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Abstract. A number of recent works have considered the problem of
constructing constant-time hash functions to various families of elliptic
curves over finite fields. In the relevant literature, it has been occasionally
asserted that constant-time hashing to certain special elliptic curves, in
particular so-called BN elliptic curves, was an open problem. It turns
out, however, that a suitably general encoding function was constructed
by Shallue and van de Woestijne back in 2006.

In this paper, we show that, by specializing the construction of Shallue
and van de Woestijne to BN curves, one obtains an encoding function
that can be implemented rather efficiently and securely, that reaches
about 9/16ths of all points on the curve, and that is well-distributed in
the sense of Farashahi et al., so that one can easily build from it a hash
function that is indifferentiable from a random oracle.
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1 Introduction

Many elliptic curve-based cryptographic protocols require hashing to an elliptic
curve group G: they involve one or more hash functions H : {0, 1}∗ → G mapping
arbitrary values to points on the elliptic curve.

For example, in the Boneh-Franklin identity-based encryption scheme [6], the
public key for identity id ∈ {0, 1}∗ is a point Qid = H(id) on the curve. This is
also the case in many other pairing-based cryptosystems including IBE and HIBE
schemes [1,22,23], signature and identity-based signature schemes [5,7,8,13,39]
and identity-based signcryption schemes [10,29].

Hashing into elliptic curves is also required for some passwords-based au-
thentication protocols such as the SPEKE [25] and PAK [11] protocols, as well
as various signature schemes based on the hardness of the discrete logarithm
problem, like [14], when they are instantiated over elliptic curves.

In all of those cases, the hash functions are modeled as random oracles in
security proofs. However, it is not clear how such a hash function can be in-
stantiated in practice. Indeed, random oracles to groups like Z∗p can be easily



constructed from random oracles to fixed-length bit strings, for which conven-
tional cryptographic hash functions usually provide acceptable substitutes. On
the other hand, constructing random oracles to an elliptic curve even from ran-
dom oracles to bit strings appears difficult in general, and some of the more
obvious instantiations actually break security completely.

For example, to construct a hash function H : {0, 1}∗ → G to an elliptic
curve cyclic group G of order N and generated by a given point G, a simple idea
might be to choose H(m) = [h(m)] ·G, where h is a hash function {0, 1}∗ → ZN .
However, this typically breaks security proofs in the random oracle model. Sup-
pose the proof involves programming the random oracle H by choosing its value
P on some input m0. If we instantiate H in this naive way, the programming
stage requires setting h(m0) to the discrete logarithm of P, which is normally
unknown. In fact, in the case of a primitive like BLS signatures [9], this instan-
tiation leads to very simple and devastating attacks (see the discussions in [37,
Ch. 3] or [38]).

In their original short signatures paper [8], Boneh, Lynn and Shacham intro-
duced the first generic construction of a secure hash function to elliptic curves,
in the sense that it applies to any target elliptic curve: the so-called “try-and-
increment” algorithm. Basically, to hash a message m, one concatenates it with
a fixed-length counter c initialized to 0 and computes h(c‖m), where h is a hash
function to the base field of the elliptic curve. If that digest value is the abscissa
of a point on the curve, H(m) is set to that point; otherwise, one increments the
counter c and tries again. This construction can be shown to be secure provided
that the counter length is large enough; however, it is somewhat inefficient,
since one may need many iterations before finding a suitable point, and the
fact that the length of the computation depends on the input yields to possible
side-channel attacks, especially in protocols such as password authenticated key
exchange (a concrete attack is given is [38] for a variant of SPEKE [25]).

In response, more robust, “constant-time” methods have been proposed,
starting with a paper by Icart at CRYPTO 2009 [24], and including a number
of extensions, generalizations and refinements afterwards [33,12,19,27,16,15]. In
essence, these methods are all based on the construction of a suitable algebraic
or piecewise algebraic function from the affine line to the target elliptic curve.

Our contributions. None of the methods mentioned above is fully generic:
they all rely on certain arithmetic or geometric properties of the target curve.
Some involve taking arbitrary cube roots in the base field Fq, for example, and
hence only apply to the case when q ≡ 2 (mod 3). The remaining ones only
work for curves of nonzero j-invariant. In particular, none of those more efficient
encodings yield a construction of hash functions to the very important class
of Barreto–Naehrig (BN) elliptic curves [3], which are the preferred curves for
implementing asymmetric pairings nowadays, as they provide essentially optimal
parameters for the 128-bit security level. This has led several authors to assert
that constant-time hashing to BN curves was an open problem [19,31].



It turns out, however, that several years prior to Icart’s work, Shallue and
van de Woestijne had presented a construction [35] that applies to all curves of
odd characteristic, as pointed out in [38]. This paper is devoted to making that
construction explicit in the case of BN curves, and establishing some properties
of it. More precisely, our contributions are as follows:

– we propose an explicit, optimized definition of the Shallue–van de Woestijne
encoding to a BN elliptic curve (in Section 3);

– using an extension of the technique from [18,20], we establish an estimate
for the number of points in the image of that encoding (in Section 4): we
find that the encoding reaches about 9/16ths of all points on the curve;

– like Icart’s encoding and many others, this encoding f will not yield a gener-
ically secure hash function construction if we simply compose it with a ran-
dom oracle to the base field (e.g. it is easy to distinguish such a hash function
from a random oracle to the curve since its image has a simple algebraic de-
scription and only contains a constant fraction of all points). However, we
show (in Section 5) that it is well-distributed in the sense of Farashahi et al.
[17]. This implies that if h1, h2 are random oracles to the base field, then
m 7→ f

(
h1(m)

)
+f
(
h2(m)

)
is a good, generically secure hash function to the

BN curve (it is indifferentiable from a random oracle);
– finally, we also suggest (in Section 6) a way to implement this encoding

function that should thwart side-channel analysis and other physical attacks.

Our approach to establishing the results of Sections 4 and 5, while quite
technical, is also of independent interest. Indeed, the Shallue–van de Woestijne
encoding fits in a family of various encoding functions to elliptic curves based
on works by Schinzel and Ska lba [34,36], and while Fouque and Tibouchi [20]
and Farashahi et al. [17] did tackle a function of that type before, they had
to consider only a special case and tweak the formulas significantly, so as to
simplify the computations. In this paper, we show how image size estimates and
well-distributedness can be obtained for this type of encoding functions without
simplifications or generality loss.

Our results apply almost without change to any elliptic curve of the form
y2 = x3 + b with b 6= −1 over a finite field Fq with q ≡ 7 (mod 12). Pairing-
friendly curves obtained by the CM method for discriminant −3 are typically of
that form: this includes in particular the curves constructed by Barreto, Lynn
and Scott in [2, §3.1] and the curves of embedding degree 18 and 36 obtained
by Kachisa, Schaefer and Scott in [26], all of which are recommended for pairing
implementations at higher security levels (192 to 256-bit security). The elliptic
curve group in those cases is not usually of prime order, however (those cases
have ρ > 1), so hashing to the prime order subgroup requires multiplying the
point obtained with the technique described herein by the cofactor. This does
not affect indifferentiability, as was shown in [12, §6.1].

Notation. In the paper, p will always be an odd prime and q an odd prime
power. In Fq, the finite field with q elements, we denote by χq : Fq → {−1, 0, 1}



the nontrivial quadratic character of F∗q extended by zero to Fq (i.e. χq(0) = 0
and for a 6= 0, χq(a) = 1 if a is a square and −1 otherwise). When q ≡ 3
(mod 4), we write

√
a = a(q+1)/4 for any square a ∈ Fq.

2 Preliminaries

2.1 Barreto–Naehrig elliptic curves

BN curves are a family of pairing-friendly elliptic curves over large prime fields,
introduced in 2005 by Barreto and Naehrig [3]. They are one of the preferred
families for implementing asymmetric pairings nowadays, as they achieve essen-
tially optimal parameters for obtaining bilinear groups at the 128-bit security
level. Indeed, BN curves are of prime order (in particular they satisfy ρ = 1) and
embedding degree k = 12; thus, the pairing on a BN curve over a 256-bit prime
field Fp takes its values in the field Fp12 of size 256 × 12 = 3072. Then, solving
the discrete logarithm problem both in the group of points of the curve and in
F×
pk takes time about 2128 as required [3].

The details of the construction of BN curves, based on the CM method, is
not really relevant for our purposes. Suffice it to say that Barreto and Naehrig’s
algorithm outputs an elliptic curve of the form:

E : y2 = x3 + b (1)

over a field Fp with p ≡ 1 (mod 3) (for convenience, they suggest to pick a
p satisfying, more precisely, p ≡ 31 (mod 36)), such that #E(Fp) is prime,
together with the generator3 G = (1,

√
b+ 1 mod p) ∈ E(Fp). Moreover, b is

typically a very small integer (the smallest > 0 such that b + 1 is a quadratic
residue mod p).

2.2 Chebotarev density theorem

In [18,20], Farashahi, Shparlinski and Voloch on the one hand, and Fouque and
Tibouchi on the other, proposed an approach to counting the number of points
in the image of an elliptic curve encoding function, based on the Chebotarev
density theorem for function fields. We will apply a similar technique to the
encoding to BN curves presented hereafter, and will therefore need an effective
version of the Chebotarev density theorem. One such version is given in [21,
Proposition 6.4.8], and if we specialize it to our cases of interest, we obtain:

Lemma 1 (Chebotarev). Let K be an extension of Fq(x) of degree d < ∞
and L a Galois extension of K of degree m < ∞. Assume Fq is algebraically
closed in L, and fix some subset S of Gal(L/K) stable under conjugation. Let

3 Later works such as [31] use a different point as the generator, and the corresponding
construction does no longer ensure that 1 + b is a square. This only causes a minor
inconvenience for our purposes, namely two extra elements of Fq that have to be
treated separately in the encoding given in Section 3.



s = #S and N(S ) the number of places v of K of degree 1, unramified in L,

such that the Artin symbol
(

L/K
v

)
(defined up to conjugation) is in S . Then

∣∣∣N(S )− s

m
q
∣∣∣ ≤ 2s

m

(
(m+ gL) · q1/2 +m(2gK + 1) · q1/4 + gL + dm

)
where gK and gL are the genera of the function fields K and L.

2.3 Admissible encodings and indifferentiability

Brier et al. [12] use Maurer’s indifferentiability framework [30] to analyze the
conditions under which their hash function constructions can be plugged into
essentially any scheme4 that is proved secure in the random oracle model in
such a way that the proof of security goes through. As shown by Maurer, it
suffices that the hash function construction be indifferentiable from a random
oracle.

Then, Brier et al. [12] establish a sufficient condition for a hash function
construction into an elliptic curve E to be indifferentiable from a random oracle.
It applies to hash functions of the form:

H(m) = F (h(m)),

where F : S → E(Fq) is a deterministic encoding, and h is seen as a random ora-
cle to S. Assuming that h is a random oracle, the construction is indifferentiable
whenever F is an admissible encoding into E(Fq), in the sense that it satisfies
the following properties:

1. Computable: F is computable in deterministic polynomial time;
2. Regular: for s uniformly distributed in S, the distribution of F (s) is statis-

tically indistinguishable from the uniform distribution in E(Fq);
3. Samplable: there is an efficient randomized algorithm I such that for any

P ∈ E(Fq), the distribution of I (P) is statistically indistinguishable from
the uniform distribution in F−1(P).

2.4 Well-distributed elliptic curve encodings

Building upon this work by Brier et al., Farashahi et al. introduced a general
framework [17] to obtain well-behaved hash function construction to elliptic
and hyperelliptic curves. The main notion in that framework is that of a well-
distributed encoding. In the case of an elliptic curve E, it is defined as follows.

4 It has recently been pointed out by Ristenpart, Shacham and Shrimpton [32] that this
type of composition result does not apply to literally all cryptographic protocols,
but only those which admit so-called “single-stage security proofs”. This is not a
significant restriction for the purpose at hand, as all protocols constructed so far
using elliptic curve-valued hashing satisfy that requirement.



Definition 1 (Farashahi et al.). A function f : Fq → E(Fq) is said to be B-
well-distributed for some B > 0 if, for all nontrivial characters χ of E(Fq), the
following bound holds:

|Sf (χ)| ≤ B√q, where Sf (χ) =
∑
u∈Fq

χ
(
f(u)

)
. (2)

Let f : Fq → E(Fq) be a well-distributed encoding to the elliptic curve E.
Then Farashahi et al. prove that the tensor square f⊗2 : F2

q → E(Fq) defined
by f⊗2(u, v) = f(u) + f(v) is a regular encoding to E(Fq). More precisely, the
statistical distance between the distribution defined by f⊗2 on E(Fq) and the

uniform distribution is bounded above by B2 ·
√

#E(Fq)/q, which is negligible.
If the function f is also efficiently computable and samplable in the sense of

Section 2.3, then f⊗2 is admissible, which implies that the hash function:

m 7→ f
(
h1(m)

)
+ f

(
h2(m)

)
is indifferentiable from a random oracle, and hence can be used in lieu of a
random oracle to E(Fq) in essentially any scheme proved secure in the random
oracle model.

Another important result of [17] is the following consequence of the Riemann
hypothesis for curves, which makes it possible to establish the bound (2) in
practice.

Lemma 2 ([17, Th. 7]). Let h : X → E be a non constant morphism to the
elliptic curve E, and χ be any nontrivial character of E(Fq). Assume that h does
not factor through a nontrivial unramified morphism Z → E. Then:∣∣∣∣∣∣

∑
P∈X(Fq)

χ(h(P ))

∣∣∣∣∣∣ ≤ (2gX − 2)
√
q (3)

where gX is the genus of X. Furthermore, if ϕ is a non constant rational function
on X: ∣∣∣∣∣∣

∑
P∈X(Fq)

χ(h(P )) · χq(ϕ(P))

∣∣∣∣∣∣ ≤ (2gX − 2 + 2 degϕ)
√
q. (4)

2.5 The Shallue–van de Woestijne encoding

Let E be any elliptic curve over a finite field Fq of odd characteristic with
#Fq > 5, written is Weierstrass form:

E : y2 = g(x) = x3 +Ax2 +Bx+ C.

Shallue and van de Woestijne [35] construct an encoding function f : Fq → E(Fq)
as follows.



Following the ideas of Schinzel and Ska lba [34,36], they first introduce the
algebraic threefold V ⊂ P4 with affine equation

V : y2 = g(x1) · g(x2) · g(x3),

and observe that if (x1, x2, x3, y) is an Fq-rational point on V , then at least one
of x1, x2, x3 is the abscissa of a point in E(Fq). Indeed, the product g(x1) ·g(x2) ·
g(x3) ∈ Fq is a square, so at least one of the factors must be square as well. Then,
they establish the following result.

Lemma 3 ([35, Lemma 6]). Put h(u, v) = u2 + uv + v2 +A(u+ v) +B, and
define:

S : y2 · h(u, v) = −g(u),

ψ : (u, v, y) 7→
(
v,−A− u− v, u+ y2, g(u+ y2) · h(u, v) · y−1

)
.

Then ψ is a rational map from the surface S to V that is invertible on its image.

In particular, any point in S(Fq) where ψ is well-defined (i.e. satisfying y 6= 0)
maps to a point in V (Fq), and hence yields a point in E(Fq). Finally, to construct
points on S, the authors of [35] note that any plane section of S of the form
u = u0 is birational to a conic, which is non-degenerate as long as:

g(u0) 6= 0 and 3u20 + 2Au0 + 4B −A2 6= 0. (5)

If we fix one such value u0 (it necessarily exists since #Fq > 5), the corresponding
conic admits a rational parametrization, which gives a rational map φ : A1 → S.

The encoding function f : Fq → E(Fq) is then obtained as mapping a point
t ∈ Fq to one of the points on E(Fq) of abscissa xi, where ψ◦φ(t) = (x1, x2, x3, y)
and i ∈ {1, 2, 3} is the smallest index such that g(xi) is a square.

In the following sections, we make that function f explicit when E is a BN
curve as in Section 2.1 (or rather, belongs to a class of elliptic curves that contains
BN curves), and establish a number of its properties.

3 An Encoding to BN Curves

Let us apply the previous construction to the case of an elliptic curve of the
form:

E : y2 = g(x) = x3 + b

over a field Fq of characteristic ≥ 5. We also assume that q ≡ 7 (mod 12) and
that g(1) = 1 + b is a nonzero square in Fq. As seen in Section 2.1, all those
properties are in particular satisfied for BN curves.5

5 Technically, one can consider BN curves over fields Fp with p ≡ 1 (mod 12) as well,
but they are usually avoided in practice, as the condition p ≡ 3 (mod 4) makes
square roots more convenient to compute.



The equation of the surface S defined in Section 2.5 becomes:

S : y2 · (u2 + uv + v2) = −u3 − b.

We consider its section by the plane of equation u = u0 = 1. This gives a curve
of equation:

y2 ·
(

3

4
+
(
v +

1

2

)2)
= −1− b,

and by setting z = v+ 1/2 and w = 1/y, we see that it is birational to the conic:

z2 + (1 + b)w2 = −3

4
, (6)

which is non-degenerate since g(1) = 1+b 6= 0. We can give a convenient rational
parametrization of that conic as follows. Since q ≡ 1 (mod 3), (−3) is a quadratic
residue in Fq. Thus, (z0, w0) = (

√
−3/2, 0) is an Fq-rational point on the conic

(6). We parametrize all the other points by setting z = z0 + tw, which gives:

√
−3 · t+ t2 · w + (1 + b) · w = 0,

and hence:

y =
1

w
= −1 + b+ t2√

−3 · t

v = z0 + tw − 1 =
−1 +

√
−3

2
+

√
−3 · t2

1 + b+ t2
.

This is well-defined (and y is nonzero) if and only if t 6= 0 and t2 6= −1− b, and
the second condition is always verified since χq(−1− b) = −χq(1 + b) = −1.
Thus, for any t 6= 0, it follows from Lemma 3 that at least one of the three
values:

x1 = v =
−1 +

√
−3

2
−
√
−3 · t2

1 + b+ t2
, (7)

x2 = −1− v =
−1−

√
−3

2
+

√
−3 · t2

1 + b+ t2
, (8)

x3 = 1 + y2 = 1− (1 + b+ t2)2

3t2
(9)

is the abscissa of a point in E(Fq). Furthermore, we see that these values only
depend on t2, and hence are invariant under a change of sign for t. As a result, it
is natural to map t and −t to opposite points on E(Fq) with one of the previous
coordinates.

Therefore, we can define the Shallue–van de Woestijne encoding to the BN
curve E as follows.



Definition 2. For all t ∈ F∗q , let x1, x2, x3 ∈ Fq be as in Eqs. (7) to (9). The
SW encoding to the BN curve E is the map:

f : F∗q −→ E(Fq)

t 7−→
(
xi, χq(t) ·

√
g(xi)

)
,

where for each t, i ∈ {1, 2, 3} is the smallest index such that g(xi) is a square in
Fq.

The encoding can be extended to all of Fq by sending 0 to some arbitrary point
in E(Fq). Since x1 is well-defined and equal to (−1 +

√
−3)/2 for t = 0, and

g(x1) = 1 + b is a square, a relatively natural choice may be to set:

f(0) =

(
−1 +

√
−3

2
,
√

1 + b

)
.

4 Computing the Image Size

In this section, we estimate the number of points in the image of the Shallue–
van de Woestijne encoding f to E(Fq), using a refinement of the techniques from
[18,20]. We will show that f reaches roughly 9/16ths of all points on the curve,
or more precisely, that #f(F∗q) = (9/16) · q +O(

√
q) (where the constant in the

big-O is universal and will be made explicit).
To obtain that estimate, we first write F∗q as the disjoint union of the subsets

T1, T2, T3 of field elements t such that the corresponding index i in Definition 2
is 1, 2, 3 respectively. In other words:

T1 = {t ∈ F∗q | g(x1) is a square};
T2 = {t ∈ F∗q | g(x1) is not a square but g(x2) is};
T3 = {t ∈ F∗q | neither g(x1) nor g(x2) are squares}.

Then, we examine the points in f(Ti) for i = 1, 2, 3.
Clearly, a point (x, y) ∈ f(T1) satisfies:

x = x1(t) =
−1 +

√
−3

2
−
√
−3 · t2

1 + b+ t2

for some t 6= 0, or equivalently:

t2 = − (1 + b) · (x− ζ)

x− ζ2
where ζ =

−1 +
√
−3

2
. (10)

We denote by ω1 ∈ Fq(x) the rational function on the right-hand side of Eq. (10).
The set f(T1) is thus contained in the set of points (x, y) ∈ E(Fq) such that ω1

is a nonzero square. And conversely, if (x, y) ∈ E(Fq) satisfies that ω1 = t2 for
some t 6= 0, we get x = x1(t) and hence (x, y) = f(t) or f(−t) depending on the
sign of χq(y).



Thus, we obtain that f(T1) is the set of points (x, y) ∈ E(Fq) such that ω1

is a nonzero square. If we denote by K the function field of E, this set is thus
in bijection with the set of places of degree 1 in K that split in the quadratic
extension L1/K with L1 = K[t]/(t2 − ω1). We can thus apply Lemma 1 with
s = 1 and m = d = 2 to get:∣∣∣∣#f(T1)− 1

2
q

∣∣∣∣ ≤ (2 + gL1
) · q1/2 + 6q1/4 + gL1

+ 4,

where gL1
is the genus of the function field L1. After extending the field of scalars

to Fq, we can see that L1 is ramified above exactly 4 places of K (corresponding
to the two opposite points in E(Fq) where the rational function ω1 vanishes
and the two others where it has a pole), so the Riemann–Hurwitz formula gives
gL1

= 3. Hence: ∣∣∣∣#f(T1)− 1

2
q

∣∣∣∣ ≤ 5q1/2 + 6q1/4 + 7. (11)

Similarly, a point (x, y) ∈ f(T2) satisfies:

x = x2(t) =
−1−

√
−3

2
+

√
−3 · t2

1 + b+ t2
,

for some t 6= 0, or equivalently:

t2 = − (1 + b)(x− ζ2)

x− ζ
where, again, ζ =

−1 +
√
−3

2
. (12)

Thus, for any point (x, y) ∈ f(T2), the rational function ω2 on the right-hand
side of Eq. (12) is a nonzero square. But we clearly have:

ω1 =
(1 + b)2

ω2
,

and it follows that if ω2 is a nonzero square, then so is ω1. As a result, we must
have f(T2) ⊂ f(T1).6 Therefore:

f(F∗q) = f(T1) ∪ f(T2) ∪ f(T3) = f(T1) ∪
(
f(T3) \ f(T1)

)
and we can thus complete our estimate if we can evaluate the cardinality of
f(T3) \ f(T1).

Again, a point (x, y) ∈ E(Fq) is in f(T3) if and only if there exists some
t ∈ F∗q such that neither g(x1(t)) nor g(x2(t)) is a square, and x = x3(t) =
1− (1 + b+ t2)2/(3t2). The last relation is equivalent to:

t4 +
[
3(x− 1) + 2(1 + b)

]
t2 + (1 + b)2 = 0. (13)

6 It does not matter for our purposes, but that inclusion is usually strict: indeed, f(T2)
is smaller that the set of points in E(Fq) with an abscissa of the form x2(t), because
the corresponding parameter t must satisfy the additional condition that g(x1(t)) is
not a square.



As a biquadratic polynomial over the function field K of E, that polynomial in
t, which we denote P (t), is clearly irreducible and has Galois group V4 (since
its constant coefficient is a square; see [28, Th. 2 and 3]). In particular, L′3 =
K[t]/(P ) is a Galois extension of K, and its 4 automorphisms send t to ±t and
±(1 + b)/t.

Now, the set f(T3) is in bijection with the set of places of K where the
polynomial P has at least one root t (necessarily nonzero; and in that case,
P splits completely) that further satisfies that neither g(x1(t)) nor g(x2(t))
is a square, or equivalently, that both −g(x1(t)) and −g(x2(t)) are nonzero
squares. By construction of the Shallue–van de Woestijne encoding, we know
that g(x1(t)) ·g(x2(t)) ·g(x3(t)) is a nonzero square for all t ∈ F∗q , so that for any
t as above, −g(x1(t)) is a nonzero square if and only if −g(x2(t)) is a nonzero
square. Furthermore, the automorphisms of L′3 = K[t]/(P ) that send t to ±t fix
x1 and x2, whereas those that send t to ±(1+ b)/t exchange them, as we can see
from the fact that ω2 = (1 + b)2/ω1. This ensures that the quadratic extension
L′′3 = L′3[z]/

(
z2 + g(x1(t))

)
of L′3 is in fact Galois of degree 8 over K, and f(T3)

is in bijection with the set of places of K that split completely in L′′3 .
Finally, an element (x, y) ∈ f(T3) is not in f(T1) exactly when ω1 isn’t a

nonzero square, i.e. when −ω1 is a square. As a result, up to possibly two points
where −ω1 vanishes, f(T3)\f(T1) has the same number of elements as the set of
places in K which split completely in the compositum L3 = L′′3 ·K[w]/(w2 +ω1)
(a Galois extension of degree 16, since the two fields are linearly disjoint by
inspection of their ramification, as seen below). Thus, we can apply Lemma 1
with s = 1, d = 2 and m = 16 to get:∣∣∣∣#(f(T3) \ f(T1)

)
− 1

16
q

∣∣∣∣ ≤ (2 +
gL3

8

)
· q1/2 + 6q1/4 +

gL3

8
+ 4 + 2,

where gL3 is the genus of the function field L3. To compute that genus, we
examine the ramification of the various fields involved, after an extension of
scalars to Fq. Clearly, (FqK)[w]/(w2+ω1) is simply ramified over the four places
corresponding to the points in E(Fq) with x = ζ or ζ2. Thus, that field has genus
4 again. On the other hand, since the discriminant of P is:

∆ = 48 · (1 + b)2 · (x− 1)2 ·
(
3(x− 1) + 4(1 + b)

)2
,

the field FqL
′
3 is ramified with ramification type (2, 2) over the places corre-

sponding to the points in E(Fq) with x = 1 or x = −(1 + 4b)/3. In turn,
FqL

′′
3 is ramified over the places in FqL

′
3 where x1(t)3 = −b or x1(t) = ∞.

This gives 8 values of t, or 16 places of FqL
′
3 (since each value of t corresponds

to one value of x and two of y). Putting everything together and using Ab-
hyankar’s lemma, we obtain that the ramification divisor of FqL3 over FqK has
degree 4 · 8 + (4 · 2 · 2 + 16) · 2 = 96. Thus, the Riemann–Hurwitz formula gives
2gL3

− 2 = 16 · 0 + 96, hence gL3
= 49 < 7 · 8, and thus:∣∣∣∣#(f(T3) \ f(T1)
)
− 1

16
q

∣∣∣∣ ≤ 9q1/2 + 6q1/4 + 13. (14)



Combining Eqs. (11) and (14), we get the following result, as expected.

Theorem 1. The number of points in the image f(F∗q) of the Shallue–van de
Woestijne encoding to a BN curve is bounded as:∣∣∣∣#f(F∗q)− 9

16
q

∣∣∣∣ ≤ 14q1/2 + 12q1/4 + 20.

Remark 1. While somewhat arbitrary, the numbering of the points x1, x2, x3 in
the definition of the Shallue–van de Woestijne encoding actually matters for the
computation of the number of points: for example, it is not difficult to adapt the
argument above to see that if the order was reversed, the image size would only
be about 7/16 · q instead of 9/16 · q.

5 Obtaining Indifferentiability

In this section, we prove that, while f itself is clearly not an admissible encoding
in the sense of Section 2.3, the tensor square f⊗2, as defined in Section 2.4, is
indeed admissible, and hence the hash function:

m 7→ f
(
h1(m)

)
+ f

(
h2(m)

)
(15)

is indifferentiable from a random oracle when h1, h2 are seen as independent
random oracles to F∗q .

To see this, first note that f⊗2 is obviously efficiently computable, and it is
also samplable: a sketch of a sampling function is as follows. To find a uniformly
random preimage (u, v) of some point P ∈ E(Fq), pick v ∈ F∗q at random, and
find all the preimages of P− f(v) (which can be done by solving three algebraic
equations, corresponding to the three “branches” of f). There are at most 4 such
preimages. Then pick i ∈ {1, 2, 3, 4} at random and return the i-th preimage if
it exists. Otherwise, start over with another v. The image size computation
of the previous section guarantees that the expected number of iterations is
finite, which ensures samplability. See [4] for a complete formal treatment of the
samplability of Icart’s function, which is easily adapted to our case along the
lines of the previous sketch.

Thus, all that remains to see to prove admissibility is that f⊗2 is regular.
We will show that using the results of Section 2.4, by proving that f is a well-
distributed encoding. We have to bound the following sum:

Sf (χ) =
∑
t∈F∗q

χ(f(t))

for every nontrivial character χ of E(Fq). As in the previous section, we break
the sum into sums over T1, T2 and T3 which we treat separately.

To estimate the sum over T1, we introduce the covering curve h1 : X1 → E
corresponding to the extension of function fields L1/K (with the notation of
Section 4). In other words, a rational point in X1(Fq) is a tuple (x, y, t) such



that (x, y) ∈ E(Fq) and x = x1(t) (or equivalently t2 = ω1(x)). In particular,
for any t ∈ T1, there are two rational points of X1 whose third coordinate is t:
if we let (x, y) = f(t), these two points are (x, y, t) and (x,−y, t), which map to
χ(f(t)) and χ(f(t))−1 under χ ◦ h1. Thus, we get:∑

P∈X1(Fq)

χ(h1(P)) =
∑
t∈T1

χ(f(t)) +
∑
t∈T1

χ(f(t))−1 +O(1),

where the constant O(1) accounts for a bounded number of exceptional points
(ramification, points at infinity). We would like to get rid of the second sum
on the right-hand side. For that purpose, note that the “correct” y value corre-
sponding to a given t is the one such that χq(ty) = 1. It follows that:∑

P∈X1(Fq)

1 + χq(ty)

2
χ(h1(P)) =

∑
t∈T1

χ(f(t)) +O(1),

and hence, by Lemma 2:∣∣∣∣∣∑
t∈T1

χ(f(t))

∣∣∣∣∣ ≤ (2gX1 − 2 + degX1
(ty)

)
· √q +O(1) = 12

√
q +O(1), (16)

since gX1
= gL1

= 3 as seen before, and the rational functions t and y over X1

are of degree 2 and 6 respectively.
Similarly, to estimate the character sum:∑

t∈T2

χ(f(t)), (17)

we introduce the extension L2 = K[t, z]/
(
t2−ω2, z

2 + g(x1(t))
)

of K associated
to f over T2, and the corresponding covering curve h2 : X2 → E. A point in
X2(Fq) is thus a tuple (x, y, t, z) such that (x, y) ∈ E(Fq), x = x2(t), and z is
a square root of −g(x1(t)) ensuring that g(x1(t)) is not a square. For a given
t ∈ T2, there are four rational points of X1 whose third coordinate is t, namely
(x,±y, t,±z) with (x, y) = f(t) and z =

√
−g(x1(t)). As with T1, we can thus

write the character sum (17) as:∑
t∈T2

χ(f(t)) =
1

2

∑
P∈X2(Fq)

1 + χq(ty)

2
χ(h2(P)) +O(1),

where the factor 1/2 accounts for the two values of z. By Lemma 2, it follows
that:∣∣∣∣∣∑

t∈T2

χ(f(t))

∣∣∣∣∣ ≤ 1

2

(
2gX2

− 2 + degX2
(ty)

)
· √q +O(1) = 20

√
q +O(1), (18)

since gX2
= gL2

= 13 by inspection of the ramification, and the rational functions
t and y over X2 are of degree 4 and 12 respectively.



Finally, to estimate the character sum:∑
t∈T3

χ(f(t)),

we introduce the covering curve h3 : X3 → E corresponding to the extension
L′′3 = K[t, z]/

(
P (t), z2 + g(x1(t))

)
of K defined in Section 4. The expression of

the character sum is the same as with T2:∑
t∈T3

χ(f(t)) =
1

2

∑
P∈X3(Fq)

1 + χq(ty)

2
χ(h3(P)) +O(1).

By Lemma 2, it follows that:∣∣∣∣∣∑
t∈T3

χ(f(t))

∣∣∣∣∣ ≤ 1

2

(
2gX3

− 2 + degX3
(ty)

)
· √q +O(1) = 30

√
q +O(1), (19)

since gX3 = gL′′3 = 17 by inspection of the ramification, and the rational functions
t and y over X2 are of degree 4 and 24 respectively.

Putting Eqs. (16), (18) and (19) together, we obtain that |Sf (χ)| ≤ 62
√
q +

O(1) for any nontrivial character χ, and hence f is well-distributed as required.
Using the statistical distance bound given in Section 2.4 together with [12,

Th. 1], it follows that for a 2k-bit BN curve, the hash function given by Eq. (15)
is ε-indifferentiable from a random oracle, where:

ε = 4 ·
(
62 +O(q−1/2)

)2 · √#E(Fq)

q
· qD ≤

(
214 + o(1)

)
2−k · qD

if we denote by qD the number of queries made by the distinguisher.

6 Efficient Computation

Finally, we would like to describe a possible implementation of the Shallue–van
de Woestijne encoding from Definition 2 that is both efficient and secure against
side-channel analysis and other physical attacks. It is not difficult to meet what
is more or less the standard of efficiency for elliptic curve encodings, as set by
functions like Icart’s [24]—namely, that an evaluation of the function should
cost one exponentiation in the base field, plus a small, bounded number of faster
operations. In the case of our encoding f , we simply need to compute the values
x1, x2, x3, and decide, based on χq(g(x1)) , χq(g(x2)), which of those three values
will be the abscissa of the output point.

This simple implementation has two problems with respect to side-channel
attacks, however.

One the one hand, computing the quadratic character is difficult to do in
constant time, so the length of that part of the computation may leak information
about the input. We propose to alleviate that problem using blinding: instead



of computing χq(g(x1)), we evaluate χq

(
r21 · g(x1)

)
for some random r1 ∈ F∗q .

If we then make sure that the quadratic character is implemented in such a
way that evaluating χq(a) and χq(−a) takes the same time (which isn’t hard
to achieve), the duration of the computation of the two quadratic characters we
need is completely independent of the input.

On the other hand, the naive way to choose the index i of the output abscissa
involves several conditional branches. This opens up a (small) risk of timing at-
tacks, as well as (more serious) possibilities for fault injection (i.e. glitch attacks).
We avoid that problem by selecting the index using an algebraic formula depend-
ing on the two quadratic character values. It suffices to construct a function ψ
of two variables such that:

ψ(1, 1) = ψ(1,−1) = 1, ψ(−1, 1) = 2, ψ(−1,−1) = 3.

One such function is given by:

ψ(α, β) =
[
(α− 1) · β mod 3

]
+ 1.

Using that function, we propose the implementation of the encoding given in
Algorithm 1.

Algorithm 1 Shallue–van de Woestijne encoding to BN curves.

1: procedure SWEncBN(t) . t ∈ F∗
q

2: w ←
√
−3 · t/(1 + b+ t2)

3: x1 ← (−1 +
√
−3)/2− tw

4: x2 ← −1− x1
5: x3 ← 1 + 1/w2

6: r1, r2, r3
$← F∗

q

7: α← χq

(
r21 · (x31 + b)

)
8: β ← χq

(
r22 · (x32 + b)

)
9: i←

[
(α− 1) · β mod 3

]
+ 1

10: return
(
xi, χq

(
r23 · t

)
·
√
x3i + b

)
11: end procedure
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31. G. C. C. F. Pereira, M. A. Simpĺıcio, Jr., M. Naehrig, and P. S. L. M. Barreto. A
family of implementation-friendly BN elliptic curves. The Journal of Systems and
Software, 84(8):1319–1326, 2011.

32. T. Ristenpart, H. Shacham, and T. Shrimpton. Careful with composition: Limita-
tions of the indifferentiability framework. In K. G. Paterson, editor, EUROCRYPT,
volume 6632 of Lecture Notes in Computer Science, pages 487–506. Springer, 2011.

33. H. Sato and K. Hakuta. An efficient method of generating rational points on elliptic
curves. J. Math-for-Industry, 1(A):33–44, 2009.

34. A. Schinzel and M. Ska lba. On equations y2 = xn + k in a finite field. Bull. Pol.
Acad. Sci. Math., 52(3):223–226, 2004.



35. A. Shallue and C. van de Woestijne. Construction of rational points on elliptic
curves over finite fields. In F. Hess, S. Pauli, and M. E. Pohst, editors, ANTS,
volume 4076 of Lecture Notes in Computer Science, pages 510–524. Springer, 2006.

36. M. Ska lba. Points on elliptic curves over finite fields. Acta Arith., 117:293–301,
2005.

37. M. Tibouchi. Hachage vers les courbes elliptiques et cryptanalyse de schémas RSA.
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