
Anonymous Transferable E-Cash

Foteini Baldimtsi1?, Melissa Chase2, Georg Fuchsbauer3??, Markulf Kohlweiss2

1 Computer Science Department, Brown University

foteini@cs.brown.edu
2 Microsoft Research

{melissac, markulf}@microsoft.com
3 Institute of Science and Technology Austria

georg.fuchsbauer@ist.ac.at

c© IACR 2015. This article is the final version submitted by the authors to the IACR and to Springer

Verlag. The version published by Springer-Verlag is available at DOI: 10.1007/978-3-662-46447-2 5.

Abstract. Cryptographic e-cash allows off-line electronic transactions
between a bank, users and merchants in a secure and anonymous fashion.
A plethora of e-cash constructions has been proposed in the literature;
however, these traditional e-cash schemes only allow coins to be trans-
ferred once between users and merchants. Ideally, we would like users
to be able to transfer coins between each other multiple times before
deposit, as happens with physical cash.
“Transferable” e-cash schemes are the solution to this problem. Unfortu-
nately, the currently proposed schemes are either completely impractical
or do not achieve the desirable anonymity properties without compro-
mises, such as assuming the existence of a trusted “judge” who can trace
all coins and users in the system. This paper presents the first efficient
and fully anonymous transferable e-cash scheme without any trusted
third parties. We start by revising the security and anonymity properties
of transferable e-cash to capture issues that were previously overlooked.
For our construction we use the recently proposed malleable signatures
by Chase et al. to allow secure and anonymous transferring of the coins.
Finally, we propose an independent, efficient double-spending detection
mechanism and discuss an instantiation of our construction.

Keywords: Electronic payments, transferable e-cash, malleable signa-
tures, double-spending detection.

1 Introduction

Electronic payment systems are everywhere and average users take their two
major properties, security and privacy, for granted even though they may be built
on shaky foundations. Payments made with debit or credit cards do not provide
any privacy guarantee for users since the corresponding financial institution can
track all their transactions. Starting with Chaum [Cha83], the cryptographic

? Work done as an intern in Microsoft Research Redmond and as a student at Brown
University, where supported by NSF grant 0964379.

?? Supported by the European Research Council, ERC Starting Grant (259668-PSPC).

community has worked on electronic analogues to physical money (e-cash) that
guarantee secure and private payments [Cha83,CFN88,Bra93,CHL05,BCKL09].
A typical e-cash system consists of three types of entities: the Bank, users and
merchants. Users withdraw electronic coins from the Bank and spend them to
merchants, who finally deposit them back to the Bank. E-cash systems should
satisfy two main properties (1) unforgeability : an adversarial user cannot spend
more e-coins than he withdrew; and (2) anonymity : nobody (including the Bank)
can link spending transactions to each other or to specific withdrawal instances.

Unlike physical cash, electronic coins are easy to duplicate, so a mechanism
ensuring that a user cannot spend one coin multiple times is needed. Two solu-
tions were proposed in the literature: the first is online e-cash [Cha83], in which
the merchants are constantly connected to the Bank and can therefore check
whether a coin has already been deposited before accepting it. In order to over-
come the strong requirement of a permanently online Bank, a second solution
is to use a double-spending mechanism [CFN88]. The idea is that as long as a
user is honest, his anonymity is guaranteed, but if he tries to cheat the system
by spending one e-coin multiple times, his identity is revealed.

Unfortunately, in traditional e-cash users can only transfer their coins to
merchants, who must then deposit them to the Bank. It would be natural to
allow users to transfer coins to other users (or merchants), who should be able
to further transfer the received coins, and so on. Moreover, it would be desirable
if these transfers could be done without being connected to the bank, i.e., offline.
One of the main advantages of such a transferability property is that it would
decrease the communication cost between the Bank and the users. Moreover,
it would allow for more real-world scenarios. Consider the example of coins of
different denominations. A store, which is offline, wants to give back change to
a customer, using coins previously received. In order to do so, coins need to be
transferable multiple times. Transferability of e-cash was proposed in the 1990s
and the desired security properties have been analyzed; however, all schemes
proposed so far do not satisfy the proposed security and privacy requirements,
or they are only of theoretical interest, such as [CG08].

Arguably, this was partly because e-cash fell out of fashion as it became
clear that traditional banks were unlikely to support cryptographic currencies
and that credit cards and centralized payment services offering little privacy are
broadly accepted for online payments. Recently, with bitcoin [Nak08] demon-
strating how to bypass the banks, there has been renewed interest in e-cash,
as existing techniques from anonymous e-cash are likely to be applicable to the
bitcoin world as well [MGGR13,BCG+14].

Related work. Transferable e-cash was originally proposed by Okamoto and
Ohta [OO89,OO91], who gave e-cash schemes that satisfy various properties such
as divisibility and transferability but only provide weak levels of anonymity.
While an adversary cannot link a withdrawal to a payment, he can link two
payments by the same user; this property was called weak anonymity (WA).
Chaum and Pedersen [CP92] proved that (1) transferred coins have to grow
in size and (2) an unbounded adversary can always recognize coins he owned

2

when seeing them spent later. Moreover, they extended the scheme due to van
Antwerpen [vAE90] to allow coin transfer. The resulting scheme satisfies strong
anonymity (SA), guaranteeing that an adversary cannot decide whether two
payments were made by the same user. However, he can recognize coins he ob-
served in previous transactions. Strong anonymity is also satisfied by the schemes
constructed in [Bla08,CGT08].

Anonymity for transferable e-cash has been a pretty subtle notion to de-
fine. In 2008 Canard and Gouget [CG08] gave the first formal treatment of
anonymity properties for transferable e-cash. In addition to weak and strong
anonymity, which do not yield the guarantees one would intuitively expect, they
defined full anonymity (FA): an adversary, impersonating the bank, cannot link
a coin previously (passively) observed to a coin he receives as a legitimate user
(Observe-then-Receive). They also define perfect anonymity (PA): an adversary,
impersonating the bank, cannot link a coin previously owned to a coin he re-
ceives. They showed that PA⇒FA⇒ SA⇒WA. Chaum and Pedersen [CP92]
showed that perfect anonymity cannot be achieved against unbounded adver-
saries. Canard and Gouget [CG08] prove that it cannot be achieved against
bounded adversaries either. They therefore introduce two modifications of per-
fect anonymity, which are incomparable to FA, namely PA1: an adversary, im-
personating the bank, cannot link a coin previously owned to a coin he passively
observes being transferred between two honest users (Spend-then-Observe); and
PA2 (Spend-then-Receive): an adversary cannot link a coin previously owned to
a coin he receives, assuming the bank is honest (If the adversary could imper-
sonate the bank, the notion is not achievable due to the impossibility results
mentioned above.) In the same paper they present a construction which satisfies
all achievable anonymity properties, but is only of theoretical interest due to its
inefficiency as it relies on metaproofs and thus Cook-Levin reductions.

The first practical scheme that satisfies FA, PA1 and PA2 is the scheme due
to Fuchsbauer et al. [FPV09]; however, it has two main drawbacks: (1) the users
have to store the data of all transactions they were involved in to prove inno-
cence in case of fraud; and even worse (2) when a double-spending is detected,
all users up to the double-spender lose their anonymity. Blazy et al. [BCF+11]
addressed these problems and proposed a new scheme using commuting signa-
tures [Fuc11], which overcomes the above drawbacks by assuming the existence
of a trusted entity called the judge. This entity is responsible for the tracing of
double-spenders, but can also trace all the coins and users in the system at any
time. This clearly contradicts one of the main goals of e-cash: as long as users do
not double-spend, they remain anonymous. (In addition, it is not clear whether
their scheme satisfies PA2; see Section 4.4.)

Our contributions. We present the first transferable e-cash scheme that sat-
isfies all of the anonymity properties from the literature (FA, PA1, PA2) and a
new anonymity notion. Moreover, it does not assume any trusted party and does
not rely on a Cook-Levin reduction or heuristics like the random-oracle model.
Our contributions include new definitions, a construction based on malleable
signatures and an independent double-spending detection mechanism.

3

Definitions. We provide a formal treatment of the security and anonymity prop-
erties of transferable e-cash in a game-based fashion, since many of the pre-
vious definitions were informal and/or incomplete. Moreover, we define a new
anonymity requirement that was not captured before. Namely, we introduce a
strengthening of Spend-then-Receive anonymity (a.k.a. PA2), which guarantees
that an adversary, impersonating the bank—although able to link a coin that
he previously owned to one he receives—should not be able to tell anything
about the honest users who possessed the coin in between. This has not been
guaranteed in any previous definitions.

Construction. In traditional e-cash systems a coin withdrawn from the bank
typically consists of the bank’s signature on a unique serial number, SN. When
spending the coin with a merchant, a double-spending tag DS is computed, which
encodes the identity of the spender. The merchant then deposits c = (SN, σ, DS)
at the bank. If two coins, c, c′, with the same serial number, but with different
double-spending tags DS, DS′ are deposited, these tags together will reveal the
identity of the user who double-spent. For transferable e-cash, the owner of a
coin should be able to transfer the coin/signature he received from the bank
to another user in such a way that the transferred coin is valid, carries all the
information necessary to detect double-spending and preserves anonymity. Thus,
we need a digital signature scheme that allows a user to compute a “fresh” version
of a valid signature (unlinkable to the original one to ensure anonymity) and to
extend the current signature to include more information (such as a double-
spending tag for the new owner).

A recent proposal of a signature scheme that satisfies the above properties is
due to Chase et al. [CKLM14]. They propose malleable signatures, an extension
of digital signatures, where anyone can transform a signature on a message m
into a signature on m′, as long as T (m) = m′ for some allowed transformation T .
In our construction, a coin withdrawn by the bank is signed using a malleable
signature scheme. Whenever a user wishes to transfer a coin to another user
he computes a mauled signature on a valid transformation of the coin. A valid
transformation guarantees that the transferred coin is valid, it is indeed owned
by the sender (i.e. the sender’s secret key corresponds to the information encoded
in the coin) and the new coin/signature created will encode the right information
of the receiver. The serial number and the double-spending tags are encrypted
under the bank’s public key, allowing it to check for double-spending on deposit.
Moreover, the encryptions are re-randomized in every transfer, which ensures
anonymity. We propose an instantiation in the full version that can be proved
secure under standard assumptions (Decision Linear and the Symmetric External
Decision Diffie-Hellman (SXDH)).

Double Spending Detection. Double spending detection for transferable e-cash is
a complex issue, since it needs to ensure that the right user is accused while the
anonymity of honest owners of the coin will be preserved. We propose an efficient
double-spending detection mechanism, which is independent of our scheme and
could be used by other transferable e-cash constructions, e.g., to provide an

4

offline payment mechanism for users holding a sufficient amount of bitcoins as a
deposit.

2 Definitions for Transferable E-Cash

We adapt the definitions for transferable e-cash given by [CG08,BCF+11] and
strengthen them in several aspects; in particular, we introduce a stronger anonymity
notion.

In a transferable e-cash scheme there are two types of parties: the bank B
and users Ui. Coins are denoted by c and each coin is uniquely identifiable via
a serial number SN, which will be retrieved by the bank during deposit to check
for double-spending. We let DCL denote the list of deposited coins; if multiple
coins with the same serial number were deposited, we keep all of them in DCL.

Note that in contrast to previous versions of these definitions we add a pro-
tocol for user registration and we also merge the Deposit and Identify pro-
tocols. A transferable e-cash scheme consists of the following algorithms (which
are probabilistic unless otherwise stated):

ParamGen(1λ) on input the security parameter λ outputs the system parameters
par (we assume that λ can be deduced from par, which is a default input to
the remaining algorithms).

BKeyGen() and UKeyGen() are executed by B and a user U respectively and
output (skB, pkB) and (skU , pkU). The bank’s key skB might be divided into
two parts: skW for the registration and withdrawal phase and skD for the de-
posit phase. Thus, we define two extra algorithms WKeyGen() and DKeyGen()
for the bank’s key generation. We also assume that during the bank key
generation the list DCL is initialized to be empty.

Registration(B[skW , pkU],U [skU , pkB]) is a protocol between the bank and a
user. At the end the user receives a certificate certU ; both parties output
either ok or ⊥ in case of error.

Withdraw(B[skW , pkU],U [skU , pkB]) is a protocol between the bank and a user.
The user either outputs a coin c or ⊥. B’s output is ok or ⊥.

Spend(U1[c, skU1 , certU1 , pkB],U2[skU2 , pkB]) is a protocol in which U1 spends/
transfers the coin c to U2. At the end, U2 either outputs a coin c′ and ok
or it outputs ⊥; U1 either marks the coin c as spent and outputs ok, or it
outputs ⊥ in case of error.

Deposit(U [c, skU , certU , pkB],B[skD, pkU ,DCL]) is a protocol where a user U
deposits a coin c at the bank. We split the deposit protocol into three sub-
routines. First CheckCoin checks whether the coin c is consistent, and if not
outputs ⊥. Else, B runs CheckDS, which outputs the serial number SN of the
deposited coin. B checks whether DCL already contains an entry for SN. If
not, B adds SN to DCL, credits U ’s account and returns “success” and DCL.
Otherwise, the coin was double-spent: the subroutine DetectDS is run on the
two coins and outputs (pkU , Π), where pkU is the public key of the accused

5

user, and Π is a proof that the registered user who owns pkU double-spent
the coin. Note that Π should reveal nothing about the coin itself.

VerifyGuilt(pkU , Π) is a deterministic algorithm that can be executed by
anyone. It outputs 1 if the proof verifies and 0 otherwise.

Notice that in our definition a transferable e-cash scheme is stateless since there
is no common state information shared between the algorithms. This means that
a coin withdrawn will be the same, whether it was the first or the n-th coin the
bank issues to a specific user. Moreover, when a user U2 receives a coin from a
user U1, then the transferred coin will only depend on the original coin (not on
other coins received by U2 or coins transferred by U1). Thus, the bank and the
users do not need to remember anything about past transactions—for transfer
the coin itself must be sufficient.

In order to formally define the security properties of transferable e-cash, we
first define some global variables and oracles, which will be used in the security
games.

Global variables. In the user list, UL, we store all information about users,
keys and certificates. Its entries are of the form (i, pk i, sk i, cert i, udsi), where
uds indicates how many times user Ui double-spent (this counter is used in the
exculpability definition). If user i is corrupted (i.e. the adversary knows the secret
key of this user) then sk i = ⊥; if it has not been registered then cert i = ⊥. We
keep a counter, n, of the total number of generated/registered users which is
initialized to 0.

In the coin list, CL, we keep information about the coins created in the
system. For each original coin withdrawn we store a tuple (j, owner, c, fc, fd, cds,
origin), where j is its index in CL, owner stores the index i of the user who
withdrew the coin1 and c is the coin itself. The flag fc indicates whether the
coin has been corrupted2 and the flag fd indicates whether the coin has been
deposited. We also keep a counter, cds, of how many times this specific instance
of the coin has been spent, which is initialized as cds = 0. In origin we write
“B” if the coin was issued by the honest bank and “A” if the adversary issued
it when impersonating the bank.

After a coin has been transferred, we add a new entry to CL of the following
format: (j, owner, c, cds, pointer), where j is the position in CL, owner shows the
current owner, c is the new, transferred coin and cds indicates how many times
the coin has been spent. In pointer we store a pointer j′ indicating which original
coin this transferred coin corresponds to. Once a transferred coin is deposited
or corrupted, we mark the original coin’s flags fc, fd appropriately. The last list
is the list of deposited coins, DCL.

We now define oracles used in the security definitions. If during the oracle
execution an algorithm fails (outputs ⊥) then the oracle also stops. Otherwise

1 We do not store the coins withdrawn by the adversary.
2 A corrupted coin is defined as a coin that was under the adversary’s control at some

point. Once a coin is flagged as corrupted, it cannot be “un-flagged”, even if it is
later under the control of an honest user.

6

the call to the oracle is considered successful (for the deposit oracles a successful
call is one that also didn’t detect any double-spending).

Creation, registration and corruption of users. The adversary can in-
struct the creation of honest users, and either play the role of the bank during
registration, or passively observe registration:

Create() sets n = n + 1, executes (skn, pkn) ← UKeyGen(), sets UL[n] =
(n, pkn, skn,⊥, 0) and outputs pkn.

BRegister(pk) plays the bank side of the Register protocol and interacts with
A. Let cert be the generated certificate. If pk 6∈ UL then set n = n+ 1 and
UL[n] = (n, pk ,⊥, cert , 0); else abort.

URegister(i), for i ≤ n, plays the user side of the Register protocol and adds
cert to the corresponding field of UL.

Register(i), for i ≤ n, simulates both sides of the Register protocol. If user
i was not registered then add cert to the corresponding field of UL.

Corrupt(i, S), for i ≤ n, allows the adversary to corrupt a subset, S, of user
i’s coins. If sk i = ⊥ (i.e. this user is already corrupted) then abort. The set
S consists of coin indices in CL. For every j ∈ S look up the j-th entry of
CL and if owner 6= i then ignore this coin and remove it from S. The oracle
first outputs sk i and then updates UL by setting sk i = ⊥ to mark this user
as corrupted. Then, the non-corrupted coins in the set S are given to the
adversary A and are marked as corrupted i.e. the flag fc of the corresponding
original coin is set fc = 1. Note that if A tries to corrupt unregistered users,
this doesn’t give him any extra power. Also, once a user is corrupted he is
considered to be an adversarial user and thus A will be running instead of
him3.

Withdrawal oracles. The adversary can either withdraw a coin from a trusted
bank, play the role of the bank or passively observe a withdrawal.

BWith() plays the bank side of the Withdraw protocol. Note that coins belonging
to A are not added to the coin list CL.

UWith(i) plays user i in a Withdraw protocol, where the bank is controlled by
the adversary. Upon obtaining a coin c, it adds the entry (j, owner = i, c, fc =
0, fd = 0, cds = 0, origin = A) to CL.

With(i) simulates a complete Withdraw protocol execution playing both B and
user i. It adds (j, owner = i, c, fc = 0, fd = 0, cds = 0, origin = B) to CL and
outputs the transcript.

Spend and deposit oracles.

Rcv(i) lets A spend a coin to honest user i. It plays the role of U2 with user i’s
secret key in the Spend protocol. A new entry (j, owner = i, c, fc = 1, fd =

3 This means that A cannot run honest-user oracles on corrupted users: i.e. cannot
run oracles With, UWith, Rcv, S&R.

7

0, cds = 0, origin = A) is added to CL. Coins received from the adversary
are considered as original coins in CL.

Spd(j) enables A to receive coin number j in CL. If the coin belongs to a
corrupted user it aborts. Otherwise, it plays the role of user U1 in the Spend

protocol with the secret key of the owner i of the coin j in CL. It increases
the coin spend counter cds of entry j in CL by 1. If cds was already greater
than zero (i.e., this specific user has already spent this coin) then the double-
spending counter, uds, of the owner of coin j is increased by one. Finally,
whenever a coin is received by A, we mark the original instance of this coin
as corrupted, i.e., we set fc = 1.

S&R(i, j) is the Spend-and-Receive oracle that allows A to passively observe
the spending of coin j by its owner to user i (who must not be corrupted).
It increases the current size ` of CL by 1 and adds (`, owner = i, c, cds =
0, pointer) to CL, where pointer = pointerj if pointerj /∈ {A,B}, else pointer =
j. It also increases the coin spend counter cdsj in entry j by 1. If cdsj was al-
ready greater than zero then the double-spending counter uds of the spender
is also increased by 1.

BDepo() simulates the bank in the Deposit protocol interacting with A playing
the role of a user. It updates DCL accordingly.

UDepo(j) simulates the role of the owner (who must not be corrupted) of coin
j in the Deposit protocol, interacting with the adversary playing the bank.
It increases the spend counter cdsj in entry j in CL by 1. If cdsj was already
greater than zero then the double-spending counter uds of the owner of coin
j is increased by 1. It also marks fd = 1 for the original coin.

Depo(j) simulates a Deposit of coin j between the bank and the owner of j
(who must not be corrupted). It increases cdsj in entry j of CL by 1. If cdsj
was already greater than zero then uds of the owner of coin j is increased
by one. It also marks fd = 1 in the original coin and adds the coin to DCL.

Let size(c) be a function that outputs the size of a coin. A withdrawn coin has
size 1 and after a transfer the size increases by 1. We say that coins c1 and c2
are compatible, comp(c1, c2) = 1, if size(c1) = size(c2). We need this property,
since transferred coins necessarily grow in size [CP92] and thus an adversary
may break anonymity by distinguishing coins of different sizes.

2.1 Security Properties

We define the security properties of transferable e-cash by refining previous
definitions by [CG08] and [BCF+11]. In the beginning of security games the
challenger typically runs par ← ParamGen(1λ) and (skB, pkB) ← BKeyGen(),
which we merge into one algorithm AllGen.

Unforgeability. This notion protects the bank in that an adversary should not
be able to spend more coins than the number of coins he withdrew. In [BCF+11]
an adversary can interact with honest users and wins the unforgeability game

8

if he withdrew fewer coins than the number of coins he successfully deposited,
i.e. no double spending was detected. We simplify the definition noticing that
is not necessary for the adversary to create, corrupt or instruct honest users
to withdraw, spend, receive and deposit, since the adversary could simulate
these users itself. An unforgeability definition without honest user oracles implies
thus the definition with these oracles given in [BCF+11]. Consider the following
experiment:

Experiment Expt
unforg
A (λ);

(par, skB, pkB)← AllGen(1λ);

ABRegister,BWith,BDepo(par, pkB);

Let qW , qD be the number of successful calls to BWith, BDepo respectively;

If qW < qD then return 1;

Return ⊥.

Definition 1 (Unforgeability). A transferable e-cash system is unforgeable
if for any PPT adversary A, we have Adv

unforg
A (λ) := Pr[Expt

unforg
A (λ) = 1] is

negligible in λ.

Identification of double spenders. No collection of users can spend a coin
twice (double-spend) without revealing one of their identities. Consider the fol-
lowing experiment on the left where, analogously to the unforgeability definition,
we do not give the adversary access to honest user oracles since he can simulate
them itself.

Experiment ExptidentA (λ)

(par, skB, pkB)← AllGen(1λ);

ABRegister,BWith,BDepo(par, pkB);

Let (pk i∗ , ΠG) be the output of the

last call to BDepo;

Return 1 if any of the following hold:

– VerifyGuilt(pk i∗ , ΠG) = 0;

– pk i∗ 6∈ UL;

– pk i∗ ∈ UL and cert i = ⊥;

Return ⊥.

Experiment ExptexculA (λ)

par← ParamGen(1λ);

(pkB, st)← A(par);

(i∗, Π∗)← A
Create,URegister,Corrupt,
UWith,Rcv,Spd,S&R,UDepo (st);

If VerifyGuilt(pk i∗ , Π
∗) = 1

& sk i∗ 6= ⊥ & udsi∗ = 0 then return 1;

Return ⊥.

Definition 2 (Double-spender identification). A transferable e-cash system
is secure against double-spending if for any PPT adversary A, Advident

A (λ) :=
Pr[ExptidentA (λ)=1] is negligible in λ.

Note that we cannot detect double-spending unless both of the double-spent
coins are deposited.

9

Exculpability. Exculpability ensures that the bank, even when colluding with
malicious users, cannot wrongly accuse honest users of double-spending. Specif-
ically, it guarantees that an adversarial bank cannot output a double-spending
proof Π∗ for an honest user with public key pkU that verifies even though user
U has not double-spent. Our definition follows the one from [BCF+11], but we
allow the adversary to generate the bank keys himself, thus modeling a malicious
bank. The adversary must output the index of the user being accused of dou-
ble spending and the corresponding proof. The game is formalized as Exptexcul

above.

Definition 3 (Exculpability). A transferable e-cash system is exculpable if
for any PPT adversary A, we have Advexcul

A (λ) := Pr[ExptexculA (λ) = 1] is
negligible in λ.

In the full version we also discuss a stronger version of exculpability that
guarantees that a user cannot be accused of double spending more coins than
the ones he did double-spend.

2.2 Anonymity Properties

We first consider the three anonymity notions given in [CG08,BCF+11]:

Observe-then-Receive Full Anonymity (OtR-FA). The adversary, impersonating
the bank, cannot link a coin he receives as an adversarial user or as the
bank to a previously (passively) observed transfer between honest users. This
covers both the case where the adversary receives a coin during a transfer
or receives a coin when impersonating the bank during deposit.

Spend-then-Observe Full Anonymity (StO-FA). The adversary, impersonating
the bank, cannot link a (passively) observed coin transferred between two
honest users to a coin he has already owned as a “legitimate” user.

Spend-then-Receive Full Anonymity (StR-FA). When the bank is honest, the
adversary cannot recognize a coin he previously owned when he receives it
again.

These three notions are incomparable as proved in [CG08]. Due to lack of space,
we present the formal experiments in the full version since they are relatively sim-
ilar to those in [BCF+11]. A difference is that we define coin indistinguishability,
which implies the user indistinguishability properties considered in [BCF+11].
We also allow A to pick the secret keys himself, in particular that of the bank
when impersonating it (in contrast to [CG08,BCF+11], where the bank’s keys
are created by experiment).
Moreover, we introduce a new, strong, user-indistinguishability notion of anonymity
that we call Spend-then-Receive* : although the adversary, when impersonating
the bank, can tell whenever he receives a coin he owned before, he should not be
able to learn anything about the identities of the users that owned the coin in
between. We define this as an indistinguishability game in which the adversary
picks a pair of users, to one of which (according to a random bit b) the coins are
transferred. The goal is to guess this bit b.

10

Experiment ExptStR*-faA,b (λ)

par← ParamGen(1λ); pkB ← A(par);

(i0, i1, 1
k)← ACreate,URegister,Corrupt,UWith,Rcv,Spd,S&R,UDepo;

If sk i0 = ⊥ or sk i1 = ⊥ then return ⊥;

Run Rcv(ib) with A;

Let c1 be the received coin and let j1 be its index in CL;

Repeat the following two steps for α = 1, . . . , k − 1:

(i0, i1)← A; If sk i0 = ⊥ or sk i1 = ⊥ then return ⊥;

Run S&R(ib, jα);

Let cα+1 be the received coin and let jα+1 be its index in CL;

Run Spd(jk) with A;

b∗ ← ACreate,URegister,Corrupt,UWith,Rcv,Spd,S&R,UDepo;

If for any of coins c1, . . . , ck we have cds > 1 then output ⊥;

If any of the owners of c1, . . . , ck is corrupted then output ⊥;

Return b∗.

Definition 4. (Anonymity) A transferable e-cash scheme is fully anonymous if
for any stateful PPT adversary A we have AdvStR*-fa

A (λ) := Pr[(ExptStR*-faA,1 (λ) =

1] − Pr[(ExptStR*-faA,0 (λ) = 1] is negligible in λ (and analogously for ExptOtR-faA,b ,

ExptStO-faA,b , and ExptStR-faA,b , defined in the full version).

3 Double-Spending Detection

In our construction every coin in the system contains a serial number SN =
SN1‖ . . . ‖SNk where SN1 was jointly generated by the bank and the user who with-
drew the coin, SN2 was generated by the second user who received the coin and so
on. Moreover, a coin contains a set of double-spending tags DS = DS1‖ . . . ‖DSk−1

which allows the bank to identify the user that double-spent whenever a coin
is deposited twice. (To satisfy the Spend-then-Receive anonymity, these values
will be encrypted so that only the bank can see them.)

We first describe the properties of the serial number and double-spending
tags in order to construct our transferable e-cash construction. We then give
concrete instantiations in Section 3.2.

3.1 Properties of Serial Numbers and Double-Spending Tags

As we will see in Section 3.2, for transferable e-cash it seems essential that the
generation of SNi uses both randomness chosen by the i-th receiver and the secret
key of that user. We thus define a Serial Number Function, fSN, which on input
a random nonce and a secret key (ni, sk i) outputs the serial-number component
SNi of the coin. We require a form of collision-resistance, which guarantees that
different (ni, sk i) generate different SN. Formally:

Definition 5 (Serial number function). A serial number function fSN for
parameters GenSN takes as input parameters parSN ← GenSN , a nonce and a

11

secret key (ni, sk i), and outputs a serial number SNi. (We omit parSN when it is
clear from context.)

fSN is called collision-resistant if given parSN ← GenSN , it is hard to find
(sk i, ni) 6= (sk ′i, n

′
i) such that fSN(parSN , ni, sk i) = fSN(parSN , n

′
i, sk ′i).

We also define a Double Spending Tag Function, fDS, that takes as input the
nonce ni that the coin owner Ui had picked when receiving the coin, Ui’s secret
key sk i and SNi+1, which was computed by the receiver of the coin. We also
allow it to take as input some additional identifying information, ID i, about Ui.
The output is a double-spending tag that reveals nothing about the owner, Ui,
unless she transfers the same coin to more than one users (i.e. double-spends).
In that case, the bank can, given a database of public keys of all the users (and
associated info ID for each one) identify the user that double-spent and produce
a proof accusing her. More formally:

Definition 6 (Double spending tag). A double-spending tag function fDS for
parameters GenSN and key-generation algorithm KeyGen takes as input parSN ←
GenSN , (ID i, ni, sk i, SNi+1) and outputs the double-spending tag DSi.

– fDS is 2-show extractable if whenever we compute DSi and DS′i for the same
(parSN , ID i, ni, sk i) but different SNi+1 6= SN′i+1, there exists an efficient
function fDetectDS that on input DSi and DS′i and a list of identifiers I such
that (ID i, pk i) ∈ I for a pk i corresponding to sk i (according to KeyGen),
efficiently extracts (pk i, Π) where Π is an accepting proof for pk i.

– fDS is exculpable if, given pk i produced by KeyGen and parSN ← GenSN , it
is computationally hard to compute an accepting proof for pk i.

Finally, we want to be able to guarantee anonymity notions even against a
malicious bank who gets to see the serial numbers and double-spending tags
for deposited coins. Thus, we require that as long as the nonce ni is fresh and
random, these values reveal nothing about the other values, such as sk and ID ,
used to generate them.

Definition 7 (Anonymity of double spending tags). A double-spending
tag function fDS and a serial number function fSN are anonymous if for all
ID i, sk i, SNi+1, ID ′i, sk ′i, SN

′
i+1 if parSN ← GenSN and ni is chosen at random,

then (parSN , fSN(parSN , ni, sk i), fDS(parSN , ID i, ni, sk i, SNi+1)) is computation-
ally indistinguishable from (parSN , fSN(parSN , ni, sk ′i), fDS(parSN , ID ′i, ni, sk ′i,
SN′i+1)).

3.2 A Double Spending Detection Mechanism

Here we propose a concrete instantiation for the functions fSN, fDS used to gener-
ate the serial numbers and double-spending tags. To give some intuition, we first
consider the natural translation of traditional (non-transferable) e-cash double-
spending techniques [CFN88], and show why it is not sufficient in the transferable
setting. Assume that Ui and Ui+1 execute the Spend protocol where the first user

12

transfers a coin to the second one. Let SNi+1 = ni+1 be the nonce that the second
user randomly picks and sends to Ui. Then Ui must compute the double-spending
tag as follows: DSi = pk

ni+1

i F (ni), where F (ni) is hard to compute, except for
the user that chose ni.

Assume that Ui double-spends the coin by transferring it to users Ui+1 and
U ′i+1 and that both instances of the coin get eventually deposited at the bank.
The bank receives two coins starting with SN1, so it looks for the first difference
in the serial numbers SN and SN′, which is SNi+1 6= SN′i+1, pointing to Ui as
the double-spender. The bank now uses the tags DSi and DS′i to compute pk i =

(DSi(DS
′
i)
−1)1/(ni+1−n′i+1). But what if a coin was double-spent and the receivers

picked the same nonce ni+1? We consider two cases:

Case 1: Ui double-spends the coin to the same user Ui+1 and in both transac-
tions Ui+1 picks the same nonce ni+1. When the coins are deposited the first
difference occurs at position i+ 2 and the bank will therefore accuse Ui+1 of
double-spending. However, user Ui+1 can easily avoid being wrongly accused of
double-spending by picking a fresh nonce each time when receiving a coin.

Case 2: Ui transfers the same coin to different users with pk i+1 and pk ′i+1 who
pick the same nonce ni+1 when receiving the coin. As before, the bank’s serial
numbers will diverge at position i + 2. However, in this case computation of a
public key will fail, as DSi+1 and DS′i+1 contain different public keys.

The second scenario could be exploited by a collusion of Ui, Ui+1 and U ′i+1 to
commit a double-spending without being traceable for it. We therefore need to
ensure that different users cannot produce the same SNi+1 when receiving a coin.
We ensure this by making SNi+1 dependent on the user’s secret key, as formalized
in Definition 5. We could easily achieve this by using a collision-resistant hash
function, but in e-cash schemes users must prove well-formedness of SN and DS;
so we want to keep the algebraic structure of the above example in order to use
efficient proof systems.

Our construction. The parameters parSN are an asymmetric pairing group
(q,G1, G2, GT , e) of prime order q and six random generators ofG1: (g1, g2, h1, h2,
h̃1, h̃2). We assume that secret keys and the info ID are elements of Zq. User
Ui+1 chooses the nonce ni+1 randomly from Zq and computes SNi+1 as

fSN(ni+1, sk i+1) = {Ni+1 = g
ni+1

1 , Mi+1 = g
ski+1·ni+1

2 } .

When Ui receives SNi+1 = (Ni+1,Mi+1), she forms the double-spending tags as:

fDS(ID i, ni, sk i, (Ni+1,Mi+1)) =

{
Ai = N IDi

i+1 h
ni
1 , Bi = M IDi

i+1 h
ni
2

Ãi = N ski
i+1h̃

ni
1 , B̃i = M ski

i+1h̃
ni
2

}

We show that this construction satisfies the properties defined in Section 3.1.
First, the function fSN function is collision-resistant : in order to have Ni+1 =
N ′i+1 the adversary must pick ni+1 = n′i+1, but then Mi+1 = M ′i+1 can only be
achieved if sk i+1 = sk ′i+1.

13

Next we consider double-spending. The bank stores a database of pairs
(pk , ID) for all registered users with pk and ID unique to each user. When
a coin is deposited, the bank retrieves the serial number SN = SN1‖ . . . ‖SNk. If
a coin was deposited before with SN 6= SN′ but SN1 = SN′1, the bank looks for
the first pair such that SNi+1 = (Ni+1,Mi+1) 6= SN′i+1 = (N ′i+1,M

′
i+1) in order

to detect where the double-spending happened. Depending on whether the N -
values or the M -values are different, the bank checks for which ID ∈ DBB the
following holds:

(Ai(A
′
i)
−1)

?
= (Ni+1(N ′i+1)−1)ID or (Bi(B

′
i)
−1)

?
= (Mi+1(M ′i+1)−1)ID

This is a relatively cheap operation that can be implemented efficiently. (In our
e-cash construction in Section 4, ID will be the user’s position in the registered
user list.) In our scheme KeyGen outputs pk i = ĝski for a fixed generator ĝ of
G2. When the bank found an ID that satisfies the equation above, it looks up in
its database the associated public key and checks whether the following pairing
is satisfied:

e(Ãi(Ã′i)
−1, ĝ) = e(Ni+1(N ′i+1)−1, pk i) (1)

or similar for B̃i, B̃′i,Mi+1,M
′
i+1 in case Ni+1 = N ′i+1 (in which case we must

have Mi+1 6= M ′i+1). If these checks fail for all pk , ID in the database, the bank
outputs (⊥,⊥), but this should never happen. Thus, the function fDetectDS on
input DSi, DS

′
i,DBB outputs pk and Π = (DSi, DS

′
i). The verification for this

proof just checks equation (1). Thus, our fDS function is 2-show extractable.
It remains to be shown that our system (fSN, fDS) is anonymous and exculpa-

ble. In the following lemma (whose proof is in the full version, p. ??) we show
that both properties follow from SXDH:

Lemma 1. The above constructions of a double-spending tag function fDS and
a serial number function fSN are anonymous as defined in Definition 7 assuming
that DDH holds in G1.

Moreover, the double-spending function is exculpable if DDH holds in G2.

Discussion. Note that we could just use Equation 1 to detect double-spending
(and discard the values Ai, Bi in fDS). This would however be less efficient, since
the bank would have to compute one pairing for every entry in its database.
On the other hand, if exculpability is not required, we could discard the values
Ãi, B̃i from fDS.

4 Transferable E-Cash Based on Malleable Signatures

We now describe a generic construction of a transferable e-cash scheme us-
ing malleable signatures. Assume the existence of a malleable signature scheme
(MSGen,MSKeyGen,MSign,MSVerify,MSigEval) with allowed transformation class
T as defined below, a signature scheme (SignGen,SKeyGen, Sign, Verify), a ran-
domizable public-key encryption scheme (EKeyGen, Enc,REnc, Dec), a commit-
ment scheme (ComSetup,Com), a zero knowledge proof system 〈P, V 〉 and a

14

hard4 relationRpk . We also assume the existence of the functions fSN, fDS, fDetectDS
for GenSN as defined in Section 3.1.

The bank’s withdrawal key consists of (vk
(MS)
B , sk

(MS)
B)← MSKeyGen(1λ) and

(vk
(S)
B , sk

(S)
B)← SKeyGen(1λ) while the deposit key is (pkD, skD)← EKeyGen(1λ).

Users have keys (pkU , skU) and when registering with the bank they receive a
certificate certU = Sign

sk
(S)
B

(pkU , IU), where IU is their joining order.

We recall the properties of malleable signatures, the central building block for
our construction, and refer to the full version for the definitions of commitment
schemes and re-randomizable encryption.

4.1 Malleable Signatures

A malleable (or homomorphic) signature scheme [ABC+12,ALP,CKLM14] al-
lows anyone to compute a signature on a message m′ from a signature on m as
long as m and m′ satisfy some predicate. Moreover, the resulting signature on
m′ reveals no extra information about the parent message m.

We adapt the definition by Chase et al. [CKLM14], who instead of a pred-
icate consider a set of allowed transformations. A malleable signature scheme
consists of the algorithms KeyGen, Sign, Verify and SigEval, of which the first
three constitute a standard signature scheme. SigEval transforms multiple mes-
sage/signature pairs into a new signed message: on input the verification key vk,
messages ~m = (m1, . . . ,mn), signatures ~σ = (σ1, . . . , σn), and a transformation
T on messages, it outputs a signature σ′ on the message T (~m).

Definition 8 (Malleability). A signature scheme (KeyGen,Sign, Verify) is mal-
leable with respect to a set of transformations T if there exists an efficient
algorithm SigEval that on input (vk, T, ~m,~σ), where (vk, sk)

$←− KeyGen(1λ),
Verify(vk, σi,mi) = 1 for all i, and T ∈ T , outputs a signature σ′ for the message
m := T (~m) such that Verify(vk, σ′,m) = 1.

In order to achieve stronger unforgeability and context-hiding notions, Chase et
al. [CKLM14] provide simulation-based definitions for malleable signatures. Sim-
ulatability requires the existence of a simulator, which without knowing the se-
cret key can simulate signatures that are indistinguishable from standard ones.5

Moreover, a simulatable and malleable signature scheme is context-hiding if a
transformed signature is indistinguishable from a simulated signature on the
transformed message. A malleable signature scheme is unforgeable if an adver-
sary can only derive signatures of messages that are allowed transformations of
signed messages. In the full version we present the corresponding formal defini-
tions.

Chase et al. [CKLM14] describe a construction of malleable signatures based
on controlled-malleable NIZKs [CKLM12] which they instantiate under the De-
cision Linear assumption [BBS04].

4 Informally, a relation R is said to be hard if for (x,w) ∈ R, a PPT adversary A
given x will output wA s.t. (x,wA) ∈ R with only negligible probability.

5 This requires a trusted setup; for details see the full version.

15

4.2 Allowed Transformations

In a malleable signature scheme we define a class of allowed transformations, and
then unforgeability must guarantee that all valid signatures are generated either
by the signer or by applying one of the allowed transformations to another valid
signature. In the following we will define two different types of transformations:
one to be used when a coin is transferred from a user to another, TCSpend, and
a second one that will be used when a user withdraws a coin from the bank
TCWith.

Coin spend transformation. A coin that has been transferred i times (count-
ing withdrawal as the first transfer) will have the following format: c = (par, (CSNi

,
CDSi−1

), (ni, RSNi), σ) where par denotes the parameters of the transferable e-
cash scheme and CSNi

= CSN1 ‖ · · · ‖ CSNi , CDSi−1
= CDS1 ‖ · · · ‖ CDSi−1 , for

CSNj = Enc(SNj) and CDSj = Enc(DSj) respectively (all the encryptions are done
under pkD). By DSi−1 we denote the double spending tag that was computed by
the user Ui−1 when he transferred the coin to user Ui, ni is a nonce picked by Ui
when he received the coin6, and by RSNi the randomness used to compute the
encryption of SNi, i.e., CSNi = Enc(SNi;RSNi). Finally, σ is a malleable signature
on (CSNi

, CDSi−1
).

Assume now that the user Ui wishes to transfer the coin c to Ui+1. First,
Ui+1 will pick a nonce ni+1 and will send SNi+1 = fSN(ni+1, sk i+1) to Ui. Then,
Ui will compute the new signature as (with T defined below):

σ′ = MSigEval(par, vk
(MS)
B , T, (CSNi

, CDSi−1
), σ).

The transferred coin that Ui+1 will eventually obtain has the form:

c′ = (par, (CSNi+1
, CDSi

), (ni+1, RSNi+1
), σ′).

Note that the value ni+1 is only known to Ui+1 and he will have to use it
when he wants to further transfer the coin, while the randomness RSNi+1

, used
to encrypt SNi+1, was sent by Ui. What is left is to define the transforma-
tion T ∈ TCSpend which will take as input m = (CSNi

, CDSi−1
) and will output

T (m) = (CSNi+1
, CDSi

). A transformation of this type is described by the follow-
ing values: (i.e. this is the information that one must “know” in order to apply
the transformation)

〈T 〉 = ((sk i, Ii, cert i), (ni, RSNi , RSNi+1
, RDSi , R), SNi+1).

where R is a random string that will be used in order to randomize (CSNi
, CDSi−1

)
as part of the computation of the new signature. The output of T , as defined by
these values, on input m = (CSNi

, CDSi−1
) is then computed as follows:

1. If SNi 6= fSN(ni, sk i) or Enc(SNi;RSNi) 6= CSNi , then output ⊥.

6 Depending on the instantiation, the nonce, ni might be computed as the output of
a function on a random number the user picks.

16

2. The new part of the serial number is encoded using randomness RSNi+1
:

CSNi+1
= Enc(SNi+1;RSNi+1

).
3. The new part of the double spending tag is first computed using fDS and

then encrypted: DSi = fDS(Ii, ni, sk i, SNi+1) and CDSi = Enc(DSi;RDSi).
4. These encryptions are appended to the re-randomizations of CSNi

and CDSi−1
:

CSNi+1
= REnc(CSN1 ;R1) ‖ . . . ‖ REnc(CSNi ;Ri) ‖ CSNi+1

CDSi
= REnc(DDS1 ;R′1) ‖ . . . ‖ REnc(CDSi−1

;R′i−1) ‖ CDSi

where R1, . . . , Ri, R
′
1, . . . , R

′
i−1 are all parts of the randomness R included

in the description of the transformation.

We define TCSpend to be the set of all transformations of this form such that:

1. The certificate cert i is valid (verifiable under the bank’s verification key) and
correspond to the secret key sk i and some additional info Ii.

2. The random values RSNi ,RSNi+1 , RDSi , R picked from Ui belong to the correct
randomness space as defined by the encryption scheme.

Coin withdrawal transformation. A coin that was just withdrawn has a dif-
ferent format from a coin that has already been transferred, as there is no need to
include double spending tags for neither the bank or the user (we ensure that each
coin withdrawn is a different coin). When a user Ui withdraws a coin from the
bank, she picks a nonce n1, computes a commitment com = Com(n1, sk i; open)
on n1 and her secret key and sends it to the bank. (For the user to remain
anonymous it is important that the bank does not learn n1.) The bank com-

putes σ = MSign(sk
(MS)
B , com) and sends it to the user. The latter computes

SN1 = fSN(n1, sk i), chooses randomness RSN1 and sets CSN1 = Enc(SN1;RSN1) and

computes a new signature σ′ = MSigEval(par, vk
(MS)
B , T, com, σ), which yields

the coin defined as c = (par, CSN1 , (n1, RSN1), σ′). A transformation T ∈ TCWith,
which takes as input m = com and outputs T (m) = CSN1 is described by
〈T 〉 = ((sk i, Ii, cert i), (n1, open), RSN1 , SN1). We define

T (com) =

{
CSN1 = Enc(SN1;R1) if Com(n1, sk i; open) = com and SN1 = fSN(sk i, n1)
⊥ otherwise.

We define TCWith to be the set of all transformations of this form such that:

1. The certificate cert i is valid (verifiable under the bank’s verification key) and
correspond to the secret key sk i and Ii.

2. Randomness RSN1 belongs to the appropriate randomness space.

The class of allowed transformations: Ttec We will allow users to apply a trans-
formation in TCWith followed by any number of transformations in TCSpend. Thus,
we define the allowed class of transformations for the malleable signatures used
in our transferable e-cash to be the closure of Ttec = TCWith ∪ TCSpend.

17

4.3 A Transferable E-Cash Construction

Below we describe a transferable e-cash scheme based on malleable signatures.
For our construction we assume secure channels for all the communications, thus
an adversary cannot overhear or tamper with the transferred messages.

ParamGen(1λ): Compute parMS ← MSGen(1λ), parSN ← GenSN (1λ), and parcom ←
ComSetup(1λ). Output par := (1λ, parMS , parcom, parSN).

UKeyGen(par): Output a random pair (pkU , skU) sampled from Rpk .

BKeyGen(par): Compute the withdrawal keys of the bank as (vk
(MS)
B , sk

(MS)
B)←

MSKeyGen(1λ) and (vk
(S)
B , sk

(S)
B) ← SKeyGen(1λ) and the deposit keys as

(pkD, skD)← EKeyGen(1λ). Define pkW = (vk
(MS)
B , vk

(S)
B) and skW = (sk

(MS)
B , sk

(S)
B)

and output ((pkW , skW), (pkD, skD)). The bank maintains a list UL of all
registered users and a list DCL of deposited coins.

Registration(B[skW , pkU],U [skU , pkW]): if pkU 6∈ UL, the bank computes
certU = Sign

sk
(S)
B

(pkU , IDU), where IDU = |UL| + 1. Add pkU , cert , IDU

to the user list UL and output (certU , IDU) or ⊥.

Withdraw(B[skW , pkU],U [skU , pkW]): The user picks a nonce n1 and sends

com = Com(n1, skU ; open). The bank computes σ ← MSign(parMS , sk
(MS)
B , com),

sends it to the user and outputs ok. If MSVerify(parMS , pk
(MS)
B , σ, com) = 0,

the user outputs ⊥; otherwise she sets SN1 = fSN(n1, skU), chooses ran-
domness RSN1 and computes CSN1 = Enc(SN1;RSN1). Then she sets 〈T 〉 =
((sk i, cert i), (n1, open), RSN1 , SN1) and computes the new signature σ′ =

MSigEval(parMS , vk
(MS)
B , T, com, σ). The output is the coin c = (par, CSN1 , (n1, RSN1), σ′).

Spend(U1[c, skU1 , certU1 , pkW],U2[skU2 , pkW]) Parse the coin as

c = (par, CSNi
, CDSi−1

), (ni, RSNi), σ) .

U2 picks a nonce ni+1, computes SNi+1 = fSN(ni+1, skU2) and sends it to U1.
U1 computes the double spending tag DSi = fDS(IDU , ni, skUi , SNi+1) and de-
fines the transformation 〈T 〉 = ((skU1 , certU1), (ni, RSNi , RSNi+1 , RDSi , R), SNi+1).
Next, he computes CSNi+1 = Enc(SNi+1;RSNi+1) and CDSi = Enc(DSi;RDSi),
which he appends to the randomized ciphertext contained in c:

CSNi+1
= REnc(CSN1 ;R1) ‖ . . . ‖ REnc(CSNi ;Ri) ‖ CSNi+1

CDSi
= REnc(DDS1 ;R′1) ‖ . . . ‖ REnc(CDSi−1 ;R′i−1) ‖ CDSi

U1 computes σ′ = MSigEval(par, vk
(MS)
B , T, (CSNi+1

, CDSi
), σ) and sends (σ′, Ri+1,

(CSNi+1
, CDSi

)) to U2. If MSVerify(parMS , pk
(MS)
B , σ′, (CSNi+1

, CDSi
)) = 0 then

U2 aborts. Otherwise, U2 outputs c′ = (par, (CSNi+1
, CDSi

), (ni+1, RSNi+1
), σ′).

Deposit(U [c, skU , certU , pkB],B[skD, pkU ,DCL]): First, U runs a Spend proto-
col with the bank playing the receiver: Spend(U [c, skU , certU1 , pkW],B[⊥, pkW])
(the bank can set the secret key to ⊥, as it will not transfer this coin). If
the protocol did not abort, B holds a valid coin c = (par, (CSNi

, CDSi−1
), (ni,

18

RSNi), σ). Next, using skD, B decrypts the serial number SNi = SN1 ‖ · · · ‖ SNi
and the double spending tags DSi−1 = DS1 ‖ · · · ‖ DSi−1. It checks if in DCL
there exists another coin c′ with SN′1 = SN1; of not then adds coin to DCL.
Otherwise, a double spending must have happened and the bank looks for the
first position d, where SN′d 6= SNd. (Except with negligible probability such
a position exists, since SNi was chosen by the bank.) It applies the double-
spending detection function fDetectDS on the corresponding double spending
tags DSd−1 and DS′d−1. If fDetectDS outputs ⊥ then B aborts. Otherwise, it
outputs (pkU , Π)) = fDetectDS(DSd−1, DS

′
d−1,UL).

VerifyGuilt(pkU , Π): it outputs 1 if the proof Π verifies and 0 otherwise.

Withdraw and Spend are depicted in the full version, where, due to space con-
straints, the proof of the following was also deferred.

Theorem 1. If the malleable signature scheme (MSGen, MSKeyGen, MSign,
MSVerify, MSigEval) is simulatable, simulation unforgeable and simulation hiding
with respect to T , the signature scheme (SKeyGen,Sign,Verify) is existentially un-
forgeable, the randomizable public-key encryption scheme (EKeyGen, Enc, REnc,
Dec) is semantically secure and statistically re-randomizable, and the commit-
ment scheme (ComSetup,Com) is computationally hiding and perfectly binding,
then the construction in Section 4.3 describes a secure and anonymous transfer-
able e-cash scheme as defined in Section 2.

4.4 Why Malleable Signatures

Let us discuss why our construction requires the use of this powerful primitive.
Malleable signatures satisfy a strong notion of unforgeability, called simulation
unforgeability (see the full version). In brief, it requires that an adversary who
can ask for simulated signatures and then outputs a valid message/signature pair
(m∗, σ∗) must have derived the pair from received signatures. This is formalized
by requiring that there exists an extractor that from (m∗, σ∗) extracts messages
~m that were all queried to the signing oracle and a transformation T such that
m∗ = T (~m).

Among the anonymity notions considered in the literature, Spend-then-Receive
(StR) anonymity (formally defined in the full version) is the hardest to achieve.
Recall that it formalizes that an adversary should not be able to recognize a
coin he had already owned before. Intuitively, our scheme satisfies it, since a
coin only consists of ciphertexts, which are re-randomized, and a malleable sig-
nature, which can be simulated. However, when formally proving the notion we
have to provide a Deposit oracle, which we cannot simulate when reducing to
the security of the encryptions. Here we make use of the properties of malleable
signatures, which allow us to extract enough information to check for double-
spendings—even after issuing simulated signatures (see the proof of Lemma ??).

The scheme by Blazy et al. [BCF+11] also claims to achieve StR anonymity.
In their scheme a coin contains Groth-Sahai (GS) commitments ~c to the serial

number, additional (ElGamal) encryptions ~d of it and a GS proof that guarantees

19

that the values in ~c and ~d are the same. The bank detects double-spending by
decrypting ~d. In their proof of StR anonymity by game hopping, they first replace
the GS commitments and proofs by perfectly hiding ones and then simulate the
proofs. (Double-spending can still be checked via the values ~d.) Finally they
argue that in the “challenge spending via Spd in the experiment, we replace the
commitments/encryptions dni

[. . .] by random values.”

It is not clear how this can be done while still simulating the Deposit oracle,
which must check for double-spendings: a simulator breaking security of the
encryptions would not know the decryption key required to extract the serial
number from ~d. (One would have to include additional encryptions of the serial
number and use them for extraction—however, for this approach to work, the
proof guaranteeing that the encryptions contain the same values would have to
be simulation-sound (cf. [Sah99]), which however contradicts the fact that they
must be randomizable.)

5 Instantiation

In order to instantiate our scheme we need to make concrete choices for a mal-
leable signature scheme which supports the allowable transformations TCSpend

and TCWith, a signature scheme for the signing of certificates, a randomizable
public key encryption scheme, a commitment scheme (ComSetup,Com) and a
zero knowledge proof system 〈P, V 〉.

We can use the malleable signature construction given by Chase et al. [CKLM14].
They provide a generic construction of malleable signatures that is based on
cm-NIZKs [CKLM12]. There exist two constructions of cm-NIZKs, both due to
Chase et al.: the first [CKLM12] is based in Groth-Sahai proofs [GS08], the sec-
ond [CKLM13], less efficient but simpler one is based on succinct non-interactive
arguments of knowledge (SNARGs) and fully homomorphic encryption. The
SNARG based construction directly gives a feasibility result, as long as there is
some constant maximum on the number of times a given coin can be transferred.
To achieve an efficient instantiation, one could instead use the Groth-Sahai in-
stantiation.

In the full version we present an instantiation of our construction based
on Groth-Sahai. We first explain that we have to extend the TCSpend, TCWith

transformations to include the identity. Then, we show that our relation and
transformations are CM-friendly (Def. ??) which means that all of the objects
(instances, witnesses and transformations) can be represented as elements of a
bilinear group so that the system is compatible with Groth-Sahai proofs. To
achieve that we need to slightly modify our construction very slightly, to map
elements of Zp (like ni, sk i, Ii) into the pairing group for the transformation –
this happens in a straightforward way without affecting security. Finally, for the
rest of the building blocks, we use the structure preserving signature due to Abe
et al. [ACD+12] and El Gamal encryption scheme [EG85] for both encryption
and commitments.

20

References

ABC+12. Jae Hyun Ahn, Dan Boneh, Jan Camenisch, Susan Hohenberger, abhi she-
lat, and Brent Waters. Computing on authenticated data. In TCC, 2012.

ACD+12. Masayuki Abe, Melissa Chase, Bernardo David, Markulf Kohlweiss, Ryo
Nishimaki, and Miyako Ohkubo. Constant-size structure-preserving sig-
natures: Generic constructions and simple assumptions. In ASIACRYPT,
2012.

ALP. Nuttapong Attrapadung, Benôıt Libert, and Thomas Peters. Computing
on authenticated data: New privacy definitions and constructions. In ASI-
ACRYPT.

BBS04. Dan Boneh, Xavier Boyen, and Hovav Shacham. Short group signatures.
In CRYPTO, 2004.

BCF+11. Olivier Blazy, Sébastien Canard, Georg Fuchsbauer, Aline Gouget, Hervé
Sibert, and Jacques Traoré. Achieving optimal anonymity in transferable e-
cash with a judge. In AFRICACRYPT, 2011. Available at http://crypto.
rd.francetelecom.com/publications/p121.

BCG+14. Eli Ben-Sasson, Alessandro Chiesa, Christina Garman, Matthew Green, Ian
Miers, Eran Tromer, and Madars Virza. Zerocash: Decentralized anony-
mous payments from bitcoin. 2014.

BCKL09. M. Belenkiy, M. Chase, M. Kohlweiss, and A. Lysyanskaya. Compact e-cash
and simulatable VRFs revisited. In Pairing, lncs. SV, 2009.

Bla08. Marina Blanton. Improved conditional e-payments. In ACNS, 2008.
Bra93. Stefan Brands. Untraceable off-line cash in wallets with observers (extended

abstract). In CRYPTO, 1993.
CFN88. David Chaum, Amos Fiat, and Moni Naor. Untraceable electronic cash. In

CRYPTO, 1988.
CG08. Sébastien Canard and Aline Gouget. Anonymity in transferable e-cash. In

ACNS, 2008.
CGT08. Sébastien Canard, Aline Gouget, and Jacques Traoré. Improvement of

efficiency in (unconditional) anonymous transferable e-cash. In FC. 2008.
Cha83. David Chaum. Blind signature system. In CRYPTO, 1983.
CHL05. Jan Camenisch, Susan Hohenberger, and Anna Lysyanskaya. Compact e-

cash. In EUROCRYPT, 2005.
CKLM12. Melissa Chase, Markulf Kohlweiss, Anna Lysyanskaya, and Sarah Meikle-

john. Malleable proof systems and applications. In EUROCRYPT, 2012.
CKLM13. Melissa Chase, Markulf Kohlweiss, Anna Lysyanskaya, and Sarah Meikle-

john. Succinct malleable NIZKs and an application to compact shuffles. In
TCC, 2013.

CKLM14. Melissa Chase, Markulf Kohlweiss, Anna Lysyanskaya, and Sarah Meik-
lejohn. Malleable signatures: New definitions and delegatable anonymous
credentials. In IEEE Computer Security Foundations Symposium, 2014.

CP92. David Chaum and Torben Pryds Pedersen. Transferred cash grows in size.
In EUROCRYPT, 1992.

EG85. Taher El Gamal. A public key cryptosystem and a signature scheme based
on discrete logarithms. In CRYPTO, 1985.

FPV09. Georg Fuchsbauer, David Pointcheval, and Damien Vergnaud. Transferable
constant-size fair e-cash. In CANS. Springer-Verlag, 2009.

Fuc11. Georg Fuchsbauer. Commuting signatures and verifiable encryption. In
EUROCRYPT, 2011.

21

http://crypto.rd.francetelecom.com/publications/p121
http://crypto.rd.francetelecom.com/publications/p121

GS08. Jens Groth and Amit Sahai. Efficient non-interactive proof systems for
bilinear groups. In EUROCRYPT, 2008.

MGGR13. Ian Miers, Christina Garman, Matthew Green, and Aviel D. Rubin. Zero-
coin: Anonymous distributed e-cash from bitcoin. In 2013 IEEE Symposium
on Security and Privacy, SP 2013, Berkeley, CA, USA, May 19-22, 2013,
pages 397–411, 2013.

Nak08. S. Nakamoto. Bitcoin: A peer-to-peer electronic cash. bit-
coin.org/bitcoin.pdf, 2008.

OO89. Tatsuaki Okamoto and Kazuo Ohta. Disposable zero-knowledge authenti-
cations and their applications to untraceable electronic cash. In CRYPTO,
1989.

OO91. Tatsuaki Okamoto and Kazuo Ohta. Universal electronic cash. In
CRYPTO, 1991.

Sah99. Amit Sahai. Non-malleable non-interactive zero knowledge and adaptive
chosen-ciphertext security. In FOCS, 1999.

vAE90. H. van Antwerpen and Technische Universiteit Eindhoven. Off-line Elec-
tronic Cash. Eindhoven University of Technology, 1990.

22

	 Anonymous Transferable E-Cash

