
Close to Uniform Prime Number Generation With
Fewer Random Bits
Pierre-Alain Fouque1 and Mehdi Tibouchi2

1 Université Rennes 1 and Institut Universitaire de France,
Pierre-Alain.Fouque@ens.fr

2 NTT Secure Platform Laboratories – 3–9–11 Midori-cho, Musashino-shi,
Tokyo 180–8585, Japan tibouchi.mehdi@lab.ntt.co.jp

Abstract
In this paper, we analyze several variants of a simple method for generating prime numbers

with fewer random bits. To generate a prime p less than x, the basic idea is to fix a constant
q ∝ x1−ε, pick a uniformly random a < q coprime to q, and choose p of the form a + t · q,
where only t is updated if the primality test fails. We prove that variants of this approach
provide prime generation algorithms requiring few random bits and whose output distribution is
close to uniform, under less and less expensive assumptions: first a relatively strong conjecture
by H. Montgomery, made precise by Friedlander and Granville; then the Extended Riemann
Hypothesis; and finally fully unconditionally using the Barban–Davenport–Halberstam theorem.

We argue that this approach has a number of desirable properties compared to previous
algorithms. In particular:

it uses much fewer random bits than both the “trivial algorithm” (testing random numbers
less than x for primality) and Maurer’s almost uniform prime generation algorithm;
the distance of its output distribution to uniform can be made arbitrarily small, unlike al-
gorithms like PRIMEINC (studied by Brandt and Damgård), which we show exhibit signi-
ficant biases;
all quality measures (number of primality tests, output entropy, randomness, etc.) can be
obtained under very standard conjectures or even unconditionally, whereas most previous
nontrivial algorithms can only be proved based on stronger, less standard assumptions like
the Hardy–Littlewood prime tuple conjecture.

1998 ACM Subject Classification G.4 Algorithm design and analysis

Digital Object Identifier 10.4230/LIPIcs.xxx.yyy.p
Keywords: Number Theory, Cryptography, Prime Number Generation.

© Pierre-Alain Fouque and Mehdi Tibouchi;
licensed under Creative Commons License NC-ND

Conference title on which this volume is based on.
Editors: Billy Editor, Bill Editors; pp. 1–19

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://dx.doi.org/10.4230/LIPIcs.xxx.yyy.p
http://creativecommons.org/licenses/by-nc-nd/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

2 Close to Uniform Prime Number Generation With Fewer Random Bits

1 Introduction

There are several ways in which we could assess the quality of a random prime generation
algorithm, such as its speed (time complexity), its accuracy (the probability that it outputs
numbers that are in fact composite), its statistical properties (the regularity of the output
distribution), and the number of bits of randomness it consumes to produce a prime number
(as good randomness is crucial to key generation and not easy to come by [9]).

In a number of works in the literature, cryptographers have proposed faster prime gen-
eration algorithms [4, 3, 16, 15] or algorithms providing a proof that the generated numbers
are indeed prime numbers [18, 19, 20].

A number of these works also prove lower bounds on the entropy of the distribution of
prime numbers they generate, usual based on very strong conjectures on the regularity of
prime numbers, such as the prime r-tuple conjecture of Hardy-Littlewood [13]. However,
such bounds on the entropy do not ensure that the resulting distribution is statistically
close to the uniform distribution: for example, they do not preclude the existence of efficient
distinguishers from the uniform distribution, which can indeed be shown to exist in most
cases.

But some cryptographic protocols (including most schemes based on the Strong RSA
assumption, such as Cramer-Shoup signatures [5]) specifically require uniformly distributed
prime numbers for the security proofs to go through1.

Moreover, some cryptographers, like Maurer [18], have argued that even for more common
uses of prime number generation, like RSA key generation, one should preferably generate
primes that are almost uniform, so as to avoid biases in the RSA moduli N themselves, even
if it is not immediately clear how such biases can help an adversary trying to factor N . This
view is counterbalanced by results of Mihăilescu [21] stating in particular that, provided the
biases are not too large (a condition that is satisfied by the algorithms with large output
entropy mentioned above, if the conjectures used to establish those entropy bounds hold),
then, asymptotically, they can give at most a polynomial advantage to an adversary trying
to factor N . This makes the problem of uniformity in prime number generation somewhat
comparable to the problem of tightness in security reductions.

To the authors’ knowledge, the only known prime generation algorithms for which the
statistical distance to the uniform distribution can be bounded are the one proposed by
Maurer [18, 19] on the one hand, and the trivial algorithm (viz. pick a random odd integer
in the desired interval, return it if it is prime, and try again otherwise) on the other hand.
The output distribution of the trivial algorithm is exactly uniform (or at least statistically
close, once one accounts for the compositeness probability of the underlying randomized
primality checking algorithm), and the same can be said for at least some variants of Maurer’s
algorithm, but both of those algorithms have the drawback of consuming a very large amount
of random bits.

By contrast, the PRIMEINC algorithm studied by Brandt and Damgård [3] (basically,
pick a random number and increase it until a prime is found) only consumes roughly as many
random bits as the size of the output primes, but we can show that its output distribution,
even if it can be shown to have high entropy if the prime r-tuple conjecture holds, is also
provably quite far from uniform, as we demonstrate in §4.1. It is likely that most algorithms

1 In fact, it is sometimes enough to prove that collision probability is small. However, the authors are
not aware of any prime number generator for which collision probability can be bounded other than
those ensuring the uniformity of the output distribution.

P.-A. Fouque and M. Tibouchi 3

that proceed deterministically beyond an initial random choice, including those of Joye,
Paillier and Vaudenay [16, 15], exhibit similar distributional biases.

The goal of this paper is to achieve in some sense the best of both worlds: construct a
prime generation algorithm that consumes much fewer random bits than the trivial algorithm
while being efficient and having an output distribution that is provably close to the uniform
one.

We present such an algorithm in §3: to generate a prime p, the basic idea is to fix a
constant q ∼ x1−ε, pick a uniformly random a < q coprime to q, and choose p of the form
a + t · q, where only t is updated if the primality test fails. We prove that variants of this
approach provide prime generation algorithms requiring few random bits and whose output
distribution is close to uniform, under less and less expensive assumptions: first a relatively
strong conjecture by H. L. Montgomery, made precise by Friedlander and Granville; then
the Extended Riemann Hypothesis; and finally fully unconditionally using the Barban–
Davenport–Halberstam theorem.

2 Preliminaries

2.1 Regularity measures of finite probability distributions
In this subsection, we give some definitions on distances between random variables and the
uniform distribution on a finite set. We also provide some relations which will be useful to
bound the entropy of our prime generation algorithms. These results can be found in [24].

[Entropy and Statistical Distance] Let X and Y be two random variables on a finite set
S. The statistical distance between them is defined as the ℓ1 norm:2

∆1(X; Y) =
∑
s∈S

∣∣∣ Pr[X = s]− Pr[Y = s]
∣∣∣.

We simply denote by ∆1(X) the statistical distance between X and the uniform distribution
on S:

∆1(X) =
∑
s∈S

∣∣∣ Pr[X = s]− 1
|S|

∣∣∣,
and say that X is statistically close to uniform when ∆1(X) is negligible.3

The squared Euclidean imbalance of X is the square of the ℓ2 norm between X and the
uniform distribution on the same set:

∆2
2(X) =

∑
s∈S

∣∣∣ Pr[X = s]− 1/|S|
∣∣∣2

.

We also define the collision probability of X as:

β(X) =
∑
s∈S

Pr[X = s]2,

and the collision entropy (also known as the Rényi entropy) of X is then H2(X) = − log2 β(X).
Finally, the min-entropy of X is H∞(X) = − log2 γ(X), where γ(X) = maxs∈S(Pr[X = s]).

2 An alternate definition frequently found in the literature differs from this one by a constant factor 1/2.
That constant factor is irrelevant for our purposes.

3 For this to be well-defined, we of course need a family of random variables on increasingly large sets S.
Usual abuses of language apply.

4 Close to Uniform Prime Number Generation With Fewer Random Bits

▶ Lemma A. Suppose X is a random variable of a finite set S. The quantities defined above
satisfy the following relations:

γ(X)2 ≤ β(X) = 1/|S|+ ∆2
2(X) ≤ γ(X) ≤ 1/|S|+ ∆1(X), (1)

∆1(X) ≤ ∆2(X)
√
|S|. (2)

2.2 Prime numbers in arithmetic progressions
All algorithms proposed in this paper are based on the key idea that, for any given integer
q > 1, prime numbers are essentially equidistributed among invertible classes modulo q. The
first formalization of that idea is de la Vallée Poussin’s prime number theorem for arithmetic
progressions [8], which states that for any fixed q > 1 and any a coprime to q, the number
π(x; q, a) of prime numbers p ≤ x such that p ≡ a (mod q) satisfies:

π(x; q, a) ∼
x→+∞

π(x)
φ(q)

. (3)

De la Vallée Poussin established that estimate for constant q, but it is believed to hold
uniformly in a very large range for q. In fact, H. L. Montgomery conjectured [22, 23] that
for any ε > 0:4∣∣∣∣π(x; q, a)− π(x)

φ(q)

∣∣∣∣≪ε (x/q)1/2+ε
(
q < x, (a, q) = 1

)
,

which would imply that (3) holds uniformly for q ≪ x/ log2+ε x. However, Friedlander and
Granville showed [10] that conjecture to be overly optimistic, and proposed the following
corrected estimate.

▶ Conjecture B (Friedlander–Granville–Montgomery). For q < x, (a, q) = 1 and all ε > 0,
we have:∣∣∣∣π(x; q, a)− π(x)

φ(q)

∣∣∣∣≪ε (x/q)1/2 · xε.

In particular, the estimate (3) holds uniformly for q ≪ x1−3ε.

That conjecture is much more precise than what can be proved using current techniques,
however. The best unconditional result of the same form is the Siegel–Walfisz theorem [26],
which only implies that (3) holds in the much smaller range q ≪ (log x)A (for any A > 0).

Stronger estimates can be established assuming the Extended Riemann Hypothesis (i.e.
the Riemann Hypothesis for L-functions of Dirichlet characters/cyclotomic number fields),
which gives [6, p. 125]:∣∣∣∣π(x; q, a)− π(x)

φ(q)

∣∣∣∣≪ x1/2 log x
(
q < x, (a, q) = 1

)
.

This implies (3) in the range q ≪ x1/2/ log2+ε x, which is again much smaller than the one
from Conjecture B. The range can be extended using averaging, however. The previous result
under ERH is actually deduced from estimates on the character sums π(x, χ) =

∑
p≤x χ(p)

for nontrivial Dirichlet characters χ mod q, and more careful character sum arguments al-
lowed Turán to obtain the following theorem.

4 As is usual in analytic number theory and related subjects, we use the notations f(u) ≪ g(u) and
f(u) = O

(
g(u)

)
interchangeably. A subscripted variable on ≪ or O means that the implied constant

depends only on that variable.

P.-A. Fouque and M. Tibouchi 5

▶ Theorem C (Turán [25]). The Extended Riemann Hypothesis implies that for all q < x:

∑
a∈(Z/qZ)∗

∣∣∣∣π(x; q, a)− π(x)
φ(q)

∣∣∣∣2

≪ x(log x)2

where the implied constant is absolute.

That estimate is nontrivial in the large range q ≪ x/ log4+ε, and implies that (3) holds for
all q in that range and almost all a ∈ (Z/qZ)∗.

Averaging over the modulus as well, it is possible to obtain fully unconditional estimates
valid in a similarly wide range: this is a result due to Barban [2] and Davenport and
Halberstam [7]. We will use the following formulation due to Gallagher [11], as stated in [6,
Ch. 29].

▶ Theorem D (Barban–Davenport–Halberstam). For any fixed A > 0 and any Q such that
x(log x)−A < Q < x, we have:

∑
q≤Q

∑
a∈(Z/qZ)∗

∣∣∣∣π(x; q, a)− π(x)
φ(q)

∣∣∣∣2

≪A
xQ

log x
.

Finally, we will also need a few classical facts regarding Euler’s totient function (for
example, [14, Th. 328 & 330]).

▶ Lemma E. The following asymptotic estimates hold:

φ(q)≫ q

log log q
, (4)

Φ(x) :=
∑
q≤x

φ(q) = 3x2

π2 + O(x log x). (5)

3 Close-to-uniform prime number generation with fewer random bits

3.1 Basic algorithm
A simple method to construct obviously uniformly distributed prime numbers up to x is to
pick random numbers in {1, . . . , ⌊x⌋} and retry until a prime is found. However, this method
consumes log2 x bits of randomness per iteration (not counting the amount of randomness
consumed by primality testing), and hence an expected amount of (log x)2/ log 2 bits of
randomness to produce a prime, which is quite large.

As mentioned in the introduction, we propose the following algorithm to generate almost
uniform primes while consuming fewer random bits: first fix an integer:

q ∝ x1−ε (6)

and pick a random a ∈ (Z/qZ)∗. Then, search for prime numbers ≤ x of the form p = a+t·q.
This method, described as Algorithm 1, only consumes log2 t = ε log2 x bits of randomness
per iteration, and the probability of success at each iteration is ∼ π(x;q,a)

x/q . Assuming that
Conjecture B is true, which ensure that (3) holds in the range (6), this probability is about
q/

(
φ(q) log x

)
, and the algorithm should thus consume roughly:

ε · φ(q)
q
· (log x)2

log 2
(7)

6 Close to Uniform Prime Number Generation With Fewer Random Bits

Algorithm 1 Our basic algorithm.
1: Fix q ∝ x1−ε

2: a
$← (Z/qZ)∗ ▷ considered as an element of {1, . . . , q − 1}

3: repeat forever
4: t

$← {0, . . . , ⌊x−a
q ⌋}

5: p← a + t · q
6: if p is prime then return p

7: end repeat

bits of randomness on average: much less than the trivial algorihm. Moreover, we can
also show, under the same assumption, that the output distribution is statistically close to
uniform and has close to maximal entropy.

We establish those results in §3.2, and show in §3.3 that Turán’s theorem can be used
to obtain nearly the same results under the Extended Riemann Hypothesis. ERH is not
sufficient to prove that Algorithm 1 terminates almost surely, or to bound the expectation of
the number of random bits it consumes, due to the possibly large contribution of negligibly
few values of a. We can avoid these problems by modifying the algorithm slightly, as
discussed in §3.4. Finally, in §3.5, we show that unconditional results of the same type can
be obtained using the Barban–Davenport–Halberstam theorem, for another slightly different
variant of the algorithm.

Before turning to these analyses, let us make a couple of remarks on Algorithm 1. First,
note that one is free to choose q in any convenient way in the range (6). For example, one
could choose q as the largest power of 2 less than x1−ε, so as to make Step 2 very easy. It is
preferable, however, to choose q as a (small multiple of a) primorial, to minimize the ratio
φ(q)/q, making it as small as ∝ 1/ log log q ∼ 1/ log log x; this makes the expected number
of iterations and the expected amount (7) of consumed randomness substantially smaller.
In that case, Step 2 becomes slightly more complicated, but this is of no consequence.

Indeed, our second observation is that Step 2 is always negligible in terms of running
time and consumed randomness compared to the primality testing loop that follows. Indeed,
even the trivial implementation—namely, pick a random a ∈ {0, . . . , q − 1} and try again if
gcd(a, q) ̸= 1—requires q/φ(q) ≪ log log q iterations on average. It is thus obviously much
faster than the primality testing loop, and consumes ≪ log x log log x bits of randomness,
which is negligible compared to (7). Furthermore, an actual implementation would take
advantage of the known factorization of q and use a unit generation algorithm such as the
one proposed by Joye and Paillier [15], which we can show requires only O(1) iterations on
average.

Finally, while we will not discuss the details of the primality test of Step 6, and shall
pretend that it returns exact results, we note that it is fine (and in practice preferable)
to use a probabilistic compositeness test such as Miller–Rabin instead, provided that the
number of rounds is set sufficiently large as to make the error probability negligible. Indeed,
the output distribution of our algorithm then stays statistically close to uniform, and the
number of iterations is never larger.

3.2 Analysis under the Friedlander–Granville–Montgomery conjecture

As mentioned above, it is straightforward to deduce from the Friedlander–Granville–Montgomery
conjecture that Algorithm 1 terminates almost surely, and to bound its expected number of

P.-A. Fouque and M. Tibouchi 7

iterations and amount of consumed randomness.

▶ Theorem 3.2.1. Assume that Conjecture B holds. Then Algorithm 1 terminates almost
surely, requires (1+o(1))φ(q)/q · log x iterations of the main loop on average, and consumes:

(
ε + o(1)

)
· φ(q)

q
· (log x)2

log 2

bits of randomness on average.

Proof. Indeed, fix q ∝ x1−ε. Conjecture B implies, uniformly over a ∈ (Z/qZ)∗:∣∣∣∣π(x; q, a)− π(x)
φ(q)

∣∣∣∣≪ (x/q)1/2 · xε/4 ∝ x3ε/4,

which is negligible compared to π(x)/φ(q) ≫ xε/ log x. As a result, we get π(x; q, a) =
(1+o(1))π(x)/φ(q) = (1+o(1))/φ(q) ·x/ log x uniformly over a, and the success probability
of the main loop becomes:

π(x; q, a)
1 + ⌊x−a

q ⌋
= q

φ(q)
· 1 + o(1)

log x

which implies the stated results immediately. ◀

Now let X be the output distribution of Algorithm 1, i.e. the distribution on the set
of prime numbers ≤ x such that Algorithm 1 outputs a prime p with probability exactly
Pr[X = p]. Clearly, we have, for all (a, q) = 1 and all t such that a + t · q ≤ x is prime:

Pr[X = a + t · q] = 1
φ(q)

· 1
π(x; q, a)

.

As a result, the squared Euclidean imbalance of X is:

∆2
2(X) =

∑
a∈(Z/qZ)∗

∑
a+tq≤x prime

∣∣∣ Pr[X = a + tq]− 1
π(x)

∣∣∣2
+

∑
p|q

1
π(x)2

=
∑

a∈(Z/qZ)∗

π(x; q, a)
∣∣∣ 1
φ(q)

· 1
π(x; q, a)

− 1
π(x)

∣∣∣2
+

∑
p|q

1
π(x)2

= 1
π(x)2

∑
a∈(Z/qZ)∗

1
π(x; q, a)

∣∣∣π(x; q, a)− π(x)
φ(q)

∣∣∣2
+

∑
p|q

1
π(x)2

≪ 1
π(x)2

∑
a∈(Z/qZ)∗

1
xε
· x3ε/2 ≪ log2 x

x2 · φ(q)xε/2 ≪ log2 x

x1+ε/2 ≪
1

x1+ε/3 .

We can then deduce the following.

▶ Theorem 3.2.2. Assume that Conjecture B holds. Then the output distribution of Al-
gorithm 1 is statistically close to uniform, and its collision entropy is only negligibly smaller
than that of the uniform distribution.

Proof. Indeed, by (2), the statistical distance to the uniform distribution satisfies:

∆1(X) ≤ ∆2(X)
√

π(x)≪ 1
x1/2+ε/6

√
x

log x
≪ x−ε/6,

8 Close to Uniform Prime Number Generation With Fewer Random Bits

which is negligible. Moreover, the collision probability is:

β(X) = 1
π(x)

+ ∆2
2(X) = 1

π(x)

(
1 + O

(π(x)
x1+ε/3

))
= 1

π(x)

(
1 + o

(
x−ε/3))

.

Hence:

H2(X) = log2
(
π(x)

)
− log2

(
1 + o(x−ε/3)

)
= (H2)max − o(x−ε/3)

as required. ◀

3.3 Analysis under the Extended Riemann Hypothesis
Assume the Extended Riemann Hypothesis, and denote by α the fraction of all possible
choices of a ∈ (Z/qZ)∗ such that the error term E(x; q, a) :=

∣∣π(x; q, a)−π(x)/φ(q)
∣∣ satisfies

E(x; q, a) > x3ε/4. Then, Turán’s theorem asserts that:

1
φ(q)

∑
a∈(Z/qZ)∗

E(x; q, a)2 ≪ x(log x)2,

and the left-hand side is greater or equal to αx3ε/2 by definition of α. As a result, we get:

α≪ (log x)2

xε/2

and hence α is negligible. Therefore, for all except at most a negligible fraction of choices
of a ∈ (Z/qZ)∗, we obtain that E(x; q, a) ≤ x3ε/4, and since π(x)/φ(q) ≫ xε/ log x, this
implies π(x; q, a) = (1 + o(1))π(x)/φ(q) as before. As a result, under ERH, we obtain an
analogue of Theorem 3.2.1 valid with overwhelming probability on the choice of a.

▶ Theorem 3.3.1. Assume ERH holds. Then Algorithm 1 terminates with overwhelming
probability. Moreover, except for a negligible fraction of choices of the class a mod q, it
requires (1 + o(1))φ(q)/q · log x iterations of the main loop on average, and consumes:

(
ε + o(1)

)
· φ(q)

q
· (log x)2

log 2

bits of randomness on average.

Turning now to the output distribution of the algorithm, we now note that Algorithm 1
almost surely produces an output for a given choice of a if and only if π(x; q, a) ̸= 0, and
this is no longer certain under ERH. Therefore, the probability that the algorithm outputs
a prime p = a + tq ≤ x becomes:

Pr[X = a + tq] = 1
φ∗

x(q)
· 1

π(x; q, a)
,

where φ∗
x(q) = #{a ∈ (Z/qZ)∗ | π(x; q, a) ̸= 0}. By the previous discussion on the distri-

bution of the values π(x; q, a), we know that φ∗
x(q) = φ(q) ·

(
1 − O(log2 x

xε/2)
)
. As a result, a

similar computation as in §3.2 gives:

∆2
2(X) = 1

π(x)2

∑
a∈(Z/qZ)∗

π(x;q,a) ̸=0

1
π(x; q, a)

∣∣∣π(x; q, a)− π(x)
φ∗

x(q)

∣∣∣2
+ ω(q)

π(x)2 ,

P.-A. Fouque and M. Tibouchi 9

where ω(q) denotes as usual the number of prime factors of q. Then, using the coarse lower
bound π(x; q, a) ≥ 1 when π(x; q, a) ̸= 0, we get:

∆2
2(X) ≤ S2 + ω(q)

π(x)2

where:

S =

√√√√ ∑
a∈(Z/qZ)∗

∣∣∣π(x; q, a)− π(x)
φ∗

x(q)

∣∣∣2

≤

√√√√ ∑
a∈(Z/qZ)∗

∣∣∣π(x; q, a)− π(x)
φ(q)

∣∣∣2
+

√√√√ ∑
a∈(Z/qZ)∗

π(x)2
∣∣∣φ(q)− φ∗

x(q)
φ(q) · φ∗

x(q)

∣∣∣2

= O(x1/2 log x) +

√
φ(q)π(x)2

∣∣∣ α

1− α
· 1

φ(q)

∣∣∣2

≪ x1/2 log x + π(x) log2 x

φ(q)1/2xε/2 ≪ x1/2 log x + x log x log log q

q1/2xε/2 ≪ x1/2 log x log log x.

by Turán’s theorem again. Hence:

∆2
2(X)≪ x log2+ε x

π(x)2 ≪ log3+ε x

π(x)
.

This is enough to obtain a relatively good bound on the collision entropy:

H2(X) = log2(π(x))− log2(log3+ε x) = (H2)max −O(log log x)

but isn’t sufficient for bounding the statistical distance. However, a direct computation
using Turán’s theorem and the Cauchy–Schwarz inequality is enough:

∆1(X) =
∑

a∈(Z/qZ)∗

π(x;q,a)̸=0

π(x; q, a)
∣∣∣ 1
φ∗

x(q)
· 1

π(x; q, a)
− 1

π(x)

∣∣∣ +
∑
p|q

1
π(x)

= 1
π(x)

∑
a∈(Z/qZ)∗

π(x;q,a)̸=0

∣∣∣π(x; q, a)− π(x)
φ∗

x(q)

∣∣∣ + ω(q)
π(x)

≪ 1
π(x)

· S ·
√

φ∗
x(q)≪ log x

x
· x1/2 log2 x · √q ≪ log3 x

x1/2 · x
1/2−ε/2 ≪ log3 x

xε/2 .

We thus obtain the following result.

▶ Theorem 3.3.2. Assume ERH holds. Then the output distribution of Algorithm 1 is
statistically close to uniform, and its collision entropy is only O(log log x) bits smaller than
that of the uniform distribution.

3.4 Achieving almost sure termination under ERH
Theorem 3.3.1 above is somewhat unsatisfactory, as we have to ignore a negligible but
possibly nonzero fraction of all values a mod q to obtain a bound on the average number
of iterations and on the randomness consumed by Algorithm 1 under ERH. But this is
unavoidable for that algorithm: as mentioned above, it is not known whether ERH implies

10 Close to Uniform Prime Number Generation With Fewer Random Bits

that for q ∝ x1−ε, all a ∈ (Z/qZ)∗ satisfy π(x; q, a) ̸= 0. And if an a exists such that
π(x; q, a) = 0, the choice of that a in Step 2 of Algorithm 1, however unlikely, is a case of
non-termination: as a result, the existence of such an a prevents any nontrivial bound on
average running time or average randomness.

We propose to circumvent that problem by falling back to the trivial algorithm (pick a
random p < x, check whether it is prime and try again if not) in case too many iterations
of the main loop have been carried out. This variant is presented as Algorithm 2.

Algorithm 2 A variant which terminates almost surely under ERH.
1: Fix q ∝ x1−ε

2: a
$← (Z/qZ)∗ ▷ considered as an element of {1, . . . , q − 1}

3: repeat T = log2 x times
4: t

$← {0, . . . , ⌊x−a
q ⌋}

5: p← a + t · q
6: if p is prime then return p

7: end repeat
8: repeat forever
9: p

$← {1, . . . , ⌊x⌋}
10: if p is prime then return p

11: end repeat

Clearly, since Algorithm 2 is the same as Algorithm 1 except for the possible fallback
to the trivial algorithm, which has a perfectly uniform output distribution, the output
distribution of the variant is at least as close to uniform as the original algorithm. In other
words, the analogue of Theorem 3.3.2 holds, with the same proof.

▶ Theorem 3.4.1. Assume ERH holds. Then the output distribution of Algorithm 2 is
statistically close to uniform, and its collision entropy is only O(log log x) bits smaller than
that of the uniform distribution.

Moreover, as claimed above, we can obtain the following stronger analogue of Theorem 3.3.1.

▶ Theorem 3.4.2. Assume ERH holds. Then Algorithm 2 terminates almost surely, requires
(1 + o(1))φ(q)/q · log x iterations of the main loop on average, and consumes:(

ε + o(1)
)
· φ(q)

q
· (log x)2

log 2

bits of randomness on average.

Proof. Algorithm 2 terminates almost surely because the trivial algorithm does. One can
estimate its average number of iterations as follows. Denote by ϖ(t) the probability that
Algorithm 2 terminates after exactly t iterations, and ϖa(t) the probability of the same
event conditionally to a being chosen in Step 2. We have:

ϖa(t) =

(

1− π(x; q, a)
1 + ⌊x−a

q ⌋

)t−1

· π(x; q, a)
1 + ⌊x−a

q ⌋
for t ≤ T ;(

1− π(x; q, a)
1 + ⌊x−a

q ⌋

)T (
1− π(x)

⌊x⌋

)t−T −1

· π(x)
⌊x⌋

otherwise.

ϖ(t) = 1
φ(q)

∑
a∈(Z/qZ)∗

ϖa(t).

P.-A. Fouque and M. Tibouchi 11

Moreover, the expected number N of iterations in Algorithm 2 is given by N =
∑

t≥1 tϖ(t).
We can denote by Na =

∑
t≥1 tϖa(t) the contribution of a certain choice a ∈ (Z/qZ)∗.

Now, recall from the previous section that π(x; q, a) is within a distance ≪ x3ε/4 log x of
E[Y] = π∗(x)/φ(q), except for at most φ(q) · x−ε/2 choices of a. If we denote by A the set
of “bad” choices of a, we can write, for all a ∈ A:

ϖa(t) ≤

1 for t ≤ T ;(
1− π(x)

⌊x⌋

)t−T −1
· π(x)
⌊x⌋

otherwise.

Hence, if we let ξ := π(x)/⌊x⌋, we get:

Na ≤
T∑

t=1
t +

+∞∑
t=T +1

t(1− ξ)t−T −1ξ = T (T + 1)/2 +
+∞∑
k=1

(T + k)(1− ξ)k−1ξ

Na ≤ T (T + 1)/2 + T
ξ

ξ
+ ξ

ξ2 ≤ T (T + 3)/2 + 1
ξ
≪ log4 x.

On the other hand, for a ̸∈ A, we have ξa := π(x;q,a)
1+⌊ x−a

q ⌋ = q
φ(q) ·

1+o(1)
log x . Therefore:

Na =
T∑

t=1
t(1− ξa)t−1ξa + (1− ξa)T

+∞∑
t=T +1

t(1− ξ)t−T −1ξ

Na = 1
ξa
−

+∞∑
t=T +1

t(1− ξa)t−1ξa + (1− ξa)T
+∞∑

t=T +1

t(1− ξ)t−T −1ξ

∣∣∣Na −
1
ξa

∣∣∣ ≤ (1− ξa)T
+∞∑
k=1

[
(T + k)(1− ξ)k−1ξ + (T + k)(1− ξa)k−1ξa

]
∣∣∣Na −

1
ξa

∣∣∣ ≤ exp(−Tξa) · (2T + 1/ξ + 1/ξa)∣∣∣Na −
1
ξa

∣∣∣ ≤ exp
(
− (1 + o(1)) q

φ(q)
log x

)
· (2T + 1/ξ + 1/ξa)≪ 1

x1−ε
.

As a result, we obtain:

N = 1
φ(q)

∑
a∈(Z/qZ)∗

Na =
(

1−O(1/xε/2)
)
·
(1

ξa
+ O(1/x1−ε)

)
+ O(1/xε/2) ·O(log4 x)

= 1
ξa

+ O
(log4 x

xε/2

)
= (1 + o(1))φ(q)

q
· log x

as required. As for the expected number R of random bits consumed by the algorithm, it is
given (ignoring the negligible amount necessary to pick a) by:

R = log x

log 2

(T∑
t=1

εt ·ϖ(t) +
+∞∑

t=T +1
(εT + t− T) ·ϖ(t)

)
and the stated estimate is obtained by an exactly analogous computation. ◀

3.5 An unconditional algorithm
Finally, we propose yet another variant of our algorithm for which both almost sure ter-
mination and uniformity bounds can be established unconditionally. It is presented as
Algorithm 3.

12 Close to Uniform Prime Number Generation With Fewer Random Bits

The idea is to no longer use a fixed modulus q, but to pick it uniformly at random instead
in the range {1, . . . , Q} where Q ∝ x(log x)−A; uniformity bounds can then be deduced from
the Barban–Davenport–Halberstam theorem. Unfortunately, since Q is only polynomially
smaller than x, we can no longer prove that the output distribution is statistically close
to uniform: the statistical distance is polynomially small instead, with an arbitrarily large
exponent depending only on the constant A. On the other hand, termination is obtained as
before by falling back to the trivial algorithm after a while, and since q is often very close
to x, we get an even better bound on the number of consumed random bits.

Algorithm 3 An unconditional variant.
1: Fix Q ∝ x(log x)−A even
2: q

$← {Q/2 + 1, . . . , Q}
3: a

$← {0, . . . , q − 1}
4: if gcd(a, q) ̸= 1 then goto step 2
5: repeat T = log2 x times
6: t

$← {0, . . . , ⌊x−a
q ⌋}

7: p← a + t · q
8: if p is prime then return p

9: end repeat
10: repeat forever
11: p

$← {1, . . . , ⌊x⌋}
12: if p is prime then return p

13: end repeat

Algorithm 3 picks the pair (q, a) uniformly at random among pairs of integers such that
q ∈ {Q/2 + 1, . . . , Q} and a is a standard representative of the classes in (Z/qZ)∗. There
are:

F (Q) :=
∑

Q/2<q≤Q

φ(q) = Φ(Q)− Φ(Q/2) = 9
4π2 Q2 + O(Q log Q)

possible such pairs, and we claim that for all except a polynomially small fraction of them,
π(x; q, a) is close to π(x)/φ(q). Indeed, denote by α the fraction of all pairs (q, a) such that:

E(x; q, a) :=
∣∣∣π(x; q, a)− π(x)

φ(q)

∣∣∣ > (log x)3A/4.

Since π(x)/φ(q) ≫ x/Q ∝ (log x)A, we get π(x; q, a) = (1 + o(1))π(x)/φ(q) for all pairs
(q, a) except a fraction of at most α. Moreover, we have the following trivial lower bound:∑

Q/2<q≤Q

∑
a∈(Z/qZ)∗

E(x; q, a)2 ≥
[
αF (Q)

]
· (log x)3A/2.

On the other hand, the Barban–Davenport–Halberstam theorem ensures that the sum on
the left-hand side is ≪ xQ/ log Q. As a result, we get:

α≪ (log x)−3A/2

F (Q)
· xQ

log Q
≪ x(log x)−3A/2

Q log Q
≪ x(log x)−3A/2

x(log x)−A+1 ≪
1

(log x)A/2 .

This allows us to deduce the analogue of Theorem 3.4.2 for Algorithm 3.

P.-A. Fouque and M. Tibouchi 13

▶ Theorem 3.5.1. Algorithm 3 with A > 6 terminates almost surely, requires (1+o(1))φ(q)/q·
log x iterations of the main loop on average, and consumes:(

A + o(1)
)
· φ(q)

q
· log x log log x

log 2
bits of randomness on average.

Proof. Algorithm 3 terminates almost surely because the trivial algorithm does. One can
estimate its average number of iterations as follows. Denote by ϖ(t) the probability that
Algorithm 3 terminates after exactly t iterations, and ϖq,a(t) the probability of the same
event conditionally to the pair (q, a) being chosen in Steps 2–4. We have:

ϖq,a(t) =

(

1− π(x; q, a)
1 + ⌊x−a

q ⌋

)t−1

· π(x; q, a)
1 + ⌊x−a

q ⌋
for t ≤ T ;(

1− π(x; q, a)
1 + ⌊x−a

q ⌋

)T (
1− π(x)

⌊x⌋

)t−T −1

· π(x)
⌊x⌋

otherwise.

ϖ(t) = 1
F (Q)

∑
Q/2<q≤Q

∑
a∈(Z/qZ)∗

ϖq,a(t).

Moreover, the expected number N of iterations in Algorithm 2 is given by N =
∑

t≥1 tϖ(t).
We can denote by Nq,a =

∑
t≥1 tϖq,a(t) the contribution of a certain choice (q, a).

As we have just seen, π(x; q, a) = (1 + o(1))π(x)/φ(q), except perhaps for a fraction
α≪ (log x)−A/2 of all choices of (q, a). If we denote by A the set of “bad” choices of (q, a),
we can write, as before, that for all (q, a) ∈ A:

ϖq,a(t) ≤

1 for t ≤ T ;(
1− π(x)

⌊x⌋

)t−T −1
· π(x)
⌊x⌋

otherwise.

Hence, if we let ξ = π(x)/⌊x⌋, we again obtain:

Nq,a ≤
T∑

t=1
t +

+∞∑
t=T +1

t(1− ξ)t−T −1ξ ≤ T (T + 3)/2 + 1
ξ
≪ log4 x.

On the other hand, for (q, a) ̸∈ A, we have ξq,a := π(x;q,a)
1+⌊ x−a

q ⌋ = q
φ(q) ·

1+o(1)
log x . Therefore, as

before:∣∣∣Nq,a −
1

ξq,a

∣∣∣ ≤ exp
(
− (1 + o(1)) q

φ(q)
log x

)
· (2T + 1/ξ + 1/ξq,a)≪ 1

x1−ε
.

As a result, we get:

N = 1
F (Q)

∑
Q/2<q≤Q

∑
a∈(Z/qZ)∗

Nq,a

=
(

1−O
(
(log x)−A/2))

·
(1

ξq,a
+ O(1/x1−ε)

)
+ O

(
(log x)−A/2)

·O(log2 x)

= 1
ξq,a

+ O
(
(log x)4−A/2)

= (1 + o(1))φ(q)
q
· log x

as required, since 4−A/2 < 1. As for the expected number R of random bits consumed by
the algorithm, it is now given by:

R = A log log x

log 2

T∑
t=1

t ·ϖ(t) +
+∞∑

t=T +1

(
T · A log log x

log 2
+ (t− T) · log x

log 2

)
·ϖ(t)

14 Close to Uniform Prime Number Generation With Fewer Random Bits

where we have again ignored the random bits necessary to pick the pair (q, a), since we need
only Q(3Q+2)

8F (Q) ∼ π2/6 iterations of the loop from Step 2 to Step 4 to select it, and hence
O(log x) random bits. The stated estimate is obtained by essentially the same computation
as for N . ◀

We now turn to estimates on the uniformity of the output distribution of the algorithm.
For that purpose, we consider instead the output distribution X of Algorithm 4, the variant
of Algorithm 3 in which no bound is set to the number of iterations of the main loop (Steps 5–
9), i.e. with no fallback to the trivial algorithm. Clearly, since the trivial algorithm has a
perfectly uniform output distribution, the output distribution of Algorithm 3 is at least as
close to uniform as X.

Algorithm 4 An variant of Algorithm 3 with no fallback.
1: Fix Q ∝ x(log x)−A even
2: q

$← {Q/2 + 1, . . . , Q}
3: a

$← {0, . . . , q − 1}
4: if gcd(a, q) ̸= 1 then goto step 2
5: repeat forever
6: t

$← {0, . . . , ⌊x−a
q ⌋}

7: p← a + t · q
8: if p is prime then return p

9: end repeat

Now, Algorithm 4 produces an output (almost surely) for exactly those choices of (q, a)
such that π(x; q, a) ̸= 0. Let us denote by F ∗

x (Q) the number of such choices. Clearly, with
notation from above, we have:

F ∗
x (Q) =

∑
Q/2<q≤Q

φ∗
x(q) and 1− α ≤ F ∗

x (Q)
F (Q)

≤ 1.

Then, the probability that Algorithm 4 outputs a given prime p ≤ x can be written as:

Pr[X = p] = 1
F ∗

x (Q)
∑

Q/2<q≤Q
p∤q

1
π(x; q, p mod q)

.

Therefore, we have:

∆1(X) =
∑
p≤x

∣∣∣ Pr[X = p]− 1
π(x)

∣∣∣
=

∑
p≤x

∣∣∣∣∣ 1
F ∗

x (Q)
∑

Q/2<q≤Q
p∤q

1
π(x; q, p mod q)

− 1
π(x)

∣∣∣∣∣
= 1

F ∗
x (Q)

∑
p≤x

∣∣∣∣∣ ∑
Q/2<q≤Q

p∤q

1
π(x; q, p mod q)

−
∑

Q/2<q≤Q

φ∗
x(q)

π(x)

∣∣∣∣∣
≤ 1

F ∗
x (Q)

∑
p≤x

∑
Q/2<q≤Q

p∤q

∣∣∣ 1
π(x; q, p mod q)

− φ∗
x(q)

π(x)

∣∣∣ + 1
F ∗

x (Q)
∑
p≤x

∑
Q/2<q≤Q

p|q

φ∗
x(q)

π(x)

P.-A. Fouque and M. Tibouchi 15

≤ 1
F ∗

x (Q)
∑

Q/2<q≤Q

∑
p≤x
p∤q

∣∣∣ 1
π(x; q, p mod q)

− φ∗
x(q)

π(x)

∣∣∣ + 1
F ∗

x (Q)
∑

Q/2<q≤Q

ω(q)φ∗
x(q)

π(x)

≤ 1
F ∗

x (Q)π(x)
∑

Q/2<q≤Q
a∈(Z/qZ)∗

∣∣∣π(x)− φ∗
x(q)π(x; q, a)

∣∣∣ + O(log Q)
π(x)

.

We can then bound the sum over (q, a) of
∣∣π(x)− φ∗

x(q)π(x; q, a)
∣∣ as D + D∗, where:

D =
∑

Q/2<q≤Q
a∈(Z/qZ)∗

∣∣∣π(x)− φ(q)π(x; q, a)
∣∣∣ and D∗ =

∑
Q/2<q≤Q
a∈(Z/qZ)∗

∣∣φ(q)− φ∗
x(q)

∣∣ · π(x; q, a).

Now, on the one hand:

D∗ =
∑

Q/2<q≤Q

∣∣φ(q)− φ∗
x(q)

∣∣ ∑
a∈(Z/qZ)∗

π(x; q, a)

≤
(
F (Q)− F ∗

x (Q)
)
· π(x) ≤ αF (Q)π(x)≪ x3(log x)−5A/2−1,

and on the other hand, applying the Cauchy–Schwarz inequality and the Barban–Davenport–
Halberstam theorem:

D =
∑

Q/2<q≤Q
a∈(Z/qZ)∗

φ(q) ·
∣∣∣π(x; q, a)− π(x)

φ(q)

∣∣∣ ≤ Q
∑

Q/2<q≤Q
a∈(Z/qZ)∗

∣∣∣π(x; q, a)− π(x)
φ(q)

∣∣∣
≤ Q ·

√
F (Q) ·

√
xQ

log Q
≪ x3(log x)−5A/2−1/2.

As a result, we obtain:

∆1(X)≪ 1
F ∗

x (Q)π(x)
· (D + D∗)≪ (log x)2A+1

x3 · x3

(log x)5A/2+1/2 ≪
1

(log x)(A−1)/2 .

We can thus state:

▶ Theorem 3.5.2. The output distribution of Algorithm 3 has a statistical distance ∆1 ≪
(log x)(1−A)/2 to the uniform distribution. In particular, this distance is polynomially small
as long as A > 1.

4 Comparison with other prime number generation algorithms

In this section, we compare other prime number generation algorithms to our method. In
§4.1 we show that the output distribution Brandt and Damgård’s PRIMEINC algorithm
exhibits significant biases (a fact that is intuitively clear, but which we make quite precise),
and in §4.2, we discuss the advantages and drawbacks of our method compared to that of
Maurer, as the only previous work emphasizing a close to uniform output distribution.

4.1 PRIMEINC
Previous works on the generation of prime numbers, such as [3, 15], provide a proof (based on
rather strong assumptions) that the output distribution of their algorithm has an entropy not
much smaller than the entropy of the uniform distribution. This is a reasonable measure of

16 Close to Uniform Prime Number Generation With Fewer Random Bits

the inability of an adversary to guess which particular prime was output by the algorithm,
but it doesn’t rule out the possibility of gaining some information about the generated
primes. In particular, it doesn’t rule out the existence of an efficient distinguisher between
the output distribution and the uniform one.

Consider for example the PRIMEINC algorithm studied by Brandt and Damgård in [3].
In essence, it consists in picking a random integer y < x and returning the smallest prime
greater or equal to y. There are some slight technical differences between this description
and the actual PRIMEINC5, but they have essentially no bearing on the following discussion,
so we can safely ignore them.

It is natural to suspect that the distribution of the output of this algorithm is quite
different from the uniform distribution: for example, generating the second prime of a twin
prime pair, i.e. a prime p such that p−2 is also prime, is abnormally unlikely. More precisely,
if one believes the twin prime conjecture, the proportion of primes of that form among all
primes up to x should be ∼ 2c2/ log x, where c2 ≈ 0.66 is the twin prime constant. On the
other hand, PRIMEINC outputs such a p if and only if it initially picks y as p or p − 1.
Therefore, we expect the frequency of such primes p in the output of PRIMEINC to be much
smaller, about 4c2/(log x)2. This provides an efficient distinguisher between the output of
PRIMEINC and the uniform distribution.

More generally, it is easy to see that the method used in [3] to obtain the lower bound on
the entropy of the output distribution of PRIMEINC can also provide a relatively large con-
stant lower bound on the statistical distance to the uniform distribution. Indeed, the method
relies on the following result, obtained by a technique first proposed by Gallagher [12].

▶ Lemma F ([3, Lemma 5]). Assume the prime r-tuple conjecture, and let Fh(x) denote the
number of primes p ≤ x such that the largest prime q less than p satisfies p− q ≤ h. Then
for any constant λ,

Fλ log x(x) = x

log x

(
1− e−λ

)
(1 + o(1))

as x→ +∞.

Now, the probability that the PRIMEINC algorithm outputs a fixed p can clearly be
written as d(p)/x, where d(p) is the distance between p and the prime that immediately
precedes it. Let ∆′

1 be the statistical distance between the output distribution of PRIMEINC
and the uniform distribution. We have:

∆′
1 =

∑
p≤x

∣∣∣∣d(p)
x
− 1

π(x)

∣∣∣∣ >
∑
p≤x

d(p)>2 log x

∣∣∣∣2 log x

x
− log x

x

∣∣∣∣
for x ≥ 17 in view of the already mentioned classical bound π(x) > x/ log x for x ≥ 17. By
Lemma F, this gives:

∆′
1 >

log x

x
F2 log x(x) =

(
1− e−2)

(1 + o(1)) > 0.86 + o(1)

as x→ +∞, and in particular, ∆′
1 admits a relatively large constant lower bound (at least

if one believes the prime r-tuple conjecture on which the entropy bound is based).
Since the entropy lower bounds for other prime generation algorithms like [15] are based

on the same techniques, it is very likely that their output distributions can similarly be
shown to be quite far from uniform.

5 To wit, Brandt and Damgård restrict their attention to odd numbers x/2 < y < x, and set an upper
bound to the number of iterations in the algorithm

P.-A. Fouque and M. Tibouchi 17

4.2 Maurer’s algorithm
In [18, 19], Maurer proposed a prime generation algorithm based on a similar principle as
Bach’s technique to produce random numbers with known factorization [1]. This algorithm
has the major advantage of producing a primality certificate as part of its output; as a result,
it generates only provable primes, contrary to our method.

Additionally, in the standard version of the algorithm, the distribution of generated
primes is heuristically close to uniform. More precisely, this distribution would be exactly
uniform if the following assertions held:
1. The distribution of the relative sizes of the prime factors of an integer x of given length

conditional to 2x + 1 being prime is the same as the distribution of the relative sizes of
the prime factors of a uniformly random integer of the same length.

2. That distribution is, moreover, the same as the asymptotic one (i.e. as the length goes
to +∞), as computed using Dickson’s ρ function.

Assertion 1 is a rather nonstandard statement about prime numbers, but Maurer points
to some heuristic arguments that renders it quite plausible [17], at least asymptotically.
Assertion 2 is of course not exactly true, and it seems difficult to quantify how much this
affects the output distribution, but probably not to a considerable extent.

That standard version of the algorithm, however, has a small probability of not terminat-
ing, as discussed in [19, §3.3]. To circumvent that problem, Maurer suggests a modification
to the algorithm which introduces biases in the output distribution. If it is used, the al-
gorithm will in particular never generate primes p such that (p − 1)/2 has a large prime
factor. This provides an efficient distinguisher from the uniform distribution (exactly ana-
logous to the “twin prime” distinguisher of the previous section), since e.g. safe primes have
non negligible density. There are other ways to avoid cases of non-termination that do not
affect the output distribution to such an extent (such as some form of backtracking), but
Maurer advises against them because of the large performance penalty they may incur.

Furthermore, the paper [19] also describes faster variants of the algorithm that are less
concerned with the quality of the output distribution, and they do indeed have outputs that
are very far from uniform, typically reaching only around 10% of all prime numbers.

More importantly, the main drawback of Maurer’s algorithm compared to our method
is likely the amount of randomness it consumes: it is within a small constant factor of the
amount consumed by the trivial algorithm. In fact, if we neglect everything but the last
loop of the topmost step in the recursion, and count as zero the cases when the recursion has
more than two steps, we see that the average amount of randomness used by the algorithm is
bounded below by c times the corresponding amount for the trivial algorithm, where (with
the notations of [19, Appendix 1]):

c ≥
∫ 1

1/2

(
1− x

)
dF1(x) =

∫ 1

1/2

(
1− x

) dx

x
= log 2− 1

2
≥ 0.19

and we only counted a very small fraction of the actual randomness used!
As a result, in context where random bits are scarce and primality certificates are not

required, it seems that our method offers a rather better trade-off than Maurer’s algorithm:
the uniformity of the distribution is easier to estimate in our case, and we use much less
randomness. Moreover, Maurer finds [19, §4.3] that an efficient implementation of his al-
gorithm is about 40% slower than the trivial algorithm, whereas Algorithm 1 is easily 5
times as fast in practice.

On the other hand, if proofs of primality are considered important, it is clearly better to
rely on Maurer’s algorithm than to use our method and then primality proving.

18 Close to Uniform Prime Number Generation With Fewer Random Bits

References
1 E. Bach. How to generate factored random numbers. SIAM J. Comput., 17(2):179–193,

1988.
2 M. B. Barban. The “large sieve” method and its application to number theory. Uspehi

Mat. Nauk, 21:51–102, 1966.
3 J. Brandt and I. Damgård. On generation of probable primes by incremental search. In

E. F. Brickell, editor, CRYPTO, volume 740 of Lecture Notes in Computer Science, pages
358–370. Springer, 1992.

4 J. Brandt, I. Damgård, and P. Landrock. Speeding up prime number generation. In H. Imai,
R. L. Rivest, and T. Matsumoto, editors, ASIACRYPT, volume 739 of Lecture Notes in
Computer Science, pages 440–449. Springer, 1991.

5 R. Cramer and V. Shoup. Signature schemes based on the strong RSA assumption. ACM
Trans. Inf. Syst. Secur., 3(3):161–185, 2000.

6 H. Davenport. Multiplicative Number Theory, volume 74 of Graduate Texts in Mathematics.
Springer, 2nd edition, 1980.

7 H. Davenport and H. Halberstam. Primes in arithmetic progressions. Michigan Math. J.,
13:485–489, 1966.

8 C.-J. de la Vallée Poussin. Recherches analytiques sur la théorie des nombres premiers.
Ann. Soc. Sci. Bruxelles, 20:281–397, 1896.

9 D. Eastlake 3rd, J. Schiller, and S. Crocker. Randomness Requirements for Security. RFC
4086 (Best Current Practice), June 2005.

10 J. B. Friedlander and A. Granville. Limitations to the equi-distribution of primes I. Ann.
Math., 129:363–382, 1989.

11 P. X. Gallagher. The large sieve. Mathematika, 14(1):14–20, 1967.
12 P. X. Gallagher. On the distribution of primes in short intervals. 23:4–9, 1976.
13 G. H. Hardy and J. E. Littlewood. Some problems of ‘partitio numerorum’: III. on the

expression of a number as a sum of primes. 44:1–70, 1922.
14 G. H. Hardy and E. M. Wright. An Introduction to the Theory of Numbers. Clarendon

Press, 4th edition, 1960.
15 M. Joye and P. Paillier. Fast generation of prime numbers on portable devices: An update.

In L. Goubin and M. Matsui, editors, CHES, volume 4249 of Lecture Notes in Computer
Science, pages 160–173. Springer, 2006.

16 M. Joye, P. Paillier, and S. Vaudenay. Efficient generation of prime numbers. In Çetin
Kaya Koç and C. Paar, editors, CHES, volume 1965 of Lecture Notes in Computer Science,
pages 340–354. Springer, 2000.

17 U. Maurer. Some number-theoretic conjectures and their relation to the generation of
cryptographic primes. In C. Mitchell, editor, Cryptography and Coding ’92, pages 173–191.
Oxford University Press, Mar. 1992.

18 U. M. Maurer. Fast generation of secure RSA-moduli with almost maximal diversity. In
EUROCRYPT, pages 636–647, 1989.

19 U. M. Maurer. Fast generation of prime numbers and secure public-key cryptographic
parameters. J. Cryptology, 8(3):123–155, 1995.

20 P. Mihăilescu. Fast generation of provable primes using search in arithmetic progressions.
In Y. Desmedt, editor, CRYPTO, volume 839 of Lecture Notes in Computer Science, pages
282–293. Springer, 1994.

21 P. Mihăilescu. Security of biased sources for cryptographic keys. In Cryptography and
computational number theory (Singapore, 1999), volume 20 of Progr. Comput. Sci. Appl.
Logic, pages 287–302. Birkhäuser, Basel, 2001.

22 H. L. Montgomery. Topics in Multiplicative Number Theory, volume 227 of Lecture Notes
in Mathematics. Springer, 1971.

P.-A. Fouque and M. Tibouchi 19

23 H. L. Montgomery. Problems concerning prime numbers. Proc. Symp. Pure Math., 28:307–
310, 1976.

24 V. Shoup. A Computational Introduction to Number Theory and Algebra (Version 2).
Cambridge University Press, 2008.

25 P. Turán. Über die Primzahlen der arithmetischen Progression. Acta Sci. Math. Szeged,
8(4):226–235, 1936.

26 A. Walfisz. Zur additiven Zahlentheorie II. Mathematische Zeitschrift, 40(1):592–607, 1936.

	Introduction
	Preliminaries
	Regularity measures of finite probability distributions
	Prime numbers in arithmetic progressions

	Close-to-uniform prime number generation with fewer random bits
	Basic algorithm
	Analysis under the Friedlander–Granville–Montgomery conjecture
	Analysis under the Extended Riemann Hypothesis
	Achieving almost sure termination under ERH
	An unconditional algorithm

	Comparison with other prime number generation algorithms
	PRIMEINC
	Maurer's algorithm

