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Input:

Output: • Precise temporal localization of the action.

• Spatial and temporal localization of states.

Contributions:

The problem:

i. A joint model for object states discovery and actions localization.

ii. An effective non-convex optimization algorithm for learning the 
model.

iii. Promising results on a challenging dataset of instructional 
videos.

Model

• Optimization using Frank-Wolfe [4],

• Use DP as the linear oracle to handle 
the constraints,

• Rounding with various techniques. 

Quantitative results

Qualitative results
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• A set of clips containing the same action.

• An object detector for the class of interest.

Object states discovery in the wild
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Action cost function [1]:

Action constraint :

State cost function [1]:

State constraints        :

Joint cost:

Optimization

Action should be in between initial and final state.

• 7 actions, ~20-30s per video,

• Time annotation for actions,

• Track level annotation for states with labels: 

state 1 |state 2 | false positive | ambiguous

• Video extracted from YouTube, Instruction videos [2] and Charades [3].

Relate manipulation actions and object states 
and discover them automatically from videos. 

Obtain the clip containing manipulation action automatically 
from YouTube instructional videos by searching the associated 
narration.

• “Non overlap”: only one object manipulated at a time,

• Ordering constraints: State 1  State 2,

• At least one constraint.

One time interval is selected (saliency of action).

Joint cost bilinear relaxation:

Relaxation:
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Non convex objective!
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Challenges:
• No temporal labels for object states and actions.

• Variability in appearance and motion.


