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Abstract. The paradigm of matching images to a very large dataset
has been used for numerous vision tasks and is a powerful one. If the
image dataset is large enough, one can expect to find good matches of
almost any image to the database, allowing label transfer [3, 15], and
image editing or enhancement [6, 11]. Users of this approach will want
to know how many images are required, and what features to use for
finding semantic relevant matches. Furthermore, for navigation tasks or
to exploit context, users will want to know the predictive quality of the
dataset: can we predict the image that would be seen under changes in
camera position?
We address these questions in detail for one category of images: street
level views. We have a dataset of images taken from an enumeration of
positions and viewpoints within Pittsburgh. We evaluate how well we can
match those images, using images from non-Pittsburgh cities, and how
well we can predict the images that would be seen under changes in cam-
era position. We compare performance for these tasks for eight different
feature sets, finding a feature set that outperforms the others (HOG).
A combination of all the features performs better in the prediction task
than any individual feature. We used Amazon Mechanical Turk workers
to rank the matches and predictions of different algorithm conditions by
comparing each one to the selection of a random image. This approach
can evaluate the efficacy of different feature sets and parameter settings
for the matching paradigm with other image categories.

1 Introduction

An important resource for the computer vision research community is the many
images available through the Internet or large-scale acquisition and storage. A
natural task for a large dataset, not possible for smaller ones, is to find close
visual matches to a test image. While each image is unique, in a large dataset,
close enough matches may be found to enable transfer of the object or region
labels the retrieved image may have [3, 15], or exploiting the retrieved images
for editing [11] or enhancement [6] of the query image.

We call the task of finding a semantically meaningful matches to a test im-
age the matching task. To make the matching task feasible in the applications
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above, the set of retrieved images is usually restricted to some category, such
as indoor scenes, faces, or city images taken from street level. To support this
class of computer vision algorithm, we need to understand various fundamental
properties of this approach. How well do the methods scale with the dataset
size? What are the best features to use to find semantically meaningful nearest
neighbor matches?

The matching task asks how well a collection of test images can match a
dataset of images, and indicates the coverage of a set of test images by the
reference database. To study the structure of all the images within the given
category, we also want to address the prediction task: how well can images from
one camera position and orientation predict the image taken by a camera at a
neighboring position or orientation? This tells us spatial regularities within the
image database, and has applications in two broad domains: to study spatial
consistencies within the image database, and to predict images from a moving
camera. Knowledge of such regularities is needed to form more powerful image
prior probabilities, useful for image synthesis and reconstruction (for example, [6,
9]). The prediction task provides another way to ask a question of importance in
the object recognition community, how well can context predict image content [7,
24]? The prediction task is used implicitly by mobile agents in the world (people
or robots) in deciding where to look or move next.

We want to know: how well can we match? how well can we predict? what are
the regularities of the visual world, and how accessible are they through large
datasets? We will study this problem restricted to one class of images: outdoor
street scenes. The restriction to one image category provides us with a variety
of images, yet a tractable set. This class of images is of commercial interest for
mapping and commerce.

There have been informal studies of matching or prediction for individual
applications [11, 21], but systematic study of these properties have not been
undertaken. In the past, large image databases were used to fill in holes in an
image [11] or create infinite images from photographs taken at the different
locations in the real world [21]. The evaluation of [11] did not address the tasks
of matching or prediction, and the method was user-assisted, not automatic as
ours is. Prior work on multiperspective panoramas [1, 19, 27] focuses on using
large number of images all taken from the same location but from different view
points and stitching them together. Similarly, the PhotoTourism interface [22]
places a large collection of images of one particular geographic location in a
common 3D space. Here we use image transformations similar to those of [21]
but we focus on a database of outdoor city scenes from many different parts of the
world that were downloaded from various photo sharing websites. In addition, we
design and execute an quantitative experimental evaluation and compare several
state-of-the-art image descriptors for the matching and prediction tasks.

To measure how well the system works, we use a ground truth database
synthesized from 10,000 geo-referenced images from the Google Street View data
set of Pittsburgh [10].
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Fig. 1. Prediction and matching. Top row: Query Image. Transformed query image
for rotate right motion. The prediction obtained by finding the nearest neighbor using
the transformed query (the prediction task). Ground truth (the actual view seen after
the camera rotated from the query image). Top match to the ground truth image (the
matching task). Bottom row: The transformed query image and the top prediction
image retrieved with the bins used for retrieval overlaid. The ground truth and the top
match images and the bins used for the retrieval overlaid.

In the matching task, we ask how well can we explain street-level images
from Pittsburgh from outdoor images taken in any city other than Pittsburgh?
In the prediction task, we ask what regularities are in common across images
of Pittsburgh and of other cities in the world such that we can predict images
of Pittsburgh under different camera transformations? The matching and pre-
diction tasks are illustrated in figure 1. We conduct large scale experiments to
evaluate both the matching task and the prediction task using various image
representation methods, various database size and various camera motions (for
prediction). We evaluate the quality of the matches and predictions in a user
study performed using Amazons Mechanical Turk web service.

2 Database, Features, and Transformations

In this section we describe our image database, give details of the compared
image features, and outline our image matching and prediction methods.

2.1 Image database

Our premise is that if we had enough images of the world, we will be able
to make predictions about what is around us. Here, we focus on images of an
urban environment. We created a large database of 100, 000 images of outdoor
street scenes downloaded from Flickr. The images typically have resolution of
500x375 pixels. We used image tag information, e.g. ”Paris street” or ”Seattle
alley”, to select candidate city street scenes. Due to noise in the tags, there
were many images that did not belong to the outdoor city theme, including
indoor scenes and portraits of people. To reduce the amount of noise, we trained
an SVM scene classifier, similar to [4, 14], to prune out the images that do not
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belong to the city theme. We manually labeled the training data of 1000 positive
and 2000 negative training images with the help of a labeling interface that we
have developed. The tool allows the user to interactively train the classifier and
provides visual feedback about its performance after each iteration. It can be
used for the creation of databases with other themes. Currently, we only consider
images in landscape format with aspect ratio close to 4:3.

2.2 Image representations

Here we describe the different image representations we investigate for the match-
ing and prediction tasks. Similar representations were used by [28] for the tasks
of scene detection and classification.

i. GIST descriptor: The GIST descriptor has been shown to work well for scene
classification [18]. It measures the oriented edge energy at different scale levels
aggregated into coarse spatial bins. We create a 480 dimensional feature vector
by first converting the image to grayscale and then dividing it in 6x4 bins and
applying 8, 8, and 4 orientation filters at three difference scales (coarse to fine)
to each bin. The GIST descriptor for each image is normalized to have unit L2
norm.

ii. Histograms of oriented gradients (HOG): The HOG descriptor [5] and its
variants [8] have demonstrated excellent performance for object and human de-
tection. Similar to the SIFT [16], the HOG descriptor measures histograms of
image gradient orientation at a coarse grid of spatial locations. First, HOG de-
scriptors are densely extracted on a regular grid at steps of 8 pixels using the
code available online provided by [8]. This gives a 31-dimension descriptor for
each node of the grid. Then, 2x2 neighboring HOG descriptors are stacked to-
gether to form a descriptor with 124 dimensions. The stacking has overlapping
on the grid, and the 124-dimension descriptors are quantized into 300 visual
words by k-means. The quantized descriptors are then spatially binned into a
coarse grid of 6x4 bins, similar to the GIST descriptor. The resulting histogram
is normalized to have unit L1 norm.

iii. The self-similarity descriptor (SSIM): The self-similarity descriptor [20] has
been shown to perform well on matching objects of similar shape but vastly dif-
ferent local appearance. The idea is to represent the appearance in a local image
area around a particular image patch by the “correlation map” of the patch with
its neighborhood. The descriptor captures the local pattern of self-similaritiy.
Such self-similarity patterns can then be matched despite a very different ap-
pearance of the central patch. We employ the self-similarity descriptor for scene
representation.

The self-similarity descriptors are computed on a regular grid at steps of
five pixels. Each descriptor is obtained by computing the correlation map of a
5x5 patch in a window with radius equal to 40 pixels, then quantizing it in 3
radial bins and 10 angular bins, obtaining 30 dimensional descriptor vectors.
The descriptors are then quantized into 300 visual words by k-means. Similar
to HOG, the self-similarity descriptors are spatially binned into a coarse grid of
6x4 bins, and normalized to have unit L1 norm.
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iv. Dense SIFT: Densely extracted SIFT descriptors have been shown to work
well in both object and scene recognition [14]. Here, we extract the descriptor on
a regular grid at steps of 5 pixels using a window at two scales (4x4 and 8x8). The
descriptors are stacked together for each HSV color channel and quantized into
300 visual words by k-means. The quantized descriptors are then spatially binned
into a coarse grid of 6x4 bins, similar to the GIST descriptor. The resulting
histogram is normalized to have unit L1 norm.

v. Geometric context (GC): The geometric context classifiers [12] estimate the
coarse geometric layout of natural scenes with respect to the camera. It has
been shown to work well as a spatial prior for object detectors [13]. Here we
investigate it for the task of scene matching and prediction. We use only the
(i) ground, (ii) sky, (iii) vertical and (iv) porous classes as they are more reli-
ably detected. We reduce the probability outputs of each of the four geometric
classes to 32x32 pixels resulting in a 256-dimensional descriptor. The resulting
descriptor is normalized to have unit L2 norm.

vi. Tiny images (Tiny32): As a baseline we also include the tiny image rep-
resentation of Torralba et al. [25]. The most trivial way to match scenes is to
compare them directly in color image space. Reducing drastically the image di-
mensions makes this approach more computationally feasible and less sensitive
to exact alignment. This method of image matching has been examined thor-
oughly [25] for the purpose of object recognition and scene classification. Each of
the RGB channels is subsampled to 32x32 pixels resulting in a 3,072 dimensional
descriptor. The images are then normalized to have unit L2 norm.

vii. Texton histogram: Textons as elementary units in image analysis were intro-
duced in [17]. We use a 512 entry universal texton dictionary built by clustering
the responses of filters at 8 different orientations, 2 different scales and elonga-
tions. We then build a 512-dimensional histograms spatially binned into a coarse
grid of 6x4 bins by assigning the result of the filter responses at each pixel to
the nearest texton dictionary entry. The histogram is normalized to have unit
L1 norm.

viii. Color histogram: We compute color histograms in CIE L*a*b* color space
with 4, 14, and 14 bins in L, a, and b, similar to [28]. The histograms are then
spatially binned into a coarse grid of 6x4 bins and normalized to unit L1 norm.

Next we describe the matching and description procedures.

2.3 Nearest neighbor image matching

In the matching task, the goal is to find the best matching image in the street
scene database given the query. Recently, there has been some success in semantic
scene matching using nearest neighbor techniques in large databases of millions
of images [11, 25] and we follow this work here. This matching is performed
using an exhaustive nearest neighbor search, though faster but approximate



6 Matching and Predicting Street Level Images

indexing techniques could be used [26]. For the (normalized) GIST, tiny image
and geometric context descriptors we use the Euclidean distance. For the HOG,
self-similarity, dense SIFT, texton and color histograms we use the χ2 distance.

We also investigate a combination of all descriptors (denoted All). This is
achieved by a simple weighted average of the distances using individual descrip-
tors. Here we investigate uniformly set weights, but weights learnt on a separate
training set can be also used [2]. Uniform weights are a reasonable choice in our
case, as the range of distances for each of the normalized descriptors is between
0 and 1.

2.4 Prediction using transformed image retrieval

In the prediction task, we would like to predict what we will see if we move the
camera. Given a query image, we want to find possible candidates describing
the parts of the scene not captured by the camera. We extend traditional im-
age retrieval to find matches that simulate a particular camera motion without
explicitly modeling the geometry of the scene. Instead, we apply 2D transforma-
tions to the query image. We achieve horizontal camera rotation by warping the
image using the appropriate homography [23](page 11)

H = K R K−1, (1)

where K is the internal calibration matrix and R the camera rotation matrix.
For specifying K, we set the unknown focal length to be half the image width.
For specifying R we assume no vertical or in-plane rotation. The 3D zoom-out
motion (or backward motion) is approximated by scaling the image ignoring the
parallax effects. The transformed query image has missing pixels because not
all the information of what the camera would see after the transformation is
available in the original query image. Therefore, we can only use a subset of the
feature vector to perform the transformed image retrieval (Fig. 1). Given the
observed portion of the transformed query image, we can now find semantically
similar images that approximate the new camera point of view. For rotation, we
take about half of the overlapping image. For zoom, we use a scaled version of
the image depending on the amount of zoom. The retrieval is performed using
the nearest neighbor search as outlined in section 2.3 but only using the observed
portion of the transformed query image.

3 Evaluation methods

To compare the different descriptors for the matching and prediction tasks we
have collected the following ground truth image test set and designed an evalu-
ation procedure based on human judgment of visual similarity.

3.1 Ground truth data set

We gathered ground truth data from the Google Street View Pittsburgh data set
[10], which is provided by Google for research purposes. The data set contains
about 10, 000 high-resolution spherical panoramas collected by a moving vehicle
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for the Street View feature of Google Maps. Each panorama has a field of view of
360 degrees horizontally and 180 degrees vertically. To synthesize images similar
to those in our Flickr city database, we unwarp portions of the spherical panora-
mas simulating a camera with 45 degree field of view with rotation stops at every
22.5 degrees [23]. From the synthesized images, we selected 300 representative
pairs for each motion - rotate right, and zoom out - for our ground truth data set.
Each pair contains the query image for our test set and its corresponding ground
truth match based on the camera motion. Having ground truth data allows us
to measure the quality of the different image representations used for matching
and making predictions about what the camera would see if it performed a given
camera motion.

3.2 Performance measures

As a performance measure we use human judgment of visual similarity of the
matched / predicted image to the ground truth. We sought to evaluate the visual
quality of the images retrieved using a variety of different feature descriptors.
Rather than assessing pairwise comparisons between each possible descriptor’s
results, we compared the results from each feature descriptor against a random
selection from the image database. This allowed us to evaluate performance of
all the descriptors with respect to a common scale and reduced the complexity
of the evaluation task.

We designed and conducted experiments using the Amazon Mechanical Turk
to compare the performance of the different features for the matching and pre-
diction tasks. We divided each experiment of 300 test query images into 10 tasks
and each task contained 30 examples.

To evaluate the prediction performance, an example included (i) the ground
truth image G (the actual view after the camera transformation), (ii) the pre-
dicted image P from the database obtained using the transformed image re-
trieval and (iii) a random image R from the database (Fig. 2). The users were
then asked to select which one of the (ii) predicted image or the (iii) random
image was most like the (i) ground truth image, based on visual similarity of the
scene type, common objects and their locations in the images. The predicted and
random images were presented in a random order to eliminate possible bias if
users had a preference in selecting the first or the second image more often. The
random image in the triplet is kept the same across different evaluated features.
The chance performance for this task is 50%. The best performance, i.e. if the
users prefer the predicted image over the random image for all 300 test queries,
would be 100%

Similarly, to evaluate the matching task an example included: (i) the ground
truth image G, (ii) the best match from the database B (obtained by matching
directly on G without a transformation), and (iii) a random image R from the
database.

To ensure the quality of the work, we set a qualification requirement that
allowed only users with 95% task acceptance rate to participate. Furthermore,
we added six control examples to each task presented in a random order. The
control examples had a clear correct answer and allowed us to remove users that
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Ground Truth Prediction Random Guess
Fig. 2. Single example from the user study showing the ground truth G, prediction P
and random R images presented to the user. Comparison to the random guess allows
for evaluation and ranking of the different image representations (feature sets) relative
to each other.

were not paying attention throughout the entire task. Tasks with less than 100%
correct responses to the control examples were discarded, approximately 10-15%
of the data. Each task was completed by 10 different users.

We performed a number of experiments using test examples generated from
different descriptors and different database sizes. Over 100 different users par-
ticipated in the user study. For each example, we had between 8 and 10 votes
for the image that best predicted the ground truth image. The results for each
experiment were evaluated by the majority vote. If more than 50% of the users
selected the predicted image as the image that explained best the ground truth
image, then we say the users preferred the predicted image. Note that the ran-
dom images are kept the same across different users.

4 Experiments

We use the ground truth data to evaluate (i) the matching performance and (ii)
the prediction performance for each camera motion. To evaluate prediction, we
use the transformed query Q to find the best match P that should predict the
ground truth image G that the camera would see after performing a particular
motion. To evaluate matching, we use the ground truth image G to find the
best match B in the database. We consider the following two motions - rotate
right by 22.5 degrees, and 2x zoom out. Performance is measured on the ground
truth dataset of 300 queries by the user preference rate vs. the random image as
outlined in section 3.

We compared the performance for both the matching and prediction tasks
using the different feature descriptors as well as a combination of all the descrip-
tors. Results are summarized in figure 3 and exact user preference rates are given
in table 1. Examples of the best matches and predictions for the rotate right and
zoom-out motions are shown in figure 6 (a) and (b), respectively. Figure 5 shows
examples of good and poor predictions for the HOG descriptor, compared to the
random image, as judged by the Mechanical Turk workers.
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Comparison of different scene descriptors: The best prediction performance is
achieved by a combination of all of the descriptors as shown in Fig. 3. The
clear winner among the individual descriptors in both the prediction and the
matching tasks is the HOG feature descriptor as shown in Fig. 3. It performs ex-
tremely well for the zoom out motion with 92% preference rate in the matching
task and 84% in the prediction task. This is interesting and confirms the good
performance of bag-of-features methods with coarse spatial binning for image
and scene classification tasks [14, 4] (though these methods are based on the
quantized SIFT [16] descriptor rather than quantized HOG [5]). The prediction
results using the dense SIFT descriptor are similar to those of the HOG de-
scriptor for both types of motions, however the HOG descriptor performs better
in the matching task. For the rotate right motion, the geometric context (GC),
self-similarity descriptor (SSIM), GIST and the color and texton histograms per-
form about the same – around 60%. The tiny image descriptor performs slightly
above the chance performance (50%).

Matching vs. prediction performance: In the majority of the cases, the descriptors
performed better at the matching task. This is to be expected since there is more
information available in this case as we use the entire ground truth image to
retrieve similar images from the database. For prediction, only the visible portion
of the transformed query image is used (Fig. 1). Nevertheless, the significantly
above chance (50%) results on the prediction task (77% for rotate-right and 88%
for zoom-out) suggest it is possible, to some extent, to predict the appearance
outside the boundary of the image for the street scenes considered in this work.

Interestingly, the performance of the self-similarity descriptor (SSIM) in the
prediction task is significantly better than that for the matching task. One pos-
sible explanation are the matches on night images (see the fourth column of the
top row of Fig. 6 (b) for the SSIM descriptor). The self-similarity descriptor is
largely invariant to illumination. The users were generally influenced by color
when selecting similar images even though they were not explicitly asked to
compare the images based on color appearance.

For zoom-out motion, the geometric context (GC) is performing significantly
worse for prediction than matching. This might be due to the fact that for the
zoom-out prediction the transformed retrieval uses only the middle portion of the
database images. This typically excludes the ground plane region – an important
feature for geometric context.

Rotate vs. zoom-out motion: Most of the descriptors perform better in the match-
ing task for the zoom out motion than for the rotate right motion, despite the
fact that the matching task is the same for both motions (i.e. no transformation
is applied to the query). This is likely due to the nature of our ground truth
test datasets where most of the images for the zoom out motion are perspective
views of streets (see Fig. 6 (b)), which are well represented in the database of
Flickr images. For the rotate motion the test set is more varied making the task
considerably harder. Similar behavior is observed for the prediction task, further
emphasizing the easier nature of the zoom-out motion test data.
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Motion Rotate Right Zoom Out

Features Matching Prediction Matching Prediction

All 80% 77% 86% 88%

HOG 78% 69% 92% 84%

Dense SIFT 69% 69% 85% 84%

GC 64% 61% 71% 40%

Color Hist 63% 63% 57% 61%

Texton Hist 63% 61% 89% 85%

SSIM 62% 54% 77% 85%

GIST 59% 61% 64% 63%

Tiny32 56% 55% 74% 73%

Table 1. Performance of the different features in the matching and prediction tasks
(sorted by performance).

The effect of increasing database size: We performed an additional experiment
varying the size of the database of Flickr images between 1K, 10K, and 100K.
For this experiment, we used the best performing feature descriptor on the 100K
database (HOG) with the rotate right and zoom out motions. We selected a ran-
dom subset of 1K and 10K images from our 100K database. The matching and
prediction performance is shown in figure 4. Increasing the database size from
1K to 10K results in a marked improvement for both the matching and predic-
tion tasks for the rotate right motion (Fig. 4 (a)). However, the performance
does not change significantly as the database increases to 100K images. In fact,
the prediction performance decreases slightly for the 100K dataset, though this
decrease is likely to be within the evaluation error (due to the random selection
of comparison images). The performance for the zoom out motion for both tasks
does not change significantly with the change in database size. Others have ob-
served a steady increase in image matching performance with database size for
recognition [25] or computer graphics [11] applications. In our case, the lack of
observable improvement for the zoom out motion and when going from the 10K
to the 100K dataset for the rotate right motion might be due to the fact that
our Flickr database has been carefully pre-filtered (section 2) to contain mostly
street scenes. The use of a scene classifier to select the images in our dataset may
have reduced the variability in the data where adding images beyond 1K (for
zoom out) or 10K (for rotate right) does not provide any additional information
to make the tasks easier to solve. The reason for the lower bound for zoom out
motion may be due to the easier nature of the ground truth data set where most
of the scenes are of perspective street views.

5 Conclusions

We have studied the properties of an instance of a general computer vision
algorithm: match a test image to examples in a large dataset of images of the
corresponding class (street level views, in this case). This general approach has
many current and potential applications [15, 3, 11, 6], and we study fundamental
issues: How many images do we need to find semantically meaningful matches?
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Fig. 3. Performance of the different features in the matching and prediction tasks
(sorted by matching performance). a) Rotate Right. b) Zoom Out.
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Fig. 4. Performance of HOG feature descriptor on different database sizes. a) Rotate
Right. b) Zoom Out.

What features should we use to do so? Further, we study properties of the
images in the class with respect to navigation, and we ask: how regular is the
image dataset across changes in camera position?

We use Amazon Mechanical Turk workers to judge image matching and pre-
diction performance relative to a random image choice as a way to assess the
relative power of different algorithm choices.

We find that histograms of quantized HOG features worked best of the eight
individual categories of features we tested. A dataset size of 100,000 images
was sufficient to match images with 78 to 92 percent favoring the retrieved
image over a random selection. We found there was sufficient regularity in the
streetview datasets to predict images at new camera positions, almost to the
accuracy to which images can be matched. In this case, a combination of all the
features performed better than any individual feature set alone. The experiments
described here allow us to calibrate and characterize datasets for the matching
and prediction tasks, useful for dataset driven recognition and navigation.
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Fig. 5. Examples of image triplets shown to the user. The first three columns show
examples where the users picked the prediction based on the HOG feature descriptor
from a 100K database. The second three columns show examples where the users
preferred the random image.
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14 Matching and Predicting Street Level Images

Fig. 6. Example matches and predictions on a 100K database. a) Rotate Right. b)
Zoom Out. For each descriptor the images shown in: Top row - Matches to the ground
truth; Bottom row - Predictions of the ground truth image based on the query image.


