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Abstract The development process of the Advanced Encryption Stan-
dard (AES) was launched in 1997 by the US government through NIST.
The Decorrelated Fast Cipher (DFC) was the CNRS proposal for the
AES, among 14 other candidates in 1998. It was based on the recent
decorrelation theory, to obtain certain security proofs covering linear and
differential cryptanalysis. DFC received numerous comments. In particu-
lar, Coppersmith discovered a weakness in the key schedule. We address
this weakness by a slight modification on DFC. This paper presents the
specifications and rationales of DFC version 2, and discusses issues raised
during the AES process.

1 Introduction

A major goal in cryptography is to prove security statements on encryption
schemes. To this respect, it is well-known that the status of secret-key cryptog-
raphy is quite different from that of public-key cryptography. The decorrelation
theory was introduced in 1998 (see [20] for the original reference) as an attempt
towards filling this gap, by providing new ideas to build block ciphers, together
with security proofs covering certain (however general) classes of attacks. Since
the AES process was launched by NIST at about the same period, the French
National Center for Scientific Research (CNRS) decided to start a project aimed
at showing that decorrelation theory was a reasonable proposal for making se-
cure and efficient block ciphers. The target platform was chosen to be 64-bit
microprocessors, as such chips are likely to become standard during the lifetime
of the AES. The CNRS project gave birth to the “Decorrelated Fast Cipher”
(DFC) [6,7].

Decorrelation theory (see [20,21,22,23,24,25]) enables to prove formal results
on the security of cryptographic primitives under certain hypotheses which we
believe to be realistic. In particular, it enables to quantify the best advantage
to distinguish two families of block ciphers, for a class of attacks with limited
resources. For instance, one can consider any Turing machine restricted to a
given number d of oracle calls to the block cipher. Most of the existing block
ciphers are provably secure for the d = 1 case. However, none addresses the



d = 2 case, except DFC and other decorrelation theory—based ones. Interest-
ingly, the d = 2 case already provides formal security against possible formaliza-
tions of differential and linear cryptanalysis. The Nyberg-Knudsen approach [16]
was the only previously known way to achieve similar security statements (with
MISTY [13,14] as a famous example.) The MISTY approach however does not
provide much design flexibility, and the DFC approach seems to achieve stronger
results as shown in Section 4. Besides, the Nyberg-Knudsen approach is indeed
an ad hoc construction for providing security against differential and linear at-
tacks but does not consider other general attacks with d = 2.

Implementing decorrelated block ciphers with order d = 2 by using known
techniques (like the PEANUT construction [20]) requires the use of built-in
multiplication which leads to non-trivial optimization tricks. DFC was submitted
to the AES in order to show that such challenges could be overcome. DFC
attracted many comments from the AES community, sometimes controversial.
For instance, it was claimed that DFC was too slow, that its security paradigm
brought nothing new, and that the security margin was too small. In addition,
Coppersmith discovered a weakness in the key schedule by showing the existence
of a fraction of 27128 of weak keys (using a quite complex algorithm).

In this paper, we give the complete specifications of DFCv2. This new version
addresses the key schedule problem and allows scalable modifications of the
internal structure (so that the user can choose any “security margin”). We also
try to respond to the issues raised on the original DFC.

2 Specifications of DFCv2

In this section, we give the complete specifications of DFCv2, and emphasize
rationales in each subsection. A sample test vector for the nominal choices of
the parameters is given in Appendix.

2.1 Notation

All quantities are bit strings or integers. When string lengths are divisible by
four, quantities are denoted in hexadecimal. For instance, d43, denotes the bit-
string 110101000011 and also represents the (decimal) integer 3395 in arithmetic
operations. We use classical bitwise bitstring operations: OR, AND, NOT, XOR.
We also use the following arithmetic operations over the integers: +, x, mod. The
result of an arithmetic operation is implicitly converted into a bitstring whose
length will be clear from the context. Finally, we use the bitstring concatenation
| and the trunc, function that extracts the n leftmost bits of a bitstring.

2.2 High Level Overview

DFCv2 is characterized by four parameters m, k, r and s chosen for security and
efficiency reasons. In DFCv2(m, k,r, s), m is the message block length, k is the
key length, r is the number of encryption rounds, and s is the number of rounds



for the subkey generation. We require that m > 32, 0 < k < 2m, rs < 128, m
is a multiple of 4, and r is even. The nominal choice for DFCv2 is m = 128,
k€ {128,192,256}, r = 8 and s = 4.

The encryption function DFC g operates on m-bit message blocks by means of
a secret key K of arbitrary length &k up to 2m bits. The corresponding decryption
function is DFC ' and operates on m-bit message blocks.

The secret key K is first turned into an mr-bit “Expanded Key” EK through
an “Expanding Function” EF, i.e. EK = EF(K). As explained in Section 2.5, the
EF function applies r s-round Feistel schemes (see Feistel [5]). The encryption
process itself performs a similar r-round Feistel scheme. Each round uses the
“Round Function” RF. This function maps a 7-bit string onto a %-bit string
by using one m-bit string parameter. It is defined in Section 2.3.

Given a bitstring o of length multiple of m, say mp, we split it into p m-bit
strings

o = pi|pz|- .. |p,-

From o we define a permutation Enc, on the set of m-bit strings coming from
an p-round Feistel scheme. For any m-bit string PT which is split into two 3-bit
halves zo and z; so that PT = zo|z;. We build a sequence o, ...,z,4+1 by the
equation

Ti41 = RFpi (:L',) XOR Ti—1 (Z = 1, ey p) (1)

and we define Enc,(m) = zp41|2,.
Given an m-bit plaintext block PT and the mr-bit expanded key EK, the
DFCv2k encryption function is obtained as

DFCVQK = EHCEK (2)

(that is, an r-round Feistel Cipher).
The EF function uses an s-round version defined with Enc.
If we split EK into r m-bit strings

EK = RK;|RK;| ... |RK, 3)
obviously, we have DFCI}1 = Enc.eyvpx Where

revEK = RKT|RKT,]_| “en |RK1 (4)

2.3 The RF Function

The RF function (as for “Round Function”) is fed with one m-bit parameter,
which we view as two §-bit parameters: an “a-parameter” and a “b-parameter”.
It processes a F-bit input x and outputs a Z-bit string defined as follows:

RF,;(z) = CP (((a x z + b) mod p) mod 2%) (5)

where CP is a permutation over the set of all Z-bit strings (which appears in
Section 2.4) and p is the smallest prime integer greater than 2% . For instance,
if m = 128, we use p = 2%* + 13. See the following table for other values.



m _p
32 21641
64 232 + 15
96 248 + 21
128 264 + 13

Following the PEANUT scheme paradigm (see [20]), the RF function imple-
ments a decorrelation module. It is basically made from a classical round function
(with CP), and from the pairwise decorrelation module x — (az + b mod p) mod
2% which was used in the PEANUT construction.

From this construction, Decorrelation Theory ensures that if we consider
DFCv2(128,k,6,s) and if we make the heuristic assumption that EK is random
and uniformly distributed from the random choice of the secret key, then the best
advantage for distinguishing this reduced and idealized version of DFCv2 from
a truly random permutation when limited to two chosen plaintexts is less than
27117 (see [24]). This property has several consequences on the formal security
of DFCv2 as summarized in Section 4.

2.4 The CP Permutation

The CP permutation (as for “Confusion Permutation”) uses a look-up table RT
(as for “Round Table”) which takes a 6-bit integer as input and provides a Z-bit
string output. Its size is thus 2m bytes.

ﬁLe‘c y = yi|yr be the input of CP where y; and y, are two -bit strings. We
define

CP(y) = ((yr XOR (RT o truncg)(y))|(y» XOR KC)) + KD mod 2% (6)

where KC is a 7-bit constant string, and KD is a %-bit constant string. The
permutation CP is depicted in Fig. 1.

The constants RT(0), ...,RT(63), KC and KD will be set in Section 2.6.

The purpose of CP is to implement a permutation over all %5 -bit strings which
breaks the algebraic structure of the decorrelation module. For this we use a
mizture of XORs and additions in a way very similar to that of the RCS block
cipher [19].

The RT tables play an important role by introducing randomness. These tables
are limited to 2m bytes in total (in order to fit to embedded hardware with low
memory) but with a mazimal input size.

2.5 Key Scheduling Algorithm

In order to generate a sequence RK;,RKs,...,RK, from a given key K repre-
sented as a bit string of length at most 2m, we use the following algorithm. We
first pad K with a constant pattern KS in order to make a 2m-bit “Padded Key”
string by

PK = trunce,, (K|KS). (7
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Figurel. The CP Permutation.

If K is of length m, we can observe that only the first m bits of KS are used.
We define KS of length 2m in order to allow any key size from 0 to 2m.

Then we split PK into two m-bit strings RKqy and IRK, (as for “Internal
Round Key”) such that PK = IRK|RK(.! We assume we are given 16 m-bit
constants KABy, ..., KAB;5.2 We now define

IRK;;1 = IRK; XOR {EABRT(]’) mod 16 if j <64 (8)

B(RT(j—64)>>8) mod 16 Otherwise

for j =0,1,...,7s — 1 where RT(j — 64) >> 8 denotes the bitstring RT(j — 64)
logically shifted by 8 bits to the right. Basically, we take the four least significant
bits of RT(j) for j < 64 and some other four bits of RT(j —64) for 64 < j < 128.
(Since we require that rs < 128, j is less than 128.) We notice that IRK; is
actually the XOR of IRK( with some constant depending on j.

Each sequence of s IRK; values defines an sm-bit string IEK; which serves
as the round key sequence of some s-round internal encryption function. More
precisely, we define

IEK; = IRK;s s511]--- |IRK;s_1|TRK;; (9)
fori=1,2,...,r and
IEHC,’ = EI’ICIEKi (10)
fori=1,2,...,r as an “Internal Encryption”. We now define the RK; sequence
by
RK»L = IEnci(RKi,l) (11)

! The following IRK; sequence replaces the OAP;|OBP; and EAP;|EBP; sequences
defined in DFCvl1.
2 These constants replace the KA; and KB; sequences defined in DFCv1.



fori =1,2,...,r. Finally we define
EK = EF(K) = RK;|RK3|...|RK,. (12)

We can start the same process from IRK,|RK, instead of PK. This enables
to decrypt by computing the reversed sequence RK; “on the fly”.

This new key schedule repairs two drawbacks which were reported on DFCvl
(see [2]). Namely, due to the pairwise difference of the IRK;s, the iterations of
the IEK;s are no longer symmetric which fizes the weak key property reported
by Coppersmith, and the first round key RK;y now depends on all key bits. In
addition, the RK; sequence now looks “more random”.

2.6 On the Definition of the Constants
The previously defined algorithm depends on several constants:

— 64 constants RT(0),...,RT(63) of 2t bits (thus forming 16m bits),
one % -bit constant KD,

— one Z-bit constant KC,

16 m-bit constants KABy,...,KAB5

one 2m-bit constant KS.

Those constants must satisfy the following security criterion.

1. the RT round table has no collision,
2. KD is odd,

3. the IRK; are pairwise different for j =1,...,rs.?

We will use some constants several times. Actually, the RT table, KC and KD
will contain the other constants. We thus need 18m bits of random constants.

In order to convince that this design hides no trap-door, we choose the con-
stants from the hexadecimal expansion of the mathematical e constant

oo
1
e=Y_ — = 2.b7e1516282d2a6abt 7158, ... (13)

n=0

We use the following scheme in order to define the constants.

Step 1. Let EES (as for “e Expansion String”) be the first 18m bits of the
expansion of e after the (hexa)decimal point, we define

truncaz ,,(EES) = RT(0)[RT(1)).. . [RT(63)|KD|KC. (14)

3 Note that when this criterion is satisfied for one key, it is satisfied for any key.



Here is the EES string for m = 128.

b7e15162 8aed2a6a bf715880 9cf4f3c7 62e7160f 38b4dab6,
a784d904 5190cfef 324e7738 926cfbeb f4bf8d8d 8¢c31d763,
da06c80a bb1185eb 4f7c7b57 57£59584 90cfd47d 7c19bb42,
158d9554 £7b46bce d55c4d79 £d5£24d6 613c31c3 839a2ddfy
8a9a276b cfbfalc8 77c56284 dab79cd4 c2b3293d 20e9ebeay
f02ac60a cc93ed87 4422ab52e cb238fee ebabbadd 835fd1aly
753d0a8f 78e537d2 b95bb79d 8dcaec64 2c1e9f23 b829b5c2,
780b£387 37df8bb3 00401334 a0d0bd86 45cbfa73 a6160ffey
393c48cb bbca060f 0ff8ec6d 31bebbcc eed7f2f0 bb088017
163bc60d £45a0ecb 1bcd289b 06cbbfea 21ad08el 847£3£73«
78d56ced 94640d6e £0d3d37b e67008el 86d1bf27 5b9b241d,
eb64749a 47dfdfb9 6632c3eb 061b6472 bbf84c26 144e49c2,

Step 2. We use the following algorithm to enforce the first two security criteria.

1. for i = 0 to 63 do
(a) while there exists 0 < j < ¢ such that RT(j) = RT(3), replace RT(7) by
RT(i) + 1 mod 2% .
2. if KD is even, replace KD by KD + 1.
3. change the EES string accordingly so that Equation (14) holds.

Step 3. From this EES string we now define
EES = KABy|...|KAB;;|KS. (15)

Note that the third security criterion is necessarily satisfied, otherwise we would
have collisions in RT.

At the end of the algorithm, we obtain a constant EES string depending on
the parameters and which comes from the expansion of e and all the defined
constants. We notice that for m = 128 all criteria are satisfied when EES is
equal to the original expansion string of e (written in hexadecimal as above).
For large m, it is highly unusual that we have to change it (but for KD with
probability 1/2).

3 Benchmarks and Implementations

Straightforward implementations of DFC are quite slow on 32-bit micropro-
cessors for the nominal choices of parameters, due to the critical operation
az + b mod 2% + 13. Efficient implementations require non trivial tricks. That
is why the original implementation of DFCv1, which was bound to NISTs re-
quirements (namely, ANSI-C implementation, which restricts to 32-bit words
and prohibits the use of the 32-bit times 32-bit — 64-bit multiplication of most
processors), was quite slow and actually slower than most other candidates,
especially since it dealed with endianess as well. The ANSI-C implementation



required 3600 clock cycles per encryption (without key setup) on a Pentium Pro.
This should be compared with the 392 clock cycles on the same processor using
assembly language and processor specific tricks. Further implementation tricks
(which were summarized by Noilhan [15]) and clever use of specific architectures
of microprocessors have shown that DFC was among the fastest AES candidates,
and notably the fastest one on ALPHA 64-bit microprocessors (310 clock cycles
per encryption without the key setup, on an ALPHA 21164a in assembly code?).

DFCv2 does not introduce important implementation differences from DFCv1
for the nominal choice of the parameters. More precisely, only the key schedule
has changed, and even the complexity of the key setup has not changed (it
roughly takes four basic encryptions).

4 Security Analysis

4.1 Provable Security Results

We state the security results in terms of the new parameters (m, k,r, s).

Ideal key schedule. We recall that the security results consist, firstly of theoretical
results for an ideal extension of DFCv2 in which the RK; sequence is assumed to
be uniformly distributed (we will call DFCv2*(m,r) this ideal algorithm which
does not depend on k or s), secondly of some practical results on the real DFCv2
algorithm in which we have to make a heuristic assumption stated below.

Theorem 1 ([24]). The best advantage of an attack limited to two adaptively
chosen plaintexts for distinguishing DFCv2*(m,r) from a uniformly distributed
random permutation is bounded by

. N 1 p 2 8 I_%J
Bes(;né&dv(DFCvQ (m,r),C*) < 5 (3 ((Q—E) - 1) + 2—m) (16)

where p is the smallest prime number greater than 2% .

If we let p = 2% (1 + §), the previous upper bound can be approximated by
]. m r
5 (65 + 28~ %)) L8] (17)

This shows that the best advantage is negligible against 27 if » > 9 when the
attack is limited to two chosen plaintexts (i.e. in the d = 2 case). For m = 128,
we have § = 13.27% and we get back the bound of DFCvl

1 n
BestAdv(DFCv2*(128,r),C") < §2—57-5L§J (18)

4 Implementation due to Robert Harley, see [8]. See also [1,15].



From the decorrelation theory we know that the security against any attack
limited to two chosen plaintexts implies the security against some reasonable
formalization of differential and linear cryptanalysis (see [20]). Namely, the av-
erage complexity of differential cryptanalysis (over the distribution of the keys)
needs at least to be within the order of 1/4BestAdv, as for the linear crypt-
analysis (from an asymptotic bound). In this context, for instance, differential
cryptanalysis can be formalized into:

1. pick a differential characteristic (a, b)
2. query an input pair of difference a until the corresponding output pair has
a difference of b

It is well-known that this formalization is the core of regular differential crypt-
analysis [3]. For instance, 2R attacks apply such a procedure on r — 2 rounds.
Since we can claim that the differential cryptanalysis core against DFCv2*(128, 6)
has a complexity of 2115, we can thus claim that DFCv2* (128, 8) is secure against
a 2R differential cryptanalysis up to a complexity of 2115,

Similarly, the average complexity of any known plaintext coming from an
iterated attack of order one (i.e. an iterated attack in which each iteration ex-
tracts one bit of information from one known plaintext/ciphertext pair) needs
to be at least within the order of 1/2v/BestAdv (see [22]).

More precisely, we recall the following result:

Theorem 2 ([20,22]). For any differential distinguisher of complezity n against
DFCv2*(m,r), the advantage Advp is such that

n
2m —1

Advp < nBestAdv + (19)

where BestAdv is bounded by Equation (16). Similarly, for any linear distin-
guisher we have

. AdVL
lim

n—-+o0o TL%

1 3
<9.3 (4BestAdv+ om 1) . (20)

For any known plaintext iterated distinguisher of order 1 we have

3
Advy <3 ((me + 3BestAdv> nz) + nBestAdv. (21)

Real key schedule. Since DFCv2 has a new key scheduling algorithm, we need
to transform the security results on DFCv2* to DFCv2. Let D(m,k,r,s) be
the distribution of (RKjy,...,RK,) spanned by the key scheduling algorithm of
DFCv2(m, k,r,s) when K is a uniformly distributed k-bit key, and we let D*
denote the uniform distribution over rm-bit sequences. DFCv2* relies on the D*
distribution, but DFCv2 uses the D distribution.

Let Hy(m,k,r,s) be the best advantage of a Turing machine limited to ¢
steps for distinguishing D(m, k, r, s) from D* from a single sample (i.e. an rm-
bit string). (H; is a heuristic function. We need to assume that for a reasonable
t, Hy is small.)



Theorem 3. If for some class Cly,, of distinguishers limited to a complezity
of t and n oracle calls, the advantage for distinguishing DFCv2*(m,r) from
a random permutation is limited to BestAdv, then the advantage for distin-
guishing DFCv2(m, k,r,s) from a random permutation in class Cl is limited
to Hyyo(n)(m, k,r,s) + BestAdv where the O(n) corresponds to the cost of sim-
uwlating DFCv2 on n oracle calls.

Therefore, assuming that the complexity of a practical attack already includes
an overestimated cost for simulating the oracle calls (in practice, using an oracle
costs more than simulating it), then all security results on DFCv2* extend to
DFCv2 with an advantage offset of Hy.

For practical ¢, m > 128, k > 128, s > 4 and r < %, we conjecture that
Hi(m, k,r,s) is negligible.

4.2 Best Attacks

So far, the best reported attack is Knudsen’s impossible differential attack [9]
against DFCv2 reduced to six rounds. It requires 27° chosen plaintexts and a
complexity of 2126 encryptions (see [10]). This attack can be compared to a 1R
attack that uses a differential characteristic on 5 rounds (for which the complex-
ity lower bound indicated by Theorem 2 is of order 257 chosen plaintexts).

Harvey recently reported® an attack against four rounds which uses the non-
injective properties of the round functions.

Another quite strong claim of insecurity is due to Rijmen and Knudsen [10].
Basically, they study a key-dependent one-round differential characteristic for
a modified version of DFC and deduce some insecurity claims. One problem is
that they use a difference which is not defined by the XOR operation but by the
mod 2% difference at the input and by the mod p difference at the output. This
makes it hard to pile up such kinds of characteristics.

For instance, Rijmen and Knudsen noticed that if we replace all XORs in the
round function by regular additions, every single input difference leads to about
800 possible output differences, one of it with probability 2=7 (with m = 128).
These mod 2% output differences translate into XOR output differences within
a probability related to their Hamming weight (because of carry bits). We can
thus estimate that the real DFC round function will lead to no key-dependent
differential probabilities greater than 2723. Therefore, we believe the Rijmen-
Knudsen observation does not imply any insecurity statement for DFCv2.

5 The DFC Controversy

The submission of DFCv1 to AES led to a controversy which was oriented to-
wards three arguments which are addressed in the following subsections.

% at the Rump Session of Fast Software Encryption 2000.



5.1 Speed

DFCv1 was claimed to be among the slowest of the 15 AES candidates, and one
of the worst for low-cost smart card implementations.

A fair performance comparison is a really hard task, as was shown by the
AES conferences [18, section 4]. Timings have been collected by Granboulan [8]
and Lipmaa [12], and DFC is without any doubt among the 8 fastest candidates
in software : Crypton, DFC, E2, Mars, RC6, Rijndael, Serpent and Twofish. It is
even the fastest candidate on architecture that have fast multiplication (Alpha
and TurboSparc). When compared to the five finalists, DFC can be considered
as achieving the same performances as Mars on current architectures (but being
twice as fast on future architectures like Itanium). The dependence of DFC on
multiplication can be compared to the dependence of RC6 on data dependent
rotations.

In addition, it was shown in [17] that DFC was reasonably implementable
on very simple embedded microprocessors (such as Motorola 6805 for smart
cards). DFC does not take as much room on low-cost smart cards as Mars, and
should have similar performances. On high-end smart cards (StrongARM) DFC
is probably the fastest of all AES candidates.

In conclusion, DFC performances are not the best, but they compare very
well to Mars, which is one of the finalists.

5.2 Provable Security

The provable security results were subject to controversy. We believe this was
due to misunderstanding and we would like to clarify the situation.

After the DES was proposed, several other block ciphers showed up without
any formal security argument. The security was essentially empirical: a block
cipher was secure until someone came up with an attack. Although this approach
proved very fruitful for promoting research on the analysis of block ciphers, the
security provided is now debatable since the analysis time of all world experts
is rather limited. Besides, we note that there were 15 candidates to analyze in
less than one year, while DES weaknesses were discovered only after 10 years of
public exposure.

Another tremendous amount of regular block ciphers use regular “security
claims”, which essentially consists of heuristic arguments (like the argument
on H; we used above for DFCv2). Typically, people argue that we cannot get
good differential characteristics by regular active S-box counting arguments. This
paradigm was inherited by the work of Biham and Shamir [3] and Coppersmith’s
analysis of DES [4].

In 1992, Lai and Massey [11] proposed the formal notion of “Markov cipher”
which characterizes ciphers for which differentials can nicely be piled up. For
these ciphers we can formally prove the heuristic security arguments against
differential cryptanalysis on average over the key space.

Another more formal approach on which seldom block ciphers are based
(including MISTY [13,14]) is inherited by Nyberg-Knudsen Theorem [16]. It



consists of using ad hoc constructions with heavy non-linear constraints on S-
boxes and deducing that the block cipher has no good differential property on
average on the key distribution. These results are however limited to differential
(and linear) attacks.

Our paradigm obtains similar results to the previous approach in a more
general setting for basically no cost. It further provides more freedom in the
construction of the block cipher. Thus, we believe it is a better alternative which
follows the construction trends.

One objection by Rijmen and Knudsen [10] argued that since there exist inse-
cure algorithms for which similar security claims hold, such claims are worthless.
Indeed, the affine cipher x — Kjx + K, has a perfect pairwise decorrelation,
which means that Theorem 2 holds with BestAdv= 0, and in particular, no
differential distinguisher gets a relevant advantage. (The differential is chosen
before the attack itself in this model, so it is independent on the key.) This
comes from the fact that we can “only” say that the probability of any differen-
tial is low on average over the key space. Previous formal approaches suffer from
the same drawbacks. Actually, the Markov cipher approach is quite similar, and
the Nyberg-Knudsen approach has the same result. As compared to the Nyberg-
Knudsen approach, the present one holds for regular ciphers (not only to ad
hoc constructions). Therefore we claim that DFCv2 benefits from the all regular
heuristic security arguments and the present formal security proof (which is not
the case of the affine cipher, nor of any other regular cipher). This suggests that
DFC has its raison d’étre.

5.3 Security Margin

Another criticism against DFC was its low “security margin”. The DFC phi-
losophy consisted of not overestimating the minimal number of secure rounds
and committing to the formal results obtained by decorrelation theory. We actu-
ally believe that for construction reasons, the security increases faster with the
number of rounds than for other designs. We chose r = 8 as a challenge to the
cryptographic community. Users who would not like to commit on such a bet
can however freely use a higher number of rounds in the present DFCv2 version
(for instance, r = 12 as recommended by Biham).

6 Conclusion

We have presented an updated version of DFC in which we changed the key
schedule and introduced scalable parameters. These modifications left the secu-
rity results unchanged (except the weak key attack which has been fixed).

Despite of the controversy during the AES process, we have shown that
DFCv2 is one of the fastest block ciphers (on 64-bit microprocessors which have
an optimized multiplier for m = 128) and benefits from some formal security
results in addition to regular heuristic arguments.



Although this first generation of decorrelated ciphers may still be improved
by the research community, we hope this paradigm will be useful to develop
future cryptographic algorithms.
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A Test Vector

A test vector for the nominal choice of parameters (m = 128, k € {128,192, 256},
r = 8 and s = 4) is included below.

We have chosen to use KS as key and 04 as plaintext. We recall the value of
KS:

86d1bf27 5b9b241d eb64749a 47dfdfb9y
6632c3eb 061b6472 bbf84c26 144e49c2,

The key schedule tests all KAB entries but KAB; and KAB;2 (which are not
used with this choice of parameters). It results in the following subkeys:

round subkeys

05c5bd24 aa6ba7df 0846cb21 elab0dc7,
63b67a97 142061ce c034£fd75 ea2cd3d9y
abf20d20 9b963b4c £f04efdd6 2a6c459d,
27215d71 2b28cbcb e2f472eb 288d47e8,
02aae49f caf2ddf3 60405b1ld d0d269a7
2ab16cdc 6270af2b £3db8f26 c26ealeby
94d3b898 ccbcaB828 4f6af189 39230738,
6c9d3c7e d7059bcc 7a3d4288 £232b634,

0 3O Ui W N

The iterated encryptions of plaintext Oy tests all entries in the RT table for
j = 64.

j DFCv2]

00000000 00000000 00000000 00000000,
1babaf9b aba096ed 5b6c9750 2fe7efa2,
0£36105c 1302d52a e47d6d42 dfaafbc7y
bbb8£671 54c59d52 fefb03a8 74c138cbhy
acc4cf76 6505c09f 5£ffe10d5 b021d66cy
8 62395cc6 ba7bf158 £78b5897 04a1db59y
16 387c4222 c61f5e69 7946e251 eb40031a,
32 4ab38d66 16247c2a efbebcde 4d302a864
64 ee043b7d a8610c46 3282198 c93887b4,

= w N = O



