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4 École normale supérieure, LIENS - CNRS - INRIA, Paris, France

Abstract. Public-key encryption schemes with non-interactive open-
ing (PKENO) allow a receiver to non-interactively convince third par-
ties that a ciphertext decrypts to a given plaintext or, alternatively,
that such a ciphertext is invalid. Two practical generic constructions for
PKENO have been proposed so far, starting from either identity-based
encryption or public-key encryption with witness-recovering decryption
(PKEWR). We show that the known transformation from PKEWR to
PKENO fails to provide chosen-ciphertext security; only the transforma-
tion from identity-based encryption remains thus valid. Next, we prove
that PKENO can be built out of robust non-interactive threshold public-
key cryptosystems, a primitive seemingly weaker than identity-based
encryption. Using the new transformation, we construct two efficient
PKENO schemes: one based on the Decisional Diffie-Hellman assump-
tion (in the Random Oracle Model) and one based on the Decisional
Linear assumption (in the standard model). Last but not least, we pro-
pose new applications of PKENO in protocol design. Motivated by these
applications, we reconsider proof soundness for PKENO and put forward
new definitions that are stronger than those considered so far. We give
a taxonomy of all definitions and demonstrate them to be satisfiable.

Keywords: public-key encryption, non-interactive proofs, security definitions,
constructions.

1 Introduction

Public-key encryption allows a receiver Bob to generate a pair of a private and
a public key (skB , pkB) such that anyone can encrypt messages under pkB which
can only be decrypted by Bob who knows skB . The primitive public-key en-
cryption with non-interactive opening (PKENO), introduced by Damg̊ard et
al. [DHKT08], allows Bob to prove to a verifier Alice that a given ciphertext C



decrypts to a certain message. By using PKENO, Bob can do so convincingly
and without further interaction, neither with Alice nor with the original sender
of the ciphertext. More precisely, Bob runs a proving algorithm Prove on inputs
its secret key skB and the intended ciphertext C, thereby generating a proof π.
On the other hand, Alice runs a verification algorithm Ver on inputs Bob’s public
key pkB , ciphertext C, a plaintext m, and an opening proof π. The soundness
property guarantees that the verification algorithm outputs 1 if C was indeed an
encryption of m, and 0 otherwise. An interesting feature of PKENO is that Bob
can also convince Alice of the fact that a given ciphertext C is invalid, i.e., it is
rejected by the decryption algorithm. PKENO turns out to be a useful primitive
for protocol design. In addition to the use of PKENO in multiparty computation
protocols, as highlighted in [DT07,DHKT08], we identify further applications,
which we introduce below.

Secure Message Transmission with PKENO. One of the classical ways to
realize secure message transmission in a public-key setting is to let the sender
encrypt the message and then sign the ciphertext, i.e. the so-called encrypt-
then-sign paradigm [ADR02] in which the transmitted ciphertext also includes a
signature Sign (sks,Enc(pkr, pks||m)||pkr), with sks being the signing key of the
sender and pkr the encryption key of the receiver. If the sender uses a standard
PKE scheme, the receiver is in general not able to provide a non-repudiable
proof for the origin of the received message m. To do so, the receiver should
convincingly open the encryption Enc(pkr, pks||m), which he cannot do, unless he
is willing to expose his decryption key skr. Replacing PKE with PKENO allows
the receiver to prove the origin for the decrypted message, and thus authenticated
encryption with non-repudiation is achieved.

Group Signatures. The most common way to achieve anonymity in group sig-
natures [CvH91] is the following: a group member first encrypts his membership
certificate under the opener’s public key while adding a non-interactive proof of
validity of the encrypted data. The opening authority is then able to identify
the signer by merely decrypting the ciphertext.

In the model of dynamic group signatures given by Bellare et al. [BSZ05], the
opening authority is required to give a proof that it traced the correct user. Us-
ing PKENO rather than plain encryption enables the opener to do so in a simple
manner. In the game modeling the anonymity of signatures in [BSZ05], an adver-
sary is given an opening oracle that opens adversarially-chosen signatures and
outputs proofs of correct opening. The security of the employed PKENO scheme
(together with simulation-sound zero-knowledge of the proof of well-formedness)
ensures that an adversary cannot distinguish signatures from distinct users.

1.1 Our Contributions

Difficulty of Building PKENO. Damg̊ard et al. [DHKT08] showed that a
PKENO can be built out of Identity-Based Encryption (IBE). Although IBE can
now be realized under a variety of assumptions and without bilinear maps (see
[BGH07,GPV08,AB09,CHK09,Pei09] for instance), it remains a very specialized
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and powerful cryptographic primitive. Towards narrowing the gap between suf-
ficient and necessary conditions for PKENO, it is interesting to see whether it
can be obtained without resorting to all the functionalities provided by IBE (e.g.
non-interactive user key derivation). In [DHKT08], the authors mentioned that
PKENO can also be based upon a seemingly weaker primitive, called public-key
encryption with witness-recovering decryption (PKEWR) [PW08]. In a PKEWR
scheme, the receiver Bob is able to recover the random coins r used to encrypt
a ciphertext C. Damg̊ard et al. proposed to use the coins r as the proof, and
verification proceeds by re-encrypting C ′ = Enc(pkB ,m; r) and checking whether
C = C ′. However, this approach can only be guaranteed to be sound for valid
ciphertexts, i.e. ciphertexts that have been output by the encryption algorithm.
As a consequence, for invalid ciphertexts “the coins used to construct C” might
not be well defined. Indeed, we show in Section 4.1 how the (apparently) straight-
forward construction of PKENO out of PKEWR fails to provide security in the
sense of [DHKT08]. This then motivates the quest for both new generic and
concrete constructions for PKENO.

Non-Interactive Threshold Cryptosystems Imply PKENO. Somewhat
surprisingly, we show that starting from a robust non-interactive threshold cryp-
tosystem (TPKC), a practical generic construction exists yielding PKENO. We
only ask the threshold cryptosystem to satisfy some appropriate notion of de-
cryption consistency. We emphasize that, although this notion is stronger than
the one initially formalized by Shoup and Gennaro [SG98], it remains fairly mild
in that most known robust threshold cryptosystems satisfy it.

Threshold cryptosystems distribute the ability to decrypt among several par-
ties. The private decryption key is shared among n servers such that at least
t servers are needed for decryption. If the combiner wishes to decrypt some
ciphertext C, it sends C to the decryption servers. After receiving at least t
partial decryption shares from the servers, the combiner is able to reconstruct
the plaintext from these shares. A robust TPKC [SG98,BBH06] provides the
additional property that, whenever the decryption of valid ciphertexts fails, the
combiner can sieve out bad decryption shares and reveal the identity of the server
having sent an invalid partial decryption. We show an efficient transformation
from robust TPKC to PKENO. When applied to the schemes in [SG98,AT09],
the conversion provides new practical PKENO schemes based on the Decisional
Diffie-Hellman (in the random oracle model) and the Decisional Linear assump-
tions, respectively.

Stronger Soundness Definitions. The main motivation for introducing
PKENO was protocol design: some player sends a message to Bob securely by
encrypting it under Bob’s public key. If Bob finds out (possibly later) that the
message is somehow “invalid”, he can convince other participants of this fact
without getting back to the (possibly) dishonest sender. Proof soundness ensures
that Bob can do so convincingly; in particular, it states that if a ciphertext C
encrypts a message m, then Bob cannot make a proof for C being an encryption
of a different message m′ (including the case of invalid messages m′ = ⊥). In the
game that formally defines this security notion [DHKT08,Gal09], the challenger
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produces a private/public key pair, hands it to the adversary, who outputs a
message of which he receives an encryption C. The adversary wins if he outputs
a different message and makes a valid proof that this was the opening.

Thus, previous definitions of proof soundness [DHKT08,Gal09] only consid-
ered the case of honestly chosen keys, where a malicious receiver tries to claim
a different decryption result under the genuine keys. In real-world applications,
however, the keys are usually chosen by the users themselves. It seems thus nat-
ural to let the adversary choose the keys in the security experiment to reflect this
fact. Hence, we define two stronger flavors of proof soundness, where the first one
is analogous to the original definition given by [DHKT08], but lets the adversary
choose his keys. The second one is akin to the binding property of commitment
schemes and states that no adversary can find a public key, a ciphertext with
two messages and valid proofs for each of them. We relate all notions formally.

Note that strengthening proof soundness also makes sense for the other ap-
plications given above. It can be used towards reducing the need for trusted
setup in group signatures: the opener could choose his opening key and add cor-
responding information to the public parameters. Strong proof soundness then
guarantees non-frameability even in this setting.

A Note on PKENO From General Assumptions. Damg̊ard et al. [DHKT08]
already discussed how to construct a PKENO from general assumptions using
general but rather inefficient non-interactive zero-knowledge (NIZK) proofs. The
idea of the construction is as follows. The receiver commits initially to its secret
key. Whenever the proof algorithm is executed, it outputs a non-interactive zero-
knowledge proof showing that the secret key committed to corresponds to the
public key, and that decryption of the ciphertext C indeed yields the message m.
Although this construction fits into the security definitions of [DHKT08], it does
not seem to be sufficient for our stronger soundness definitions. In particular,
this construction does not make any statements about “invalid” ciphertexts.

Nonetheless, we briefly discuss here how to modify the idea in order to satisfy
our stronger definitions, obtaining a scheme under general assumptions meeting
our security notions. In our modification, the encryption algorithm adds a NIZK
proof showing the well-formedness of the ciphertext (somehow in the fashion of
[NY90,Sah99]) under the public-key, allowing anyone to detect invalid cipher-
texts. The prove algorithm then rejects any ciphertext whose NIZK proof is
invalid. If, on the other hand, the NIZK proof in the ciphertext is valid, then
the prove algorithm proceeds as before, computing a second NIZK proof as de-
scribed by Damg̊ard et al. We note that, in the scheme by [DHKT08] with weak
soundness, the common reference string (CRS) for the NIZK proofs can be put
into the honestly chosen public key. In contrast, for stronger soundness with
adversarially chosen keys (as in our case), we need to assume that the CRS is a
public parameter (common reference string model).

Future Work. We leave as an open problem the construction of an efficient
PKENO scheme based on a standard assumption like the Decision Diffie-Hellman
assumption in the standard model.
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2 Preliminaries

Notation. If x is a string then |x| denotes its length, while if S is a set then |S|
denotes its size. If k is a natural number, then 1k denotes the string of k ones. If
S is a set then s1, . . . , sn

$← S denotes the operation of picking n elements si of
S independently and uniformly at random. We write A(x, y, . . .) to indicate that
A is an algorithm with inputs x, y, . . . and by z ← A(x, y, . . .) we denote the
operation of running A with inputs (x, y, . . .) and letting z be the output. The
abbreviation PPT refers to “probabilistic polynomial-time” algorithms [Gol01].

2.1 Public Key Encryption with Non-interactive Opening

A PKENO scheme PKENO = (Gen,Enc,Dec,Prove,Ver) is a tuple of five PPT
algorithms:

– Gen is a randomized algorithm taking as input a security parameter 1k and
returns a key pair (pk, sk), where the public key pk includes a description of
the plaintext space Mpk.

– Enc is a probabilistic algorithm taking as inputs a public key pk and a message
m ∈Mpk. It returns a ciphertext C.

– Dec is a deterministic algorithm that takes as inputs a ciphertext C and a
secret key sk. It returns a message m ∈Mpk or the special symbol ⊥meaning
that C is invalid.

– Prove is a probabilistic algorithm taking as inputs a ciphertext C and a secret
key sk. It returns a proof π.

– Ver is a deterministic algorithm taking as inputs a public key pk, a ciphertext
C, a plaintext m and a proof π. It returns a result res ∈ {0, 1} meaning
accepted and rejected proof respectively. In particular, 1← Ver(pk, C,⊥, π)
must be interpreted as the verifier being convinced that C is an invalid
ciphertext.

Correctness requires that for an honestly generated key pair (pk, sk)← Gen(1k),
it holds that:

– For all messages m ∈Mpk we have Pr
[
Dec

(
sk,Enc(pk,m)

)
= m

]
= 1.

– For all ciphertexts C, Pr
[

1← Ver
(
pk, C,Dec(sk, C),Prove(sk, C)

) ]
= 1.

Security of PKENO is defined by indistinguishability under chosen-ciphertext
and prove attacks (IND-CCPA) and proof soundness [DHKT08,Gal09]. We for-
mally define both notions and propose strengthened definitions for proof sound-
ness in Section 3.

Definition 1 (IND-CCPA security). Let us consider the following game be-
tween a challenger and an adversary A:

Setup The challenger runs Gen(1k) and gives pk to A.
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Phase 1 The adversary issues queries of the form:
a) decryption query to an oracle Dec(sk, ·);
b) proof query to an oracle Prove(sk, ·).
These may be asked adaptively in that they may depend on the answers to
previous queries.

Challenge At some point, A outputs two equal-length messages m0,m1 ∈Mpk.
The challenger chooses a random bit β and returns C? ← Enc(pk,mβ).

Phase 2 As Phase 1, except that neither decryption nor proof queries on C?

are allowed.
Guess The adversary A outputs a guess β′ ∈ {0, 1}. The adversary wins the

game if β = β′.

Define A’s advantage as Advind-ccpa
PKENO,A(1k) =

∣∣ Pr[β′ = β]−1/2
∣∣. A scheme PKENO

is called indistinguishable against chosen-ciphertext and prove attacks (IND-
CCPA secure) if for every PPT adversary A, Advind-ccpa

PKENO,A(·) is negligible.

We recall the original definition [DHKT08,Gal09] of proof soundness under
genuine keys:

Definition 2 (Proof Soundness). Consider the following game between a
challenger and an adversary A:

Stage 0 The challenger runs Gen(1k) and gives the output (pk, sk) to A.
Stage 1 The adversary chooses a message m ∈Mpk.
Stage 2 The challenger computes C ← Enc(pk,m) and gives it to A which

returns (m′, π′).

A’s advantage is defined as the probability

Advproof-snd
PKENO,A(1k) := Pr [1← Ver(pk, C,m′, π′) ∧ m′ 6= m] .

A scheme PKENO is proof sound if for every PPT adversary A its advantage is
negligible.

In the above definition it is understood that ⊥ 6∈ Mpk and that the adversary
thus also wins if π′ is a valid proof for m′ = ⊥.

It is also worth insisting that, since the adversary obtains the private key at
the beginning of the game, no decryption or proving oracle is necessary.

2.2 Robust Non-Interactive Threshold Public-Key Cryptosystems

Non-interactive threshold public-key cryptosystems, as formalized in [SG98], dis-
tribute the ability to decrypt among several parties. The private decryption key
is shared among n servers such that at least t servers are needed for decryption. If
the combiner wishes to decrypt some ciphertext C, it sends C to the decryption
servers. After receiving at least t partial decryption shares from the servers, the
combiner is able to reconstruct the plaintext from these shares. A robust TPKC
[SG98,BBH06] provides the additional property that whenever the decryption
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of valid ciphertexts fails, the combiner can sieve out bad decryption shares and
reveal the identity of the server having sent an invalid partial decryption.
Syntax. We use the same syntax as Boneh-Boyen-Halevi [BBH06] and Shoup-
Gennaro [SG98] for (robust) non-interactive threshold public key cryptostyems
(TPKC). Formally, such a robust TPKC scheme

TPKC = (Setup,Encrypt,ShareDecrypt,ShareVerify,Combine)

consists of the following algorithms:

Setup(n, t, 1k) takes as input a security parameter 1k and integers t, n ∈ N
(with 1 ≤ t ≤ n) denoting the number of decryption servers n and the
decryption threshold t. It outputs a triple (PK,VK,SK), where PK is the
public key, SK = (SK1, . . . ,SKn) is a vector of n private key shares and
VK = (VK1, . . . ,VKn) is the corresponding vector of verification keys. De-
cryption server i is given the share (i,SKi) that allows to derive decryption
shares for any ciphertext. For each i ∈ {1, . . . , n}, the verification key VKi
is used to check the validity of decryption shares generated using SKi.

Encrypt(PK,M) is a randomized algorithm that given a public key PK and a
plaintext M outputs a ciphertext C.

ShareDecrypt(PK, i,SKi, C) on input of a public key PK, a ciphertext C and
a private key share (i,SKi), this (possibly randomized) algorithm outputs
either a decryption share µi = (i, µ̂i), or a special symbol (i,⊥).

ShareVerify(PK,VKi, C, µi) takes as input PK, the verification key VKi, a ci-
phertext C and a purported decryption share µi = (i, µ̂i). It outputs either
valid or invalid. In the former case, µi is said to be a valid decryption
share.

Combine(PK,VK, C, {µ1, . . . , µt}) given PK, VK, C and a set of t valid de-
cryption shares {µ1, . . . , µt}, this algorithm outputs a plaintext M or ⊥.

It is required that the consistency of PK with VK be publicly checkable. Namely,
for any t-subset V of VK, there must be an efficient algorithm5, which we call
CheckKeys in the upcoming sections, allowing to make sure that V is a valid set
of verification keys w.r.t. PK.

Correctness. For any (PK,VK,SK) generated by Setup(n, t, 1k), it is required
that

1. For any ciphertext C, if µi = ShareDecrypt(PK, i,SKi, C), where SKi is the
ith private key share in SK, then ShareVerify(PK,VKi, C, µi) = valid. We
emphasize that this must hold even in the event that µi = (i,⊥) (i.e., if C
is deemed invalid).

2. If C is the output of Encrypt(PK,M) and S = {µ1, . . . , µt} is a set of decryp-
tion shares such that µi = ShareDecrypt(PK, i,SKi, C) for t distinct private
key shares in SK, then Combine(PK,VK, C, S) = M .

5 Although such an algorithm is not formally required in [SG98,BBH06], it implicitly
exists in all known robust TPKC and it is convenient to be considered here.
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The security of robust TPKC is defined via two properties. The first one is
the usual notion of chosen-ciphertext security for public key encryption adapted
to the TPKC setting, while the other one is termed consistency of decryptions.
For the formal security definitions we refer to [SG98].

3 Stronger Proof Soundness Definitions

We define our stronger version of proof soundness with adversarially chosen keys,
as well as a notion similar to the binding property of commitments. Jumping
ahead, we note that both strengthenings imply the original soundness definition
but are themselves incomparable. The application usually determines which ver-
sion should be considered. Arguably, they are both somewhat more realistic to
use than Definition 2 in certain applications such as multiparty protocols, where
parties might be able to cheat by maliciously generating their public key.

Definition 3 (Strong Proof Soundness). Consider the following game be-
tween a challenger and an adversary A:

Stage 1 A(1k) outputs a public key pk and a message m ∈Mpk.
Stage 2 The challenger computes C ← Enc(pk,m) and gives it to A, which

returns (m′, π′).

A’s advantage is defined as the probability

Advs-proof-snd
PKENO,A (1k) := Pr [1← Ver(pk, C,m′, π′) ∧ m′ 6= m] .

A PKENO scheme is strongly proof sound if any PPT adversary A has negligible
advantage.

An alternative strong notion of soundness (with adversarially chosen keys) fol-
lows the idea that, for any ciphertext, one can only find one valid message-proof
pair. We call this the committing property:

Definition 4 (Committing Property). A PKENO scheme is strongly com-
mitting if, for any adversary A that outputs (pk, C,m, π,m′, π′) on input 1k, the
following probability is negligible:

Advs-com
PKENO,A(1k) := Pr [1← Ver(pk, C,m, π) ∧ 1← Ver(pk, C,m′, π′) ∧m 6= m′] .

The following shows that Definitions 3 and 4 are actually achievable—by a prac-
tical scheme.

Theorem 1. Galindo’s PKENO scheme [Gal09] is strongly proof sound and
strongly committing.

The proof is deferred to the full version, where we compare the different notions
of proof of soundness, showing that Definitions 3 and 4 are incomparable while
both are strictly stronger than the original notion of proof soundness (Def. 2).
Comparing the new notions in the “Knowledge of Secret Key” (KOSK) model,
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where the adversary has to prove knowledge of the secret key, we further prove
that the committing property is strictly stronger than strong soundness. We
note that all our proofs preserve IND-CCPA security. As for the separation we
further show that, if there exists a strongly proof-sound (strongly committing,
resp.) scheme which is also IND-CCPA, then there is an IND-CCPA scheme
which is not strongly committing (strongly proof sound, resp.) but still proof
sound. It is also easy to see that the case of adversarially chosen keys is strictly
stronger, independently of the question whether the PKENO scheme is IND-
CCPA secure or not. These results are formally stated and proven in the full
version.

4 On Generic Constructions for PKENO

In this section, we first show that an apparently straightforward PKENO con-
struction (briefly) suggested in [DHKT08] fails to provide chosen-ciphertext se-
curity (as defined in that work). Next, we describe a simple and efficient trans-
formation from robust TPKE to PKENO. Finally, we describe two concrete
PKENO schemes obtained from this transformation. The first one relies on the
Decisional Diffie-Hellman assumption and the Random Oracle Model, while the
second one relies on the Decisional Linear assumption and is proven secure in
the standard model.

4.1 Witness Recovering Encryption Does Not Suffice

In a PKEWR scheme, decryption recovers the random coins r used to encrypt a
ciphertext C. Damg̊ard et al. [DHKT08] proposed to use r as the opening proof
for a PKENO scheme. Verification then proceeds by re-encrypting the plaintext
m as C ′ = Enc(pkB ,m; r), checking whether C = C ′, and accepting/rejecting
the proof accordingly. A subtle issue arises when dealing with invalid ciphertexts
C, as in this case the random coins might simply not exist, for instance if C is
not in the range of the encryption algorithm. This could be exploited by an
adversary to abuse the security of the resulting PKENO system. We illustrate
this by sketching an IND-CCPA attack against the candidate PKENO scheme
one would obtain from the IND-CCA secure encryption scheme6 of Peikert and
Waters [PW08].

Let F (·), G(·, ·) be trapdoor functions that can be inverted knowing the cor-
responding secret keys skF , skG; let h be a pairwise independent hash function,
and let (G,S,V) be a strongly unforgeable one-time signature scheme [Mer89].
Then, the challenge ciphertext of plaintext mβ in [PW08] is constructed as
follows: choose a one-time key pair (SSK?,SVK?) ← G(1k), choose x? uni-
formly at random from a certain set of strings, and compute C?0 = F (x?),

6 In this scheme, not all the sender’s coins are retrieved upon decryption since the
private key of the one-time signature is not recovered. However, these unrecovered
coins have no impact in our setting.
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C?1 = G(SVK?, x?), C?2 = h(x?) ⊕ mβ , σ? = S (SSK?, (C?0 , C
?
1 , C

?
2 )). The ci-

phertext is then C? = (SVK?, C?0 , C
?
1 , C

?
2 , σ

?).
We show how an IND-CCPA attacker can abuse the Prove oracle in the IND-

CCPA game to mount a successful distinguishing attack. An attacker submits
an invalid ciphertext C = (SVK, C?0 , C

?
1 , C

?
2 , σ), where σ = S (SSK, (C?0 , C

?
1 , C

?
2 ))

is a fresh signature produced under a fresh key-pair (SSK,SVK) ← G(1k). C is
invalid since the one-time key SVK used to produce C is different from the key
SVK? embedded in C?1 . In [PW08] one can decrypt by either inverting C?0 =
F (x?) or C?1 = G(SVK?, x?). We have to exclude the first option, since inverting
F (x?) and giving x? out to the adversary would result in trivially recovering mβ .
We are left then with inverting G(SVK?, x?). Inversion of G is done using both
the secret key skG and the ‘tag’ SVK. This will result in a pre-image x 6= x?,
and the question is whether the targeted x? can be recovered from x and the
publicly available information. Alas, this property is not covered in the model
by [PW08]. Indeed, for certain lossy-trapdoor functions G(·, ·) the knowledge of
such a pre-image x allows recovering x?. For instance, for the functions by Rosen
and Segev [RS08], x = (SVK − SVK?) · x? with SVK,SVK?, x, x? being integers
in a ring, and therefore x? can be trivially recovered. This results in a successful
IND-CCPA attack.

One could wonder whether PKEWR schemes in the Random Oracle Model
could be of any help here. It is rather straightforward to prove that the PKENO
obtained by using the randomness as a proof in the Fujisaki and Okamoto [FO99]
encryption scheme suffers from a similar attack. Therefore finding a practical
generic construction for PKENO out of a primitive weaker than identity-based
encryption represents an open problem.

4.2 Stronger Decryption Consistency Definitions for TPKC

In our generic construction, we need somewhat stronger flavors of decryption
consistency. In the first one, we require the adversary’s advantage to remain
negligible in an enhanced game where the challenger reveals PK and all decryp-
tion shares SK1, . . . ,SKn in the setup phase.

Definition 5 (Decryption Consistency with Known Secret Keys). Let
us consider the following game between a challenger and an adversary A:

Setup The challenger runs Setup(n, t, 1k) to obtain a triple (PK,VK,SK),
where SK = (SK1, . . . ,SKn), and sends (PK,VK,SK) to the adversary A.

Output A generates a ciphertext C and two unequal sets S = {µ1, . . . , µt} and
S′ = {µ′1, . . . , µ′t} of decryption shares.

Define A’s advantage Advs-dec-con
TPKC,A (1k) as the probability that the following con-

ditions hold:

1. All decryption shares in S and S′ are valid decryption shares w.r.t. the ver-
ification key VK and the ciphertext C.

2. S and S′ each contain decryption shares from t distinct servers.
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3. Combine(PK,VK, C, S) 6= Combine(PK,VK, C, S′).

A robust TPKC is decryption consistent with known secret keys if, for every
PPT adversary A, the advantage Advs-dec-con

TPKC,A (1k) is negligible.

We further strengthen the definition and let the adversary choose the keys
on her own.

Definition 6 (Strong Decryption Consistency). A robust TPKC is strongly
decryption consistent if, for every PPT adversary A, the advantage in a game
that is similar to the above one is negligible, except that A is allowed to generate
consistent encryption/verification keys (PK,VK) on her own without having to
publish the vector of decryption shares SK.

4.3 Robust TPKC Implies PKENO

Let TPKC = (Setup,Encrypt,ShareDecrypt,ShareVerify,Combine) be a robust
threshold cryptosystem providing chosen-ciphertext security and strong decryp-
tion consistency. We turn it into a secure PKENO scheme as follows. We can
essentially restrict ourselves to the case of a single-user threshold scheme, t =
n = 1, but nonetheless state the transformation for general parameters. We use
the threshold cryptosystem in a straightforward way to encrypt messages. To
decrypt ciphertexts in our derived PKENO scheme, we first generate the de-
cryption shares locally and then run the combiner to derive the message. The
decryption shares also act as a soundness proof and the share verification deter-
mines the proof verification for PKENO. Then, the chosen-ciphertext security
of the threshold cryptosystem guarantees IND-CCPA security for the resulting
PKENO scheme —using the fact that in the attack on the threshold cryptosys-
tem the adversary can request to see decryption shares, which translates to access
to a Prove oracle in the IND-CCPA game. Additionally, decryption consistency
of the underlying threshold scheme provides soundness of the PKENO.

– Gen(1k) Choose arbitrary integers t, n ∈ N such that 1 ≤ t ≤ n and run
Setup(n, t, 1k) to obtain

(
PK,VK = (VK1, . . . ,VKn),SK = (SK1, . . . ,SKn)

)
.

The key pair (pk, sk) for PKENO is defined as pk = (PK,VK, n, t), sk =
SK = (SK1, . . . ,SKn). The plaintext (resp. ciphertext) space of PKENO is
the plaintext (resp. ciphertext) space of TPKC.

– Enc(pk,M) To encrypt M , parse pk as pk = (PK,VK, n, t) and compute
C = Encrypt(PK,M).

– Dec(sk, C) To decrypt C, conduct the following steps:
1. For i = 1, . . . , t, compute µi = ShareDecrypt(PK, i,SKi, C).
2. If there exists j ∈ {1, . . . , t} such that µj = (j,⊥) return ⊥.
3. Otherwise return M = Combine(PK,VK, C, S), where S = {µ1, . . . , µt}

is a set of valid shares.
– Prove(sk, C) A proof for the ciphertext C is computed by parsing sk as

(SK1, . . . ,SKn) and doing the following:
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1. For i = 1, . . . , t, compute µi = ShareDecrypt(PK, i,SKi, C).
2. Return the set of decryption shares π = {µ1, . . . , µt}.

– Ver(pk, C,M, π) parse pk as (PK,VK, n, t) and π as a set of shares {µ1, . . . , µt}.
1. Return 0 if π contains less than t shares or if (VK1, . . . ,VKt) is inconsis-

tent with PK (namely, if CheckKeys(PK, (VK1, . . . ,VKt)) = 0).
2. If there exists j ∈ {1, . . . , t} s.t. ShareVerify(PK,VKj , C, µj) = invalid,

return 0. Otherwise return 1 if M = Combine(PK,VK, {µ1, . . . , µt}) and
0 otherwise.

Theorem 2. Robust TPKC satisfying decryption consistency with known secret
keys (resp. strong decryption consistency) implies PKENO with proof soundness
(resp. strongly committing).

The statement of the above theorem is implied by the following lemmas:

Lemma 1. The above generic PKENO system provides IND-CCPA security if
the underlying robust TPKC is IND-TCCA secure.

Proof. Let A be an IND-CCPA adversary against PKENO. We show how it sim-
ply implies a chosen-ciphertext adversary B against the underlying TPKC.
B starts by choosing S = {1, . . . , t − 1} as the set of decryption servers

to corrupt and obtains (PK,VK) as well as ((1,SK1), . . . , (t − 1,SKt−1)) from
her own challenger. The PKENO adversary A is supplied with a public key
pk = (PK,VK, n, t) and starts making decryption and proving queries. When-
ever A queries a proof for some ciphertext C, B is able to compute µi =
ShareDecrypt(PK, i,SKi, C) for i = 1, . . . , t − 1 since she knows SK1, . . . ,SKt−1.
To obtain the missing decryption share, B asks her challenger to reveal µt =
ShareDecrypt(PK, t,SKt, C), which allows constructing π = {µ1, . . . , µt} as
long as TPKC provides correctness. It is not hard to see that A’s decryption
queries can be dealt with exactly in the same way: instead of revealing the set
{µ1, . . . , µt}, B returns the output of Combine(PK,VK, C, {µ1, . . . , µt}).

At the challenge step, A outputs equal-length messages M0,M1 that are
transmitted to B’s challenger. The latter replies with a challenge TPKC cipher-
text C?, which B relays to A. In the second stage, A is allowed to make further
decryption/proof queries. Since these never involve the challenge ciphertext C?,
B is always able to answer them by invoking her own challenger as in the first
phase. The game ends with A outputting a bit b ∈ {0, 1}, which is also B’s result.
It is straightforward to observe that, if A is successful, so is B. ut

Lemma 2. The above generic PKENO scheme is sound (resp. strongly commit-
ting) if it builds on a robust TPKC satisfying decryption consistency with known
secret keys (resp. strong decryption consistency).

Proof. We first show that, if an adversary A defeats the soundness of PKENO
in the sense of Definition 2, there exists an adversary B breaking the decryption
consistency with known secret keys in TPKC with the same advantage.

Namely, our adversary B obtains PK, VK and SK = (SK1, . . . ,SKn) from her
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challenger. The weak soundness adversary A then receives pk = (PK,VK, n, t),
sk = SK. In stage 1 of the game, A chooses a plaintext m that B encrypts
using the public key PK of TPKC. Upon receiving the resulting ciphertext C =
Encrypt(PK,m),A attempts to produce a pair (m′, π′) such that Ver(pk, C,m′, π′)
= 1 and m′ 6= m. Since π′ is a valid proof, it can necessarily be parsed as a
set {µ′1, . . . , µ′t} of valid decryption shares. The correctness property of TPKC
implies that, since B knows SK = (SK1, . . . ,SKn), she must be able to generate
another set π = {µ1, . . . , µt} of decryption shares such that

m = Combine(PK,VK, C, {µ1, . . . , µt}).

It comes that the sets π and π′ are valid t-sets of decryption shares that break
the decryption consistency with known secret keys of TPKC.

Proving that the strong decryption consistency of TPKC implies the strong
committing property of PKENO is fairly straightforward: from a strong commit-
tingness adversary A, we immediately obtain a strong decryption consistency
adversary B that outputs whatever A comes up with. ut

Since in the KOSK model any strongly committing PKENO scheme is also
strongly proof sound, Lemma 2 implies that a strongly proof sound PKENO
scheme can be obtained from a strongly decryption-consistent TPKC. In general,
however, it seems that strong decryption consistency is not sufficient to imply
strong proof soundness as well.

It turns out that for concrete TPKC constructions, such as the Shoup and
Gennaro [SG98] and the Arita and Tsurudome [AT09] schemes, it is possible
to set n = t = 1 for improved efficiency. For instance, the consistency check
between PK and (VK1, . . . ,VKt) becomes trivial in Step 1 of the verification
algorithm. We recall those TPKC in the full paper and describe the resulting
efficient PKENO schemes in the next section.

Remark 1. The reader might wonder whether an efficient transformation from
PKENO to robust non-interactive threshold cryptosystem exists. The answer is
in the affirmative if we allow7 these primitives to support labels [Sho04]. A label
is an arbitrary string that is given as additional input to every algorithm of the
PKENO and TPKC primitives, except the key generation algorithms. Then, the
transformations from standard PKE to (non-robust) non-interactive threshold
cryptosystem by Dodis and Katz [DK05], yield robust TPKC when replacing
PKE by PKENO. Due to space limitations, we omit the details here but they
follow easily from [DK05, Section 4.2].

7 The reason of this restriction is the difficulty of efficiently constructing a PKENO
system supporting labels from an ordinary PKENO. The standard black-box tech-
nique to include labels (by simply appending them to the plaintext upon encryption)
in any public key encryption scheme fails to preserve security (in the sense of Defi-
nition 1) in the context of PKENO.
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5 New PKENO Constructions Implied by TPKC

This section describes new concrete schemes that can be obtained from the
transformation in Section 4.3.

5.1 PKENO without Pairings in the Random Oracle Model

In [SG98], Shoup and Gennaro described two CCA2-secure threshold cryptosys-
tems in the random-oracle model. We show in the full version of the paper that
the most efficient scheme TDH2 satisfies strong decryption consistency (although
a weaker notion of consistency was considered in [SG98]). This scheme makes use
of a prime-order group G where the Decision Diffie-Hellman problem8 is assumed
to be hard. It is easily seen to give rise to the following PKENO system.

– Gen(1k): chooses a group G of prime order p > 2k, x $← Zp as well as g, ḡ $← G
and sets h = gx. The public key pk includes g, h, ḡ, the description of the
plaintext spaceMpk = {0, 1}l, where l depends polynomially on k, and hash
functions H0 : G→ {0, 1}l, H1, H2 : {0, 1}∗ → Zp (to be modeled as random
oracles). The secret key sk = x.

– Enc(pk,m): to encrypt a message m ∈ {0, 1}l, it proceeds as follows. It chooses
r, s

$← Zp, it sets K = hr and computes

c = H0(hr)⊕m, u = gr, w1 = gs, ū = ḡr, w1 = ḡs, f1 = s+ re1,

where e1 = H1(c, u, w1, ū, w1). Let us note that (w1, w1, f1) constitutes
a non-interactive zero-knowledge proof of equality of discrete logarithms
logg u = logḡ ū [CP92]. The ciphertext is C = (c, u, ū, e1, f1).

– Dec(sk, C): given sk = x and C = (c, u, ū, e1, f1), the decryption algorithm
first checks whether e1 = H1(c, u, w1, ū, w1), where w1 = gf1/ue1 , w1 =
ḡf1/ūe1 . If this is not the case, it returns ⊥, meaning that C is invalid.
Otherwise, it returns m = c⊕H0(ux).

– Prove(sk, C): given C = (c, u, ū, e1, f1) and the secret key sk = x, the al-
gorithm first checks if e1 = H1(c, u, w1, ū, w1), where w1 = gf1/ue1 , w1 =
ḡf1/ūe1 . If this is not satisfied, it returns ∅, meaning that the ciphertext
is invalid. Otherwise it computes K = ux, chooses s ← Zp and returns
π = (K, e2, f2), where

w2 = gs, w2 = us, e2 = H2(K,w2, w2), f2 = s+ xe2 .

Note that (w2, w2, f2) constitutes a non-interactive zero-knowledge proof of
equality of discrete logarithms logg h = loguK.

8 A slightly less efficient threshold cryptosystem described in [SG98] relies on the
Computational Diffie-Hellman assumption (in the random oracle model) and can be
turned into a PKENO system in the same way.
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– Ver(pk, c,m, π): parses C as (c, u, ū, e1, f1) and π as (K, e2, f2). Then, it per-
forms the following tests:

1. e1
?= H1(c, u, w1, ū, w1), where w1 = gf1/ue1 , w1 = ḡf1/ūe1

2. e2
?= H2(K,w2, w2), where w2 = gf2/he2 , w2 = uf2/Ke2

If these tests are both correct, it returns 1 if c⊕H0(K) = m and 0 otherwise.
If Test 1 fails, it outputs 1 iff π = ∅ and m =⊥. In any other case (e.g., Test
2 fails or can not be computed because π = ∅) it outputs 0.

Since the underlying threshold cryptosystem is IND-TCCA secure and strongly
decryption consistent, it follows that the above PKENO is IND-CCPA secure
and strongly committing.

5.2 PKENO based on the Decision Linear Assumption

Recently, Arita and Tsurudome [AT09] described an efficient way to thresh-
oldize the decryption algorithm of Kiltz’s tag-based encryption scheme [Kil06]
using bilinear maps to achieve robustness. Their scheme readily yields another
PKENO with strong soundness since it also provides decryption consistency in
the strongest sense. The security proof of the resulting scheme is in the standard
model under the Decision Linear assumption [BBS04], which is the infeasibility of
distinguishing gc+d from random given (g, ga, gb, gac, gbd), where a, b, c, d $← Zp.

One of the advantages of this PKENO scheme is that it can be used in
CCA2-anonymous group signatures that rely on the linear encryption technique
[BBS04]. For instance, it can be used to obtain simpler and more efficient proofs
of correct opening (as required by the model of Bellare et al. [BSZ05] in the con-
text of dynamic groups) in Groth’s fully anonymous group signatures [Gro07]:
such a proof only consists of two group elements and its verification only entails
two pairing evaluations, which is significantly cheaper than checking a pairing-
based non-interactive witness indistinguishable proof as in [Gro07].

The description hereafter requires a strongly unforgeable [Mer89,ADR02]
one-time signature scheme Σ = (G,S,V) as in the original CHK transformation
[CHK04], where we assume for simplicity that the scheme’s verification keys SVK
can be embedded in Zp (else one should first hash the key with a target-collision
resistant hash function). We note that shorter ciphertexts can be obtained us-
ing Waters’ technique [Wat05] in the same way as in the encryption scheme of
[BMW05, Section 3.1]: at the expense of longer public keys (comprising O(k)
group elements), ciphertext components SVK and σ can be eliminated.

– Gen(1k): chooses groups (G,GT ) of prime order p > 2k that are equipped with
a bilinear map e : G×G → GT , g $← G and x, y, u, v

$← Zp. The public key
pk comprises (X,Y, U, V ) = (gx, gy, gu, gv), the description of the plaintext
space Mpk = G and that of a strong one-time signature Σ = (G,S,V). The
secret key is sk = (x, y, u, v).
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– Enc(pk,m): to encrypt a message m ∈ G, the algorithm first generates a
one-time signature key pair (SSK,SVK) ← G(1k). It chooses r, s $← Zp and
computes

C1 = Xr, C2 = Y s, D1 = (gSVKU)r, D2 = (gSVKV )s, E = m · gr+s,

and σ = S(SSK, (C1, C2, D1, D2, E)). The ciphertext is C = (SVK, C1, C2, D1,
D2, E, σ).

– Dec(sk, C): given sk = (x, y, u, v) and C = (SVK, C1, C2, D1, D2, E, σ), the
algorithm checks if V(SVK, σ, (C1, C2, D1, D2, E)) = 1, D1 = C

(SVK+u)/x
1 and

D2 = C
(SVK+v)/y
2 . If these checks fail, it returns ⊥. Otherwise, it outputs

m = E · C−1/x
1 · C−1/y

2 .

– Prove(sk, C): given C = (SVK, C1, C2, D1, D2, E, σ) and sk = (x, y, u, v),
the algorithm returns ∅ if V(SVK, σ, (C1, C2, D1, D2, E)) = 0 or if D1 6=
C

(SVK+u)/x
1 or D2 6= C

(SVK+v)/y
2 . Otherwise it computes and returns π =

(π1, π2) = (C1/x
1 , C

1/y
2 ).

– Ver(pk, c,m, π): parses C as (SVK, C1, C2, D1, D2, E, σ) and π as (π1, π2) ∈ G2

(and outputs 0 if they cannot be parsed properly). Then, it performs the
following tests:

1. V(SVK, σ, (C1, C2, D1, D2, E)) ?= 1, e(C1, g
SVKU) ?= e(X,D1),

e(C2, g
SVKV ) ?= e(Y,D2).

2. e(π1, X) ?= e(g, C1), e(π2, Y ) ?= e(g, C2), E ?= m · π1 · π2.

If both tests are both correct, it returns 1. If Test 1 fails, it outputs 1 iff
π = ∅ and m =⊥. In any other situation, it outputs 0.

In comparison with [Gal09] (if we assume that CCA2-security is acquired using
the technique of [BMW05, Section 3.1] in both schemes), the above system pro-
vides faster decryption (since no pairing evaluation is needed) at the expense
of longer ciphertexts whereas proofs are equally expensive to verify. Its main
advantage, in our opinion, lies in its possible use to provide simple proofs of
correct opening in pairing-based group signatures.

It is also worth mentioning that other cryptosystems [Kil07,Boy07] also ad-
mit CCA2-secure threshold variants which can be proved strongly decryption
consistent. They thus imply strongly committing PKENO instances bearing sim-
ilarities with the above scheme. The Paillier-based TPKE scheme of [FP01] can
be proved decryption consistent in the known secret key setting (cf. Definition 5).
Proving it strongly decryption consistent seems harder.
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