (topic 2) as
being separate objects (topics), despite the linking image (b), and has
correctly localised these two objects in all three images

then partitioned into clusters using a combination of spa-
tial consistency (as here) and textual similarity. Crandall et
al. (2009) use an extremely large collection (33M) of Flickr
images, but as a first step partition the data using mean
shift clustering on the GPS location, similarly to (Quack et
al. 2008). They then define a “matching graph” of images
within a cluster using text and visual features, but not spa-
tial consistency between images, and extract canonical or
representative images for particular landmarks by spectral
clustering.

Li et al. (2008) mine a 45K Statue of Liberty Flickr photo
collection (the corpus differs from the one used here). Their
approach is to first cluster the images using the GIST de-
scriptor. Again, this decimates the problem, and spatially
consistent clustering can then proceed efficiently within a
cluster. As in Chum and Matas (2008) this first step avoids
the expense of building a complete matching graph, but be-
cause images are matched, rather than objects, the risk is that
images with more extreme changes in viewpoint will not be
assigned to the same cluster, and will not be associated in
subsequent cluster merging. There is clearly an interesting
comparison to be made on the measures of speed vs what is

missed, between the method presented here and the methods
of Chum and Matas (2008), Li et al. (2008).

The remainder of the paper is arranged as follows: Sect. 2
describes the three datasets used for evaluation; Sect. 3
describes our procedure for building a complete matching
graph of an image dataset including a brief review of the
image retrieval methods used; Sect. 4 describes the gLDA
model and the inference procedure; finally, Sect. 5 demon-
strates the methods on the three datasets.

The work presented in this paper was originally pub-
lished in Philbin et al. (2008), Philbin and Zisserman (2008).
It has been expanded here to include a full description of
the gLDA model and its implementation together with addi-
tional examples.

2 Datasets

We use three datasets of varying sizes, all collected auto-
matically from Flickr by searching for images with particu-
lar text tags. However, many of the images retrieved bear no
relation to the tag initially searched for, as the manual anno-
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Table 1 Statistics for each image collection

Dataset # images # descriptors

Oxford 5,062 16,334,770

Statue of Liberty 37,034 44,385,173

Rome 1,021,986 1,702,818,841

Fig. 2 Some of the Oxford landmarks. The Oxford dataset includes 11
“landmarks” – common buildings/views of Oxford for which a manu-
ally generated groundtruth is available

tation on Flickr tends to be extremely noisy. Some statistics
for the datasets used are given in Table 1.

Oxford buildings dataset (5K images) For groundtruth
evaluation, we use the Oxford Buildings dataset available
from http://www.robots.ox.ac.uk/~vgg/data/oxbuildings/.
This consists of 5,062 high resolution (1024 × 768) images
automatically retrieved from Flickr by searching on particu-
lar Oxford landmark tags, such as “Ashmolean”. The dataset
also provides groundtruth for the occurrences of 11 differ-
ent Oxford landmarks. A sample of 5 landmark images is
shown in Fig. 2. Note that the dataset contains many images
of other buildings and non-buildings (a random sample is
shown in Fig. 3).

Statue of Liberty dataset (37K images) This is a larger
dataset of 37,034 images downloaded from Flickr contain-
ing a tag for the “Statue of Liberty”. Although all of these
images were tagged with the Statue of Liberty, the annota-
tions are extremely noisy and the dataset contains a large
number of other, unrelated scenes. The images were pro-
vided by Simon et al. (2007).

Rome dataset (1M images) This is a much larger data-
set of 1,021,986 images collected from Flickr tagged with
“Rome”. The dataset contains a large number of tourist and
other sites generally taken in Rome, including sites such as
the Sistine Chapel and the Colosseum. Again, the images
were provided by Simon et al. (2007).

3 Building a Matching Graph

In this section we explore using a cheap clustering step,
which partitions the dataset into a number of disjoint sets

Fig. 3 A random sample of images from the Oxford dataset

of images. The aim is to associate all images that might pos-
sibly contain the same object into the same cluster whilst
discarding images which definitely have no object in com-
mon. We achieve this using a ‘matching graph’ – a graph of
the entire dataset with a node for each image and an edge
connecting nodes i and j when images i and j share some
common, spatially verified sub-region. Once this cheap clus-
tering step has completed, we can go onto apply more ex-
pensive models to each subset in turn.

The process of building the graph relies for its efficiency
on a visual words representation and inverted index, as re-
viewed in Sect. 3.1. In overview, the graph is built in the
following way: Initially the graph is empty. For each image
of the dataset in turn, we query using the whole image over
the entire corpus. The top 400 results from the inverted in-
dex are spatially verified as described in Sect. 3.2. Images
retrieved with more than a threshold number of verified in-
liers (we use 20 inliers in the following) to the query image
contribute a new edge to the graph linking the query image
to the retrieved image. This is repeated for each image in the
corpus. The weights on the edges are given by NIm

(Nq+Nr)/2 ,
where NIm is the number of spatially verified inliers and Nq ,
Nr are the number of visual words in the query and result re-
spectively. This normalises for the effect of variation in the
number of detected visual words in each image.

The graph generated is generally very sparse – for ex-
ample, the matching graph for the 5K Oxford set contains

http://www.robots.ox.ac.uk/~vgg/data/oxbuildings/
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24,561 edges (a thousand times less than if every image
matched to every other).

3.1 Particular Object Retrieval

The search engine uses the vector-space model (Baeza-Yates
and Ribeiro-Neto 1999) common in information retrieval.
The query and each document (image) in the corpus is repre-
sented as a sparse vector of term (visual word) occurrences
and search proceeds by calculating the similarity between
the query vector and each document vector, using an L2 dis-
tance. The document vectors are weighted using the simple
tf-idf weighting scheme used in text retrieval. This down-
plays the contribution from commonly occurring, and there-
fore uninformative, words.

For computational speed, the word occurrences are stored
in an inverted index which maps individual visual words (i.e.
from 1 to K) to a list of the documents in which they occur.
Only words which occur in the query need to be considered
and generally this is a small percentage of the total (words
not in common do not contribute to the distance). In the
worst case, the computational complexity of querying the
index is linear in the corpus size, but in practise it is close
to linear in the number of documents which match a given
query, which can provide a substantial saving. Note also that
this method is trivially scalable as the corpus can be distrib-
uted to many computing nodes where each node can query
in parallel and the result vectors concatenated.

To generate visual features we detect Hessian interest
points and fit affine covariant ellipses (Mikolajczyk and
Schmid 2004). For each of these affine regions, we com-
pute a 128-dimensional SIFT descriptor (Lowe 2004). For
the Oxford and Statue of Liberty datasets, a large discrimi-
native vocabulary of 500K words is generated using an ap-
proximate k-means clustering method (Philbin et al. 2007)
on all the descriptors of all the images in the corpus. For the
Rome dataset, a random subsample of 50M descriptors is
used for clustering to 1M cluster centres. Each descriptor is
assigned to a single cluster centre to give one visual word.
On average, there are ∼3,300 regions detected per image.
Once processed, each image in the dataset is represented as
a set of visual words which include spatial location and the
affine feature shape.

3.2 Spatial Verification

We use a deterministic variant of RANSAC (Fischler and
Bolles 1981), which involves generating hypotheses of a re-
stricted (affine) transformation (Philbin et al. 2007) and then
iteratively re-evaluating promising hypotheses using the full
transformation, similar in spirit to Chum et al. (2003). By se-
lecting a restricted class of transformations for the hypoth-
esis generation stage and by exploiting shape information

Fig. 4 Spatial verification: a restricted affine homography of the form
shown is computed for every elliptical match between two images

Fig. 5 Examining the number of connected components found as a
function of inlier threshold for the Oxford dataset

in the affine-invariant image regions, we are able to gener-
ate hypotheses from only a single feature correspondence.
Each feature in the image is represented as an ellipse – there-
fore, each pair of matched features can define a 5 degree-of-
freedom transformation between the two images. By includ-
ing an “upness” constraint (that images are taken upright)
we can define a restricted affine transformation (see Fig. 4).
We enumerate all such hypotheses, resulting in a determin-
istic procedure. The inliers for a given transformation are
the set of words which approximately agree with that trans-
formation. Note that although the initial homography does
not allow in-plane rotation (due to the “upness” constraint),
by iteratively computing the full transform the system can
handle significant rotation between images.

The size of this inlier set for the best transformation is
used in the matching graph to determine the edge strength,
and in the gLDA model to score the support for a latent topic
in an image.

3.3 Connected Components

One of the simplest operations for splitting the data is to
find the connected components on the matching graph. This
greatly reduces the complexity of any subsequent clustering
step, as now much smaller groupings of images need to be
considered. Finding the connected components of a graph
can be computed in linear time in the number of graph nodes
using depth-first search (Cormen et al. 1990). An example
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Fig. 6 Examples of the
connected components
automatically found on the 5K
Oxford dataset. Some
components are already
extremely accurate in isolating
individual buildings/landmarks
(see (a)–(c)). (d) and (e) show
examples of components linking
disjoint objects via connecting
views. The number of images in
each component is shown
beneath the label. Note the
significant variation of scale and
viewpoint within each
component

of the sub-graph automatically discovered for a connected
component is shown in Fig. 7.

Even though the method is crude, it can be surprisingly
effective at pulling out commonly occurring objects in photo
datasets. It naturally achieves a “transitive association” over
the views of an object: views A and C may have no matches,
even though they are of the same object. However, provided
A links to B, and B links to C, then A and C will be tran-
sitively associated. This lack of matches (e.g. between A
and C) may arise from detector drop out, SIFT descriptor
instability, partial occlusion etc, and was the subject of the
“Total Recall” method of Chum et al. (2007b) where missed
matches were corrected at run time by the additional over-
head of a form of query expansion. More recently, Turcot
and Lowe (2009) have used a matching graph to address this
missed matches problem by off line processing, thus avoid-
ing the run time cost.

This transitive advantage is also a problem though, in that
it joins too much together – a “connecting image” (one that
contains multiple disjoint objects) pulls all images of these
objects into a single connected component. Figure 6 shows
some examples of connected components found on the Ox-
ford dataset. Building the matching graph involves setting a
threshold on the number of inliers which defines a pair of
images as being connected, and this governs the number of
connected components obtained. Setting this threshold too
low links all images into a single component; too high and
no image connects to any other (see Fig. 5). Figures 6(d)

and 6(e) show examples of connected components joining
disjoint objects via connecting images. We examine the scal-
ability of the graph matching procedure in Sect. 5.1.

We compute connected components over this graph
thresholding at a particular similarity level. This similar-
ity is specified by the number of spatially consistent inliers
between each image pair. In general, the connected compo-
nents now contain images linked together by some chain of
similarities within the cluster, but will not necessarily be of
the same object. For example, “linking” images containing
more than one object will join other images of these objects
into a single cluster (see Fig. 9).

3.4 Hub Images

Although not directly used in this work, we note here that
one can rank the images within each connected component
to pull out canonical or “hub” images. A simple but ef-
fective method is to rank images according to the number
of spatially verified connections they make to other images
within the component. This corresponds to the degree of
each node within the graph. Figure 8 shows the three high-
est and three lowest ranked images according to degree. The
images showing more common or canonical views of the ob-
ject are ranked highly – those showing strong differences in
imaging conditions are ranked lowly. Though not done here,
simple extensions to this method might include using spec-
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Fig. 7 A portion of the full Oxford matching graph for a single con-
nected component. The images in the top (red) and bottom (green) re-
gions contain the “Bridge of Sighs” and the “Ashmolean Theatre” re-
spectively. Note the two connecting images which contain both objects

tral clustering or computing pagerank (Crandall et al. 2009;
Kim and Torralba 2009; Quack et al. 2008).

4 Object Discovery

In this section, we review the standard LDA model (Blei et
al. 2002), and then describe its extension to the gLDA model
which incorporates geometric information.

4.1 Latent Dirichlet Allocation (LDA)

We will describe the LDA model with the original terms
‘documents’ and ‘words’ as used in the text literature. Our
visual application of these (as images and visual words) is
given in the following sections. Suppose we have a corpus
of M documents, w = {w1,w2, . . . ,wM}, containing words
from a vocabulary of V terms, where wi is the frequency

Fig. 8 Examples of hub images. The three highest (a) and lowest (b)
images ranked by degree for a connected component of Christ Church
College. The three highest (c) and lowest (d) images ranked by degree
for the Thom Tower, Oxford. The degree is listed beneath each image

histogram of word ids for document i. A document is gener-
ated in the LDA model by picking a distribution over topics
and then picking words from a topic dependent word distri-
bution.

Figure 10(a) shows the various components of this
model. The document specific topic distribution φ is sam-
pled from a Dirichlet prior with parameters α. Similarly the
topic specific word distribution θ is sampled from a Dirich-
let prior with parameters β . The z variable is a topic indica-
tor variable, one for each observed word, w. The aim is to
find the topic distributions which best describe the data by
evaluating the posterior distribution

P(z|w, α,β) ∝ P(z|α)P (w|z, β) (1)

These last two terms can be found by integrating out θ and
φ respectively. Inference can be performed over this model
by using a Gibbs sampler (Griffiths and Steyvers 2004) with
the following update formula:

P(zij = k|z−ij ,w) ∝ ni·k + α

ni·· + T α
× n·jk + β

n··k + Vβ
(2)
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Fig. 9 A sample of 10 images from a connected component asso-
ciated with Magdalen college. The component contains two separate
buildings: A Georgian building and a college cloisters, linked by the
aerial photo shown (bottom right). Within the cloisters there are two

distinct “facades”, one of the wall, the other of a tower. Our full gLDA
method is able to extract all three “objects” (cloisters, tower and build-
ing) completely automatically. The total size of the component is 42
images

Fig. 10 (a) The standard LDA
model. (b) The gLDA model.
M , T and Nm are the number of
documents, topics and words (in
document m) respectively.
(c) The simplified gLDA model
used for one step of the
approximate inference. Qm is
the number of inlier visual
words in document m. See text
for details

In this equation, zij is the topic assigned to the j th word in
the ith document, nijk is the number of words from docu-
ment i, word id j assigned to topic k. A · denotes a sum-
mation over that parameter. T and V denote the number of
topics and words respectively. z−ij denotes the current topic
assignments for all words except the ij th. Note that in (2),
the first term assigns higher probability to topics occurring
more frequently in the particular document, and the second
term assigns higher probability to words more frequently oc-
curring in the particular topic.

4.2 Geometric LDA

In gLDA, the topics of the LDA model are augmented with
the spatial position and shape of the visual words, and a geo-
metric transformation between topics and documents is in-
troduced. Given a set of such latent topics, which may be
thought of as pin-boards (with the visual words pinned at
their positions), an image is generated by first picking a dis-
tribution over the pinboards (topics) and sampling an affine
homography, H, for each pinboard; and then forming the im-
age as the composition of the visual words from each topic
mapped under the corresponding homography.

Note, as in LDA, an image will not contain all the words
belonging to a topic. This is necessary in the visual do-
main because not all visual words will be detected – there
are errors due to feature detection (such as drop out, or oc-
clusions), feature description and quantisation. Others have
handled this situation by learning a sensor model (Cummins
and Newman 2007).

The gLDA model is shown in Fig. 10(b). gLDA adds ex-
tra spatial transformation terms, H, to the LDA model and
the word terms, w, contain both the identity and spatial posi-
tion and shape of the visual word in the image. These image
specific transformations, H, describe how the words for a
particular topic occurring in an image are projected from the
“pin-board” model for that topic. H are assumed to be affine
transformations, so that the model can account for moderate
changes in viewpoint between the topic and the image.

The joint probability of the gLDA model factors as fol-
lows

P(w, z,H, θ,φ|α,β)

= P(w|z,H, θ)P (z|φ)P (θ |β)P (φ|α)P (H) (3)

The generative distributions could be further specified and
inference on the model carried out in a similar manner
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to Sudderth et al. (2008). However, to avoid the expense of
generatively sampling the transformation hypotheses, we in-
stead approximate the joint as described next.

4.3 Approximate Inference

The goal of the inference in the gLDA model is to esti-
mate topic assignments z together with transformation hy-
potheses H given observed visual words w. For approxi-
mate inference, we use an iterative procedure, which alter-
nates between (i) estimating H given the current estimate
of z, and (ii) estimating z given the current estimate of H.
In step (i), the transformations H between the image and
the topic-pinboards are estimated from the words assigned
to each topic z directly using efficient tools from multiview
geometry. The outcome of this step are a set of inlier words
for each homography H. These inliers, together with the as-
sociated homography are observed. In step (ii) the number
of inliers for each topic-pinboard for each image influences
(positively) the assignment of words to topic-pinboards z, as
can be seen by glancing ahead to (9).

For these steps we need to book keep which words are
inliers to which transformation/topic-pinboard. For this, we
introduce indicator variables y, where yij = k specifies that
in image i word j is assigned to topic-pinboard k. y is only
defined for the inlier words and is not defined for those
words that are not an inlier to any transformation. Note that,
unlike for z where a word is only assigned to one topic, an
inlier word can be assigned to multiple transformation/topic-
pinboards. As will be seen, it is only the total number of
inliers between an image and a topic-pinboard that is used
by (9), and we denote this count as qi·k , in analogy with
ni·k , for the number of inliers to topic-pinboard k in image i,
where qi·k = |∀j : yij = k|.

Given the now observed y and H, the gLDA model of
Fig. 10(b) is approximated for step (ii) as in the graph-
ical model of Fig. 10(c). In the approximation, the ob-
served words no longer depend directly on H (in essence this
ignores the shape and position of the visual words generated
by the transformation from the pinboard-topic). Instead, it
is assumed that the inlier indicators y depend on the topic
proportions in each image, and these inliers are determined
from H (as indicated by the dotted line, with the actual com-
putation described in Sect. 4.4).

We now work through the derivation of (9), starting from
the graphical model of Fig. 10(c). The joint probability of
the approximate model factors as

P(w, z,y, θ,φ|α,β)

= P(w|z, θ)P (θ |β)P (z,y|φ)P (φ|α)

= P(w|z, θ)P (θ |β)P (z|φ)P (y|φ)P (φ|α). (4)

Note, we assume that y and z are conditionally independent
given φ. However, when φ is not observed (as here), inlier
indicators y influence topic assignments z through φ.

As in standard LDA, parameters φ and θ can be inte-
grated out (Griffiths and Steyvers 2004):

P(w,y, z|α,β)

=
∫

P(w|z, θ)P (θ |β)dθ

∫
P(z|φ)P (y|φ)P (φ|α)dφ

= P(w|z, β)P (z,y|α) (5)

The two integrals can be performed analytically. The first
integration gives:

P(w|z, β) =
(

�(Vβ)

�(β)V

)T T∏
k=1

∏
j �(n·jk + β)

�(n··k + Vβ)
, (6)

where �(·) is the standard Gamma function and n·jk is the
number of visual words with id j assigned to pinboard-topic
k over all images. Note that (6) is the same as in standard
LDA (Griffiths and Steyvers 2004). The second integration
results in

P(z,y|α) =
(

�(T α)

�(α)T

)M M∏
i=1

∏
k �(ni·k + qi·k + α)

�(ni·· + qi·· + T α)
(7)

where ni·k is the number of words in document i assigned
to pinboard-topic k, and qi·k is the number of inlier, i.e. spa-
tially verified words in document i assigned to pinboard-
topic k. Note that the observed inlier counts qi·k can be
viewed as a document specific prior (virtual word counts)
biasing the probability towards topics with a higher number
of inliers.

Similar to the standard LDA, evaluating the posterior dis-
tribution

P(z|y,w, α,β) ∝ P(z,y|α)P (w|z, β) (8)

is intractable. However, similar to Griffiths and Steyvers
(2004), we can sample from high probability regions of the
z space using a Gibbs sampler with the following update
formula:

P(zij = k|z−ij ,w,y) = ni·k + qi·k + α

ni·· + qi·· + T α
× n·jk + β

n··k + Vβ
(9)

This defines a multinomial over topic assignments for a sin-
gle word, zij which is sampled to give the new topic as-
signment. By comparing this update formula to that of stan-
dard LDA given in (2), it is evident how the aggregate in-
lier counts qi·k influence re-sampling of the pinboard-topic
indicators zij by assigning a higher probability to topic-
pinboards with a higher number of inliers.

In summary, the approximate inference proceeds in the
following iterative two stage procedure. Firstly, the pinboard
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assignments, z, are resampled with the Gibbs sampler (9).
This is a very simple change to the Gibbs update formula
from LDA, but it makes the model much easier to learn
than if the full coupling between w and H had been mod-
elled (Fig. 10(b)). Secondly, given the current assignment
of topic-pinboards, z, the transformation hypotheses H to-
gether with inlier indicators y are estimated using RANSAC

(for details see Sect. 4.4). The pinboard-topic assignments z
depend in-directly on H through the (observed) inlier indi-
cators y. Conversely, changing z by re-assigning a particular
visual word to a different pinboard influences transforma-
tions H and inlier indicators y during the RANSAC proce-
dure.

Note that the interleaved sampling of pinboard assign-
ments z using (9) and inliers y with transformation hypoth-
esis H using RANSAC can be viewed as data driven Markov
Chain Monte Carlo in the spirit of Tu et al. (2005).

4.4 Spatial Scoring Using RANSAC

The discriminative gLDA model relies on being able to
score the spatial consistency between two spatially distrib-
uted sets of visual words (e.g. between the pinboard model
and an image) and return an approximate transformation be-
tween the two sets of visual words as well as a matching
score. The score is based on how well the feature loca-
tions are predicted by the estimated transformation and is
given by the number of inliers. The transformation is esti-
mated using the deterministic variant of RANSAC described
in Sect. 3.2.

The pinboards are updated as follows – every word in the
corpus with zij = k is contained in the pinboard model for
topic k projected from the original document i using the cur-
rent transformation hypothesis, Hik . Terms projected into the
pinboard need not be inliers under the current transforma-
tion but may become inliers in a further step of alternating
Gibbs sampling. This is observed in practise.

4.5 gLDA Implementation Details

Topic initialisation For each connected component of the
matching graph the topics are initialised by first obtaining
T separate clusters (using agglomerative clustering with av-
erage linkage as the similarity score). For each cluster, we
project each document’s words to a normalised size in the
pinboard models: a transformation is found that projects
each image to a fixed size square in the topic model and
these are used to initialise the locations and shapes of the
visual words in the model. Although this is not strictly nec-
essary for the gLDA model, it greatly improves convergence
speed and generally leads to improved results.

Prior parameters The gLDA model (Sect. 4.3) includes
priors for the per document topic distribution, α, and the
per topic word distribution, β . Empirically we find that us-
ing α = 200.0, β = 1.0 gives reasonable results and we use
these parameter values for all subsequent experiments.

Choosing the number of topics To select the number of
topics within each connected component, we run 100 iter-
ations of the Gibbs sampler described in Sect. 4.3 changing
the number of topics from 1 to 8, then choose the Markov
chain with the highest likelihood (see Fig. 11) (Griffiths and
Steyvers 2004). We note here that it is better to choose too
many topics than too few as the model explicitly allows for
documents to be a mixture of topics. In general, the optimal
number of topics found will vary with the choice of hyper-
parameters, α and β .

Running the model After the number of topics has been se-
lected, we run the model for a further 100 iterations. We find
that with the geometric information, the gLDA model tends
to converge to a mode extremely quickly (<50 iterations)
and running it longer brings little appreciable benefit.

Fig. 11 Automatically choosing the number of topics. (a) The log
likelihood of the gLDA model fitted to the connected component
shown in Fig. 9 for different numbers of topics. (b) The top three docu-

ments (ranked by P (z|d) in columns) for each topic for different num-
bers of topics, T . In this case three topics are automatically chosen
which separate the building, cloisters and tower
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Scalability The time taken to run the gLDA model on the
Oxford dataset varies from a fraction of a second per itera-
tion for a component of less than 5 images up to about 55 s
per iteration for the largest component of 396 images on a
2 GHz machine.

5 Results

5.1 Matching Graph

In this section we show results of building a matching graph
over each of the three datasets.

For the Oxford dataset, clustering using connected com-
ponents found 323 separate components (clusters of more
than one image) using an inlier threshold of 20. The size of
the largest component is 396 images (of the Radcliffe Cam-
era, a popular Oxford tourist attraction).

Scalability To demonstrate the scalability of our matching
graph method, Figs. 12 and 13 show samples from automat-
ically discovered object clusters for the Statue of Liberty
(37K images) and Rome (1M+ images) datasets, respec-
tively. Searching for every image in the 37K Statue of Lib-
erty dataset takes around 2 hours on a single 3 GHz machine.
The Rome data (1M+ images) was much more challenging
– it took 1 day on 30 machines to generate the matching
graph on this corpus. Though expensive, this demonstrates
the ability of our methods to scale across multiple machines.

5.2 gLDA

In this section we examine the performance of the gLDA
both qualitatively and quantitatively. For the quantitative
evaluation we determine if the discovered topics coincide
with any of the groundtruth labelled Oxford landmarks.

Evaluation on the Oxford dataset Within each connected
component, we use the document specific mixing weights
P(z|d) to produce a ranked list of documents for each dis-
covered topic. We then score this ranked list against the
groundtruth landmarks from the Oxford dataset using the
average precision measure from information retrieval. For
each groundtruth landmark, we find the topic which gives
the highest average precision – the results are listed in Ta-
ble 2. The component recall column refers to the maximum
recall of the object over all connected components and so
gives an upper bound on the possible improvement (as LDA
and gLDA look within components).

The topic model often effectively picks out the particular
landmarks from the Oxford dataset despite knowing noth-
ing a priori about the objects contained in the groundtruth.
Most of the gaps in performance are explained by the topic
model including neighbouring facades to the landmark ob-
ject which frequently co-occur with the object in question.
The model knows nothing about the extents of the landmarks
required and will include neighbouring objects when it is
probabilistically beneficial to do so. We also note that some-
times the connected components don’t contain all the images
of the landmark – this is mainly due to failures in the initial
feature matching.

Fig. 12 Random samples of the three largest clusters automatically
found from the Statue of Liberty dataset as connected components on
the matching graph. Note the extreme variety of imaging conditions

(changes in scale, viewpoint, lighting and occlusion) (i) the Statue of
Liberty (11170 images). (ii) A lego Statue of Liberty (59 images).
(iii) An Ellis Island building (52 images)
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Fig. 13 Random samples of the four largest clusters automatically
found from the 1M+ image Rome dataset as connected components
on the matching graph. (i) Coliseum (18676 images). (ii) Trevi Foun-

tain (15818 images). (iii) St Peter’s Square, Vatican (9632 images).
(iv) “Il Vittoriano” (4869 images)

Fig. 14 Comparing gLDA to
standard LDA for a connected
component containing images of
the Ashmolean, for T = 3. The
top three images are shown for
each topic, ranked by P (z|d) in
columns. Notice that LDA has
confused the Ashmolean facade
(outlined in red) between the
three topics whereas gLDA has
used the stronger spatial
constraints to correctly isolate
the building facade

Figure 18 shows a visualisation of two topics discovered
by gLDA. It is easy to see that gLDA has correctly found
and localised these particular objects in the dataset images.
Figure 17 shows three topics automatically discovered by
gLDA.

Robustness to imaging conditions Due to the richness of
the pinboard models, the gLDA method is able to group im-
ages of a specific object despite large imaging variations (see
Fig. 15). Standard LDA often struggles to cluster challeng-
ing images due to the absence of the extra spatial informa-
tion.

In Fig. 16, we show the results of running the gLDA
method on a 200 image sub-sample from one of the con-

nected components of the Rome dataset, corresponding to
the Trevi Fountain. We see that, by forcing a larger num-
ber of topics, the gLDA method can also pick out different
views of a single object or facade. In this case the model has
discovered a night-time view, and two daytime views of the
fountain differing in viewpoint.

Comparison with standard LDA In Fig. 14 we compare
gLDA to standard LDA. The parameters were kept ex-
actly the same between the two methods (except for the
spatial term). LDA was initialised by uniformly sampling
the topic for each word and run for 500 iterations to ac-
count for its slower Gibbs convergence. From the figure
we can see that the LDA method has been unable to prop-
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Fig. 15 Due to the richness of the topic pinboards, gLDA is able to group these images (which are all of the same landmark – the Sheldonian
theatre) despite large changes in scale, viewpoint, lighting and occlusions. P (z|d) is shown underneath each image

Fig. 16 Results of running gLDA on a 200 image sub-sample of one
of the connected components (corresponding to the Trevi fountain) for
the Rome dataset. Here, the model predicted T = 1 using the likelihood
method, but we forced T = 3. When this is done, the gLDA model
tends to discover views differing in lighting or viewpoint. P (z|d) is
listed beneath each image

erly split the Ashmolean facade from an adjacent build-
ing.

For a quantitative comparison we use the landmarks from
the Oxford dataset. This is an indirect test of performance,
because it requires that the landmarks correspond to a dis-
covered topic (and is not split between connected compo-
nents). For each landmark the component that has highest
average precision (AP) is selected. The AP is computed as
the area under the precision-recall curve for each landmark.
The gLDA and LDA scores are then given for the best per-
forming topic. Note, the AP for the component is an upper
bound on the AP for the topics within that component. The
results are given in Table 2. In all cases gLDA is superior (or
at least equal) to LDA.

As well as being able to better discover different objects
in the data, the gLDA method can localise the occurrence

Table 2 The performance of gLDA on the Oxford dataset compared
to LDA. The scores list the average precision (AP) of the best perform-
ing topic for each groundtruth landmark. gLDA always outperforms or
does as well as standard LDA for object mining. The last column shows
the recall for the component containing the best performing topic – the
highest AP score either method could have returned. Figure 14 exam-
ines the differences in results for the Ashmolean landmark

Groundtruth LDA max AP gLDA max AP Component

landmark recall

All_souls 0.90 0.95 0.96

Ashmolean 0.49 0.59 0.60

Balliol 0.23 0.23 0.33

Bodleian 0.51 0.64 0.96

Christ_church 0.45 0.60 0.71

Cornmarket 0.41 0.41 0.67

Hertford 0.64 0.65 0.65

Keble 0.57 0.57 0.57

Magdalen 0.20 0.20 0.20

Pitt_rivers 1.00 1.00 1.00

Radcliffe_camera 0.82 0.91 0.98

of particular topics in each image instead of just describing
the mixture. This can be seen in Fig. 1 which displays three
images from the Magdalen cluster with correspondences to
two automatically discovered topics.

6 Conclusion and Future Work

We have introduced a new generative latent topic model for
unsupervised discovery of particular objects and building
facades in unordered image collections. In contrast to pre-
vious approaches, the model incorporates strong geometric
constraints in the form of affine maps between images and
latent aspects. This allows the model to cluster images of
particular objects despite significant changes in scale and
camera viewpoint. We have shown that the gLDA model
outperforms the standard LDA model for discovering par-
ticular objects in image datasets.



Int J Comput Vis

Fig. 17 (Color online) Example images from three topics (one per
row) automatically discovered by gLDA from a component of Hert-
ford college, Oxford. The visual words are coloured according to the

topic they belong to: 0 – red, 1 – yellow, 2 – blue, 3 – green (not
shown). P (z|d) is listed beneath each image

Fig. 18 Visualising the topics discovered by gLDA. The image data
underlying each word in the topic has been projected into the canoni-
cal frame for visualisation. Here, two discovered topics are shown for

different connected components in the Oxford matching graph. This
topic visualisations have been generated from all the images in the re-
spective connective components (56 images and 71 images)
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To make the model tractable we also introduced a match-
ing graph clustered using connected component clustering,
that can be used to quickly organise very large image col-
lections, and demonstrated this on image collections of over
1M images.

The gLDA model can be generalised in several direc-
tions – for example using a fundamental matrix (epipolar
geometry) as its spatial relation instead of an affine homog-
raphy; or adding a background topic model in the manner
of Chemuduguntu et al. (2007). There is also room for im-
proving the computational efficiency in order to apply the
model to larger datasets.
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