
RSA hybrid encryption schemes

Louis Granboulan?

École Normale Supérieure
Louis.Granboulan@ens.fr

Abstract. This document compares the two published RSA-based hy-
brid encryption schemes having linear reduction in their security proof:
RSA-KEM with DEM1 and RSA-REACT. While the performance of
RSA-REACT is worse than the performance of RSA-KEM+DEM1, a
complete proof of its security has already been published. This is in-
deed an advantage, because we show that the security result for RSA-
KEM+DEM1 has a small hole. We provide here a complete proof1 of
the security of RSA-KEM+DEM1. We also propose some changes to
RSA-REACT to improve its efficiency without changing its security,
and conclude that this new RSA-REACT is a generalisation of RSA-
KEM+DEM1, with at most the same security, and with possibly worse
performance.

Therefore we show that RSA-KEM+DEM1 should be preferred to RSA-
REACT.

1 Motivations

Building a secure asymmetric encryption scheme is one of the main goals
of public key cryptography. There have been many proposals, some of
them have been provided with proofs of security. The recent discoveries
about the security of OAEP show that most proofs are subtle and need
to be checked in details.
The numerous studies made on the RSA trapdoor one-way function and
its good reputation in the industry makes it probably the most suited
basis for building a secure asymmetric encryption scheme that could be
widely disseminated as a standard.
This document makes an extensive comparison of RSA-REACT and RSA-
KEM+DEM1. It is part of the open evaluation of cryptographic primi-
tives done by the NESSIE consortium.

? Part of this work has been supported by the Commission of the European Commu-
nities through the IST Programme under Contract IST-1999-12324 (NESSIE).

1 A complete proof of the general KEM+DEM construction can also been found in
the full paper of Cramer and Shoup [5, 7], which was not published at the time of
this writing.

2 First assumptions

2.1 Exponent 3 RSA

Generic considerations showing that an exponent e RSA problem can be
solved if a proportion 1− 1/e of the input is known show that exponent
3 RSA should not be used if the padding can be insecure.
Moreover, extracting a cubic root is less likely to be equivalent to the
factorisation than the generic RSA problem.
For these two reasons, we would not recommend a standard that does not
allow greater public exponent than 3.

2.2 Hybrid encryption

There exist schemes that allow to encrypt with RSA without the need of a
symmetric cipher (OAEP [2], OAEP+ [9] and SAEP+ [4]). They still need
a symmetric primitive, based on a hash function, which is modelled as a
random oracle. They have inefficient reductions in their security proofs if
the public exponent is greater than 3. They can only encrypt messages
significantly smaller than the RSA modulus and the encrypted message
has the length of the RSA modulus. 2

We will focus on hybrid encryption. The main disadvantage of hybrid en-
cryption is that the ciphertext length is bigger than for direct encryption.
The great advantage is that the security proof is efficient even for large
public exponents.
Two RSA-based schemes fulfill these requirements : RSA-KEM+DEM1
and RSA-REACT.

3 Description of RSA-KEM+DEM1 and RSA-REACT

The public key is an integer n of unknown factorisation and a public
exponent e. The private key is the exponent d = e−1 mod φ(n). Usually,
n = pq with p and q of similar size, but these schemes can be extended
to the cases where n is a product of three or more primes of similar size.

3.1 RSA-KEM+DEM1

This scheme is completely described in Shoup’s ISO proposal [10]. Its
parameters are two functions: KDF : {0...n−1} → {0, 1}s+l and MAC :
2 For more information about proofs in the random oracle model and efficiency of

reductions, see [1, 3].

{0, 1}l × {0, 1}∗ → {0, 1}k and a symmetric encryption scheme SKE =
(SEK , SDK) of keylength s. Usually l = s.
The function KDF should be an entropy smoothing function and is mod-
elled as a random oracle. The function MAC should be a one-time mes-
sage authentication code.
Encryption: Decryption:

input(m)
r ←random {0...n− 1}
(y, K||K ′)← (re mod n, KDF (r))
c← SEK(m)
t←MACK′(c)

output(y, c, t)

input(y, c, t)
r ← yd mod n
K||K ′ ← KDF (r)
reject if t 6= MACK′(c)
m← SDK(c)

output(m)

3.2 RSA-REACT

This scheme is completely described in Okamoto and Pointcheval’s papers
[7, 8]. Its parameters are two functions: KDF : {0...n− 1} → {0, 1}s and
H : {0...n−1}×{0...n−1}×{0, 1}∗×{0, 1}∗ → {0, 1}h and a symmetric
encryption scheme SKE = (SEK , SDK) of keylength s.
The function KDF should be an entropy smoothing function and is mod-
elled as a random oracle. The function H should be an entropy smoothing
collision resistant hash function and is modelled as a random oracle.
Encryption: Decryption:

input(m)
r ←random {0...n− 1}
(y, K)← (re mod n, KDF (r))
c← SEK(m)
t← H(r, y,m, c)

output(y, c, t)

input(y, c, t)
r ← yd mod n
K ← KDF (r)
m← SDK(c)
reject if t 6= H(r, y,m, c)

output(m)

4 Performance comparison

Performance comparison is meaningful only if the symmetric algorithm’s
sizes and the RSA modulus size have adequate relation. It is still an open
problem to find a link between those two parameters3, but it is of no im-
portance for our comparison: both techniques do the same computations
3 Lentra and Verheul [6] estimates for equivalent key sizes in 2002 are: a 80-bits

security is obtained with 1280-bits RSA, and a 128-bits security is obtained with
3333-bits RSA.
Silverman [11] estimates cost equivalent sizes: a 80-bits security is obtained with
760-bits RSA, and a 128-bits security is obtained with 1620-bits RSA.

modulo n, and have similar requirements for the symmetric encryption
scheme SKE.
RSA-REACT has the advantage that its KDF function only outputs s
bits while 2s bits are needed for RSA-KEM+DEM1. This is only a tiny
advantage because the input of KDF has fixed and short length, and
there exist good hash functions with output 160 or 256 bits.
RSA-REACT has the disadvantage that the amount of data processed
by its symmetric components is slightly above three times the message
length, while RSA-KEM+DEM1 only processes twice the message length.
For long messages (dozens of kilobytes), RSA-REACT is 50% slower than
RSA-KEM+DEM1.
Both RSA-REACT and RSA-KEM+DEM1 can be used for stream pro-
cessing of messages, but the input of the function H in RSA-REACT
needs to alternate fixed sized chunks of m and c.
Also note that MAC are generally faster than hash.
Another (slight) advantage of RSA-KEM+DEM1 is that rejection of in-
valid messages need only the computation of MAC and not SD.

The conclusion is that RSA-KEM+DEM1 is better than RSA-REACT
from a performance point of view.

5 Security comparison

5.1 Security model

An attacker against an encryption scheme can be an inverter, a checker
or a distinguisher.
An inverter’s goal is, given a ciphertext, to obtain the corresponding plain-
text. Its probability of success is taken for a random key and a random
plaintext and measures the one-wayness of the scheme.
An checker’s goal is, given a plaintext and a ciphertext, to find if the
ciphertext encrypts the plaintext. Its probability of success is taken for
a random bit (that determines if the ciphertext actually encrypts the
plaintext), a random key, a random plaintext and (if the bit is 0) a random
ciphertext. 4

4 The probability of success of a checker or a distinguisher is Succ = Pr[b̂ = b].
Because a random attacker has a probability of success of 1

2
, usually one considers

the guessing advantage Guess = Pr[b̂ = b] − 1
2

or its double, the distinguishing

advantage Dist = Pr[b̂ = 1|b = 1] − Pr[b̂ = 1|b = 0] = 2 · Pr[b̂ = b] − 1.

A distinguisher’s goal is, given a ciphertext and two plaintexts, to find
which one has been encrypted. The attacker can choose the pair of plain-
texts, the probabilities of success are taken for a random key and a random
bit that chooses between the two plaintexts. It measures the semantic se-
curity of the scheme. 4

If the attacker has no access to other information that the ciphertext and
eventually the public key, then it is a passive attack. If it has access to a
decryption oracle, it is a chosen ciphertext attack. If it has access to an
encryption oracle, it is a chosen plaintext attack. 5

The goal of an attacker against a MAC is, given a plaintext and a tag
for some key, to obtain at least another pair (plaintext, tag) for the same
key. The attacker’s power is limited to the proposal of qM (plaintext, tag)
pairs. 6

5.2 A unified formulation for proofs of security

Let a scheme have two components X and Y. The proof of security con-
siders an attacker A against the scheme that runs in time t and succeeds
with probability ε. It builds an attacker B that succeeds if it breaks ei-
ther component X or component Y. B runs in time t′ and succeeds with
probability ε′.

Okamoto and Pointcheval [7, 8] then formulate this security result by say-
ing that, for any 0 < ν < ε′, either there exists an attacker against X with
success probability ν, or an attacker against Y with success probability
ε′ − ν.

Shoup [10] formulates this security result by saying that ε′ ≤ Succ(A1)+
Succ(A2) where A1 is an attacker against X and A2 is an attacker against
Y.

We use an intermediate but equivalent formulation: for any SuccX and
SuccY such that ε′ ≥ SuccX + SuccY , then either there exists an at-
tacker against X with success SuccX or an attacker against Y with success
SuccY .

5 For an asymmetric encryption scheme the attacker can always encrypt without need-
ing an encryption oracle. For a symmetric encryption scheme, access to an encryption
oracle must be explicitely stated.

6 If the MAC outputs h bits, there is a minimal success probability, that of a random
attacker: SuccMAC(qM) = qM

2h .

5.3 Claimed results

RSA-KEM+DEM1 The claimed security [10] can be rewritten as: sup-
pose there exists a chosen ciphertext distinguisher running in time t that
attacks the hybrid public key encryption scheme with guessing advantage
GuessHyb and at most qD and qKDF queries to the decryption oracle and
to the function KDF (modelled as random oracle). Let n′ be a lower-
bound on n. Then let t′, SuccRSA, GuessSKE and SuccMAC(qD) such that
t′ ' t and GuessHyb ≤ 2(SuccRSA + qD

n′) + GuessSKE + SuccMAC(qD). 7

Then there either exists a passive inverter of RSA running in time t′

with success SuccRSA, or a passive distinguisher against SKE running in
time t′ with guessing advantage GuessSKE or an attacker against MAC
running in time t′ with success probability SuccMAC(qD)

RSA-REACT The claimed security [7, 8] can be rewritten as: suppose
there exists a chosen ciphertext distinguisher running in time t that at-
tacks the hybrid public key encryption scheme with distinguishing ad-
vantage DistHyb and at most qD, qKDF and qH queries to the decryption
oracle and to the functions KDF and H (modelled as random oracles).
Then let t′, SuccRSA and DistSKE such that t′ ≤ t+ qKDF TSKE +(qH +
qKDF)TRSAenc and DistHyb ≤ 2(SuccRSA + qD

2h) + DistSKE .
Then there either exists a passive inverter of RSA running in time t′ with
success SuccRSA, or a passive distinguisher against SKE running in time
t′ with distinguishing advantage DistSKE .

Comparison We can see that the claimed securities of both schemes are
similar. There are still some differences.
If everything is written in terms of guessing advantage, then the security
is:

RSA-REACT GuessHyb ≤ GuessSKE + SuccRSA + qD

2h

RSA-KEM+DEM1 GuessHyb ≤ GuessSKE + 2 · SuccRSA + 2·qD
n′ + SuccMAC(qD)

Because MAC is not modelled as a random oracle, any comparison of
the claimed securities of those schemes is fallacious. Nevertheless, since
SuccMAC(qD) ≥ qD

2h , the value 2·qD
n′ cannot been seen as an advantage for

RSA-KEM+DEM1. And the success probability of a RSA inverter has a
factor of 2 for RSA-KEM+DEM1 security, which might be an advantage
for RSA-REACT.

7 In fact, [10, p52] wrongly says nBound
qD

, where it should be qD
nBound

. This is probably
a typo.

5.4 Proof of security for RSA-REACT

The proof for the generic REACT construction can be found in [8] and is
even valid if the underlying encryption scheme is randomised. We rewrite
this proof here, specialised to RSA:

Outline of the proof. Suppose that there exists an attacker A
against the semantic security of RSA-REACT, that runs in time t
with qD, qKDF and qH queries to a decryption oracle, and the two
hash functions. Then we build an attacker B running in time t′ that
either solves the RSA problem or attacks the semantic security of
SKE.
Description of the attacker B. The attacker B makes one call to
the distinguisher A which sends a pair (m0,m1) of plaintexts. Then
B transmits this pair and receives a ciphertext c = SEK(mb) for
unknown and random values b and K. Then B provides to A the
ciphertext (y, c, t) where y has unknown e-th root and t is random. B
will either extract r = yd from the queries that Amakes to the oracles,
or find the value b. The attacker B needs to simulate all oracle answers
until attacker A makes a query that allows to find r, or A returns a
bit b̂.
Either the attacker B outputs RSA(r) which means that he solved the
RSA problem with answer r, or it outputs SKE(b) which means that
he broke the semantic security of SKE and the answer is b.
For all queries r′ that A makes to KDF , the attacker B outputs
RSA(r′) if (r′)e ?= y. For all queries (r′, y′,m′, c′) that A makes to H,
the attacker B outputs RSA(r′) if (r′)e ?= y. If A returns b̂, then the
attacker B outputs SKE(b̂).
Simulating the oracle calls. If an oracle query does not allow B to
find r, then it must answer a valid value.
• Queries r′ to KDF are answered with a new random value K ′ if

r′ was not previously asked.
• Queries (r′, y′,m′, c′) to H are answered with a new random value

t′ if it was not previously asked.
• Queries (y′, c′, t′) to the decryption oracle are rejected, unless t′

was an answer made to a query (ri, yi,mi, ci) to H and (y′, c′) =
(yi, ci). For all queries such that ri was queried to KDF with
answer Ki, the attacker checks if SEKi(mi) = ci. In the positive
case, mi is the decrypted value and is returned.

An invalid oracle answer only happens if a query to the decryption
oracle is rejected while it should be accepted. This happens if t′ is

valid but was not an answer to a query to H. This happens at most
with probability 2−h because t′ is h bits long.
Running time of B. Each query to KDF needs the computation
of (r′)e. Each query to H needs the computation of (r′)e. Each query
to the decryption oracle may need the computation of SE. Therefore,
the total time t′ ≤ t + (qKDF + qH)TRSAenc + min(qKDF , qD)TSKE .
Success probability. The probability that there has been at least
one invalid oracle answer is qD

2h . If A is given valid oracle answers and
A succeeds, then B succeeds. Its success probability Succ(B) ≥ (1 −
qD

2h)Succ(A) ≥ Succ(A)− qD

2h . This proves the inequality SuccSKE +
SuccRSA ≥ SuccHyb − qD

2h , which is equivalent to the formulation of
[7]: DistSKE + 2 · (SuccRSA + qD

2h) ≥ DistHyb.

5.5 An improvement of RSA-REACT

We can improve RSA-REACT by minimizing the input of H. We can also
withdraw y from the input of H, because it can be recomputed. If m is
also not included in the input of H, this new scheme has similar efficiency
to RSA-KEM+DEM1, and exactly the same security as RSA-REACT. 8

The new scheme’s parameters are two functions: KDF : {0...n − 1} →
{0, 1}s and H : {0...n−1}×{0, 1}∗ → {0, 1}h and a symmetric encryption
scheme SKE = (SEK , SDK) of keylength s.

Encryption: Decryption:

input(m)
r ←random {0...n− 1}
(y, K)← (re mod n, KDF (r))
c← SEK(m)
t← H(r, c)

output(y, c, t)

input(y, c, t)
r ← yd mod n
K ← KDF (r)
m← SDK(c)
reject if t 6= H(r, c)

output(m)

The proof of security of this scheme is essentially the proof of security of
RSA-REACT. Only the oracle simulation needs to be adapted.

Simulating the oracle calls. If an oracle query does not allow B to
find r, then it must answer a valid value.
• Queries r′ to KDF are answered with a new random value K ′ if

r′ was not previously asked.

8 The inclusion of y is needed for the generic REACT conversion, because the under-
lying asymetric encryption scheme may be randomised. The inclusion of m is not
needed, even for the generic REACT conversion.

• Queries (r′, c′) to H are answered with a new random value t′ if it
was not previously asked.

• Queries (y′, c′, t′) to the decryption oracle are rejected, unless t′

was an answer made to a query (ri, ci) to H where c′ = ci and
y′ = ri

e. For one query such that ri was queried to KDF with
answer Ki, the attacker computes and returns SDKi(ci).

Now we can notice that if we change the notations in RSA-KEM+DEM1
by splitting K = KDF (r) and K ′ = KDF ′(r) and by setting H(r, c) =
MACKDF ′(r)(c), then it is the above improved RSA-REACT.

5.6 The proof of security of the hybrid construction
KEM+DEM

The proof of RSA-KEM+DEM1 in [10] is split in three parts: the con-
struction of an hybrid scheme from some KEM and some DEM, the proof
of security of DEM1, and the proof of security of RSA-KEM. The first
two proofs are left to the reader and the explicit running time of the
attackers is not included.
The (generic) security result for the hybrid construction in [10, p17] does
not explicitely state that the choice of the DEM should be independent of
the key of the KEM. We show below a counter-example where an insecure
KEM+DEM is built from secure, but related, KEM and DEM.

Definitions.
A DEM (Data Encapsulation Mechanism) is a symmetric scheme, that
should be secure (for a random key) against a distinguisher having access
to a decryption oracle for that key. Note that access to an encryption
oracle is not required.
A KEM (Key Encapsulation Mechanism) is an asymmetric scheme that
generates random pairs of plaintext-ciphertext, and that should be secure
against a checker having access to a decryption oracle.

Hybrid construction. The private and public keys of the hybrid scheme
are those of the KEM. The hybrid encryption of m first calls the KEM to
obtain a pair (K, y), then encrypts m with the DEM using K to obtain c.
The result is the pair (y, c). The hybrid decryption of (y, c) first calls the
DEM to decrypt y and obtain K, then decrypts c with the DEM using
K to obtain m.

A counter-example for the generic hybrid construction. We show
how to build an insecure hybrid encryption scheme from a secure KEM
and a secure DEM. The trick is that the KEM and the DEM will be
related in some way that will allow to break the hybrid construction.

KEM. Let (Epk, Dsk) be any bijective trapdoor one-way permuta-
tion of {0, 1}n and KDF0 be any one-way compression function from
{0, 1}n to {0, 1}h, with h � n. Let also H : {0, 1}h → {0, 1}n−h be
some one-way function. Let KDF be identical to KDF0, with the
exception that for any value K, we fix KDF (K||H(K)) = K. For
this new key derivation function, it is easy to compute one of the
preimages: KDF−1(K) = K||H(K).
Suppose that the KEM is built as usual: a random r is computed,
the output is (KDF (r), Epk(r)), Decryption of this KEM computes
KDF ◦Dsk. The attacker’s advantage against this KEM is increased
by the probability 2h−n that a random r is of the form K||H(K).
Because the KEM based of KDF0 and (Epk, Dsk) is secure and h� n,
this KEM is secure.
DEM. Remember that the security of a DEM relies on the fact that
the secret key K is kept secret, and that the encryption function
DEMK is secure against a distinguisher having access to a decryption
oracle. Suppose that DEM is built such that the one-wayness of the
mapping K → DEMK relies on the one-wayness of Epk ◦ KDF−1.
More precisely, we begin with any secure DEM, and we change its
definition for one point: for any key K, the encryption of y0 = Epk ◦
KDF−1(K) is the value 0.
This new DEM is exactly as secure as the previous one, because Epk ◦
KDF−1 is one-way.
Attack of the hybrid scheme. Then the hybrid scheme built from
these schemes is not secure. An attacker of the hybrid scheme knows
a ciphertext (y, c) that encrypts one of m0,m1.
He begins by requesting (y, 0) to the decryption oracle which answers
y0 = Epk ◦ KDF−1(K). Then he requests (y0, c) to the decryption
oracle, which will answer the solution mb. This attack works because
KDF ◦Dsk(y) = KDF ◦Dsk(y0).

A proof for the construction KEM+DEM. The theorem we prove
is that, if the KEM is secure against a checker having access to a decryp-
tion oracle for the KEM and access to a decryption oracle for the

DEM, 9 and if the DEM is secure against a distinguisher having access
to a decryption oracle for the DEM and access to a decryption oracle
for the KEM, 10 then the resulting hybrid scheme is secure against a
distinguisher under chosen ciphertext attack.

Outline of the proof. Suppose that there exists an attacker A
against the semantic security of the hybrid scheme, that runs in time
t with qD queries to a decryption oracle. Then we build an attacker
B running in time t′ that will attack the semantic security of DEM .
Description of the attacker B. The attacker B makes one call to
the distinguisher A which sends a pair (m0,m1) of plaintexts. Then B
transmits this pair and receives a ciphertext c = DEMencK(mb) for
unknown and random values b and K. Then B provides to A the ci-
phertext (y, c) where y is random. The attacker B needs to simulate all
oracle answers to A, and he can make queries to two oracles that com-
pute — KEMdec(y′) if y′ 6= y for the first oracle — DEMdecK(c′) if
c′ 6= c for the other one.
Simulating the oracle calls. When A queries (y′, c′), if y′ 6= y then
B asks for K ′ = KEMdec(y′) and returns m′ = DEMdecK′(c′). If
y′ = y then c′ 6= c and B asks for m′ = DEMdecK(c′) and returns
m′.
Oracle answers for y′ = y are invalid, because y was randomly cho-
sen independantly of K, but the probability that it is detected (i.e.
the probaility that the fact that these answers are invalid influences
the result of A) is at most the best distinguishing advantage against
KEM .
Running time of B. Each query to the decryption oracle may need
the computation of DEMdec, and also needs one call to one of the
oracles. Therefore, the total time t′ ≤ t + qD(TDEM + Tslowest oracle).
Success probability. The probability that there has been at least
one invalid oracle answer is DistKEM . If A is given valid oracle an-
swers and A succeeds, then B succeeds. We have Succ(B) ≥ (1 −
DistKEM)Succ(A) ≥ Succ(A)−DistKEM . This proves the inequality

9 This condition can easily be improved. Any checker against KEM has to find if a
pair (K, y) is valid. Therefore the checker knows the value of K and a decryption
oracle for DEM cannot help the attack of KEM.

10 This condition is mandatory. The counter-example above is built on the lack of this
security requirement. Note that a decryption oracle against the KEM can only help
an attack of the DEM is the DEM is related to the (secret) key implied by that
decryption oracle. Therefore the counter-example is representative of all possible
counter-examples.

SuccDEM ≥ SuccHyb−DistKEM , which is equivalent to the formula-
tion of [10, p17]: GuessDEM + DistKEM ≥ GuessHyb.

5.7 Proof of security for DEM1

The straightforward construction of DEM1 is in [10, p19].
Suppose there exists a chosen ciphertext distinguisher against DEM1
running in time t with guessing advantage GuessDEM1 and at most
qD queries to the decryption oracle. Let GuessDEM1 ≤ GuessSKE +
SuccMAC(qD) and t′ ≤ TMAC . Then there exists a passive distinguisher
against SKE running in time t′ with guessing advantage GuessSKE or
an attacker against MAC running in time t′ with success probability
SuccMAC(qD)

Outline of the proof. Suppose that there exists an attacker A
against the semantic security of the DEM1, that runs in time t with qD

queries to a decryption oracle. Then we build an attacker B running
in time t′ that will attack the semantic security of SKE.
Description of the attacker B. The attacker B makes one call to
the distinguisher A which sends a pair (m0,m1) of plaintexts. Then B
transmits this pair and receives a ciphertext c = SKEencK(mb) for
unknown and random values b and K. Then B computes a random K ′

and computes t = MACK′(c). He provides to A the ciphertext (c, t).
Simulating the oracle calls. B rejects all queries (c′, t′) from A.
Running time of B. The total time t′ ≤ t + TMAC .
Success probability. The probability that at least one oracle answer
is invalid is bounded by SuccMAC(qD), the probability that a valid
MAC can be forged. If A is given valid oracle answers and A succeeds,
then B succeeds. We have Succ(B) ≥ (1 − SuccMAC(qD))Succ(A) ≥
Succ(A)− SuccMAC(qD). This proves that SuccSKE ≥ SuccDEM1 −
SuccMAC(qD), which is equivalent to GuessDEM1 ≤ GuessSKE +
SuccMAC(qD).

5.8 Proof of security for RSA-KEM+DEM1

RSA-KEM construction. The proof in [10, p52] is complete and shows
that if GuessRSA−KEM ≤ SuccRSA + qD

n′ and t′ ≤ t+ qKDF TRSAenc, then
a chosen ciphertext checker against RSA-KEM in time t reduces to a
passive RSA inverter in time t′.

Merging all the proofs. We need to adapt the security proof for DEM1
to a proof that DEM1 is still secure when the attacker has access to a
decryption oracle for RSA-KEM. Due to the fact that KDF is modelled
as a random oracle, a decryption oracle for RSA-KEM cannot help that
attacker.

In conclusion, the proven security of RSA-KEM+DEM1 is identical to
the claimed security. The running time of the passive RSA inverter is
bounded by t′ ≤ t + qKDF TRSAenc + qDTSKE + (qD + 1)TMAC .

6 Conclusion

An analysis of the security of RSA-KEM+DEM1 with modelling the func-
tion (r, c) 7→MACKDF ′(r)(c) as a random oracle proves that its security
is at least the same as RSA-REACT. Because of its additionnal secu-
rity proof where MAC is modelled as a MAC and because of its better
performance, RSA-KEM+DEM1 should be preferred to RSA-REACT.

Acknowledgements

I’d like to thank David Pointcheval for his suggestion of removing m
from the input of H in REACT, and for fruitful discussions. I’d also like
to thank Victor Shoup for his comments, and the anonymous referees of
PKC’02, who suggested useful corrections.

References

1. M. Bellare and P. Rogaway. Random Oracles Are Practical: a Paradigm for De-
signing Efficient Protocols. In Proc. of the 1st CCS, pages 62–73. ACM Press, New
York, 1993.

2. M. Bellare and P. Rogaway. Optimal Asymmetric Encryption – How to Encrypt
with RSA. In Proc. of EUROCRYPT ’94, LNCS 950, pages 92–111. Springer-
Verlag, Berlin, 1995.

3. M. Bellare and P. Rogaway. The exact security of digital signatures: how to
sign with RSA and Rabin. Proc. Eurocrypt’96, LNCS 1070, pages 399-416,
May 1996. Revised version available at http://www-cse.ucsd.edu/users/mihir/
crypto-research-papers.html.

4. Dan Boneh. Simplified OAEP for the RSA and Rabin functions. In Advances
in Cryptology – CRYPTO 2001, August 2001. Available at http://crypto.

stanford.edu/~dabo/abstracts/saep.html.
5. R. Cramer and V. Shoup. Design and Analysis of Practical Public-Key En-

cryption Schemes Secure against Adaptive Chosen Ciphertext Attack. Available
at http://eprint.iacr.org/2001/108/, December 2001.

6. A. Lentra and E. Verheul. Selecting cryptographic key sizes. Journal of cryp-
tology, 14:4, 255-293, Aug. 2001. Applet computing equivalent key sizes available
at http://www.cryptosavvy.com/suggestions.htm.

7. T. Okamoto and D. Pointcheval. RSA-REACT: An Alternative to RSA-OAEP.
Proc. second open NESSIE workshop, Egham, Sept. 2001. Available at http:

//www.di.ens.fr/~pointche/.
8. T. Okamoto and D. Pointcheval. REACT: Rapid Enhanced-security Asymmetric

Cryptosystem Transform. CT-RSA’2001, LNCS 2020, pages 208–222, April 2001.
Available at http://www.di.ens.fr/~pointche/.

9. V. Shoup. OAEP Reconsidered. In Proc. of CRYPTO ’2001, LNCS 2139, pages
239–259. Springer-Verlag, Berlin, 2001. Available at http://eprint.iacr.org/

2000/060/.
10. V. Shoup. A proposal for an ISO standard for public key encryption (version 2.0).

September 2001. Available at http://eprint.iacr.org/2001/112/.
11. R. Silverman. A Cost-Based Security Analysis of Symmetric and Asymmetric

Key Lengths RSA Labs bulletin, 13, Apr. 2000. Available online at http://www.

rsasecurity.com/rsalabs/bulletins/bulletin13.html.

