
Improved Generic Algorithms for Hard Knapsacks?

Anja Becker1,??, Jean-Sébastien Coron3, and Antoine Joux1,2

1 University of Versailles Saint-Quentin-en-Yvelines
2 DGA

3 University of Luxembourg

Abstract. At Eurocrypt 2010, Howgrave-Graham and Joux described an algorithm for solving
hard knapsacks of density close to 1 in time Õ(20.337n) and memory Õ(20.256n), thereby improving a
30-year old algorithm by Shamir and Schroeppel. In this paper we extend the Howgrave-Graham–
Joux technique to get an algorithm with running time down to Õ(20.291n). An implementation
shows the practicability of the technique. Another challenge is to reduce the memory requirement.
We describe a constant memory algorithm based on cycle finding with running time Õ(20.72n); we
also show a time-memory tradeoff.

1 Introduction

The Knapsack Problem. Given a list of n positive integers (a1, a2, . . . , an) and another
positive integer S such that:

S =

n∑
i=1

εi · ai , (1)

where εi ∈ {0, 1}, the knapsack problem consists in recovering the coefficients εi. The vector
ε = (ε1, .., εn) is called the solution of the knapsack problem. It is well known that the decisional
version of the knapsack problem is NP-complete [4].

The first cryptosystem based on the knapsack problem was introduced by Merkle and Hell-
mann [10] in 1978, and subsequently broken by Shamir [14] using lattice reduction. For random
knapsack problems the Lagarias-Odlyzko attack [7] can solve knapsacks with density d < 0.64,
given an oracle solving the shortest vector problem (SVP) in lattices; the density of a knapsack
is defined as:

d :=
n

log2 maxi ai

The Lagarias-Odlyzko attack was further improved by Coster et al. [3] to knapsack densities
up to d < 0.94. Since solving SVP is known to be NP-hard [1], in practice, the shortest vector
oracle is replaced by a lattice reduction algorithm such as LLL [8] or BKZ [12].

The Schroeppel-Shamir Algorithm. For a knapsack of density close to 1 lattice reduction
algorithms do not seem to apply. Until 2009, the best algorithm for such hard knapsacks was
due to Schroeppel and Shamir [13] with time complexity Õ(2n/2) and memory Õ(2n/4). This
is the same running time as the straightforward meet-in-the-middle algorithm but with a lower
memory requirement of Õ(2n/4) instead of Õ(2n/2). A drawback is that the Schroeppel-Shamir
algorithm requires sophisticated data structure such as balanced trees which can be difficult

? This is the extended version of [2] published in the proceedings of Eurocrypt’2011.
?? The first author was mainly funded by a scholarship of the Gottlieb Daimler- und Karl Benz-Stiftung.

2

to implement in practice. A simpler but heuristic variant of Schroeppel-Shamir was described
in [5] with the same time and memory complexity; we recall this variant in Sect. 2.1. We also
recall how to solve unbalanced knapsack problems, where the Hamming weight of the coefficient
vector ε = (ε1, . . . , εn) can be much smaller than n.

The Howgrave-Graham–Joux Algorithm. At Eurocrypt 2010, Howgrave-Graham and
Joux introduced a more efficient algorithm [5] for hard knapsacks. While in Schroeppel-Shamir’s
algorithm the knapsack instance is divided into two halves with no overlap, the new algorithm
allows for overlaps, which induces more degrees of freedom. This enables to reduce the running
time down to Õ(20.337n) while keeping the memory requirement reasonably low at Õ(20.256n).
We recall the Howgrave-Graham–Joux algorithm in Sect. 2.2.

Our Contributions. The main contribution of our paper is to extend the Howgrave-Graham–
Joux technique to get a new algorithm with running time down to Õ(20.291n). The knapsack
instance is divided in two halves with possible overlap, as in the Howgrave-Graham–Joux algo-
rithm, but the set of possible coefficients is extended from {0, 1} to {−1, 0,+1}. This means that

a coefficient ε
(1)
i = −1 in the first half can be compensated with a coefficient ε

(2)
i = +1 in the sec-

ond half, the resulting coefficient εi of the golden solution being εi = ε
(1)
i + ε

(2)
i = (−1)+(+1) = 0.

Adding (a few) −1 coefficients brings an additional degree of freedom that enables to again de-
crease the running time; we describe our new algorithm in Sect. 3. We show the practicality
of the technique with an implementation for n = 80 and n = 96. However for n = 96 our
implementation is still less efficient than our best implementation of Howgrave-Graham–Joux
algorithm.

Another challenge in solving knapsack problems is to reduce the memory requirement. We
first describe a simple constant memory algorithm based on cycle finding with running time
Õ(20.75n). We show how to improve this algorithm down to Õ(20.72n) running time still requiring
constant memory, by using the Howgrave-Graham–Joux technique. Eventually, we present a
time-memory tradeoff for the Schroeppel-Shamir algorithm downto Õ(2n/16) memory. These
various algorithms are described in Sect. 4.

2 Existing Algorithms

The section recalls the Schroeppel-Shamir algorithm [13] and the Howgrave-Graham–Joux algo-
rithm [5] to make the reader familiar with the underlying techniques and to introduce notation
as used later on.

2.1 The Schroeppel-Shamir Algorithm

We present the Schroeppel-Shamir algorithm [13] under the simpler heuristic variant described
in [5]. We consider a knapsack as in (1) and for simplicity we assume that n is a multiple of 4.
We write the knapsack sum S as:

S = σ1 + σ2 + σ3 + σ4

3

where each σi is a knapsack of n/4 elements, that is,

σ1 =

n/4∑
i=1

εiai, σ2 =

n/2∑
i=n/4+1

εiai, σ3 =

3n/4∑
i=n/2+1

εiai, σ4 =
n∑

i=3n/4+1

εiai . (2)

We guess a middle value σM of n/4 bits which leads to the equations:

σ1 + σ2 = σM mod 2n/4 and σ3 + σ4 = S − σM mod 2n/4 .

We solve the two equations separately and merge the result; see Fig. 1 for an illustration. More
precisely, we first construct a sorted list {σ2} of all 2n/4 possible values for σ2. Then for each
possible σ1, we use the sorted list {σ2} to find all σ2 such that σ1 + σ2 = σM mod 2n/4. This
gives a list {σ12} of knapsack values σ12 = σ1 + σ2 such that σ12 = σM mod 2n/4; the size
of the list {σ12} is heuristically Õ(2n/4) and it can be built in time Õ(2n/4). We build the list
{σ34} of knapsack values σ34 = σ3 + σ4 such that σ34 = S − σM mod 2n/4 in an analogue way.
Eventually, we find a collision between the two lists {σ12} and {S − σ34} of two elements σ12
and σ34, respectively. For the right guess of σM we have found elements such that σ12+σ34 = S,
thereby solving the knapsack problem.

The time required to build the two lists {σ12} and {σ34} is Õ(2n/4). Then by sorting those
two lists the collision can be found in time Õ(2n/4). Since we have to guess σM which is a
n/4-bit value, the total running time is Õ(2n/2) and the required memory is Õ(2n/4).

σ1 σ2 σ3 σ4

σ1 σ2 σ3 σ4+ + +

σ12 σ34

= S

σ1234 = S

= σM [2n/4] = S − σM [2n/4]

Fig. 1. Illustration of the modular Schroeppel-Shamir variant

Unbalanced Case. The solution of a random knapsack may contain an arbitrary number of
1s. But, on average, we expect the number of 1s to be close to n/2. It is also useful to consider
knapsacks with different weights. Following the usual terminology, we say that a knapsack
is unbalanced when the Hamming weight of the coefficient vector ε = (ε1, . . . , εn) is known
and equal to ` where ` significantly differs from n/2. Note that there is a well-known natural
symmetry between the weights ` and n − `. This symmetry made explicit by considering the
complementary knapsack with target sum S′ =

∑n
i=1 ai − S.

4

In this case, [5] shows that we can take advantage of this information and adapt the previous
algorithm as follows: for each of the four σi instead of taking all possible knapsacks of n/4
elements we only consider knapsacks of Hamming weight exactly `/4 (assuming that ` is divisible
by 4). Note that if the correct solution is not perfectly balanced between the four quarters, then
such solution will be missed. For example if the Hamming weight of the solution in the first
quarter is `/4+1 and in the second quarter `/4−1, the solution is missed. This problem is easily
solved by permuting the order of the elements in the knapsacks until the Hamming weight of
each quarter is equal to `/4. As explained in [5], the expected number of required repetitions is
polynomial in n. Thus, this change does not modify the value of the exponent in the running
time.

In summary, for ` = τ ·n the size of the lists {σ2} and {σ4} becomes
(n/4
`/4

)
≈ 2h(τ)n/4 where:

h(x) := −x · log2 x− (1− x) · log2(1− x) .

Again, we can guess a middle value σM modulo 2h(τ)n/4; as previously the two lists {σ12} and
{σ34} can be built in time Õ(2h(τ)n/4) and a collision is found in time Õ(2h(τ)n/4). Therefore,
the total time complexity is Õ(2h(τ)n/2) and the memory complexity is Õ(2h(τ)n/4). Note that
for equibalanced knapsacks (with τ = 1/2) we have h(1/2) = 1 and obtain the same algorithm
as for random knapsacks.

2.2 The Howgrave-Graham–Joux Algorithm

We consider the knapsack (1). For simplicity we assume again that n is a multiple of four and
additionally that the Hamming weight of the coefficients εi is equal to n/2. To find a solution
x ∈ {0, 1}n, the basic idea of Howgrave-Graham and Joux [5] is to split the knapsack into two
subknapsacks of size n and of Hamming weight n/4. In other words, we write S as the sum
σ1 +σ2 of two subknapsacks with Hamming weight n/4 chosen among the n knapsack elements,

n∑
i=1

aiyi︸ ︷︷ ︸
σ1

+

n∑
i=1

aizi︸ ︷︷ ︸
σ2

= S (3)

where yi, zi ∈ {0, 1}. Clearly, the combination of two solutions y ∈ {0, 1}n and z ∈ {0, 1}n
gives a solution to the original knapsack when the two solutions do not overlap. In other words,
we represent any xi by a binary tuple (yi, zi), replacing 0 by (0, 0) and 1 by (1, 0) or (0, 1),
respectively. As a consequence, a single solution of the original knapsack problem decomposes
into many different representations. This is used to reduce the overall running time as described
in the following. We choose a modulus M , a random element R ∈ ZM and we only consider
decompositions such that:

σ1 =
n∑
i=1

aiyi ≡ R (mod M) and σ2 =
n∑
i=1

aizi ≡ S −R (mod M) .

Since both σ1 and σ2 are knapsacks of Hamming weight n/4 over n elements, the expected
number of solutions to each of these two modular subknapsacks is

L =

(
n
n/4

)
M

.

5

Assuming that the lists of solutions of the two subknapsacks can be obtained very efficiently
(in time Õ(L)), it remains to paste the partial solutions together to obtain a solution to the
original knapsack. We therefore search a collision between the values σ1 and S − σ2, for all y
and z in the two lists of solutions. Since the expected number of such collisions is small, this
can be done in Õ(L). To minimize the overall running time, M is chosen to be as large as
possible. More precisely, one chooses M as a number close to the number of decompositions of
the original solution into two solutions of the two subknapsacks, i.e. M ≈ 2n/2. Under these
assumptions, the running time would be reduced down to Õ(2h(1/4)n/2n/2) = Õ(20.3113).

However, there are several technical difficulties with this approach. First, there is an ex-
ponentially small number of bad weights (a1, .., an) where the algorithm fails. Second, the as-
sumption that the list of solutions of each subknapsack can be obtained in time Õ(L) is quite
strong and difficult to achieve. As a consequence, [5] also propose some weaker algorithms,
which achieve a slightly worse bound but are simpler to understand.

In addition, [5] also describes a heuristic algorithm, supported by an implementation, and
claims that it achieves the Õ(20.3113n) running time. However, Alexander May and Alexander
Meurer recently discovered a mistake in the analysis of this algorithm [9]. The problem arises
when merging two partial knapsack solutions into a global solution. In this process, two lists L1
and L2 of partial solutions of comparable size, say L, are merged into a list of global solutions
that satisfy an additional modular constraint modulo M . The expected size of the resulting
list is L̃. Up to logarithmic factors, [5] states that the complexity of this merging process is
max(L, L̃). However, this does not take into account the fact that the merge includes a filtering
process. The filtering process removes solutions that arise when assembling two overlapping
partial solutions out of L1 and L2. With this in mind, the complexity becomes max(L, L̂),
where L̂ is the size of the intermediate list of solution, before filtering. The expected value of
L̂ is L2/M . With this correction, May and Meurer showed that the asymptotic running time of
the Howgrave-Graham–Joux algorithm becomes Õ(20.337n).

3 New Algorithm with Better Time Complexity

We now introduce an extra tweak to the algorithm of [5] recalled in Sect. 2.2, in order to
further improve the time complexity. We first assume in Sect. 3.1 that the subknapsacks can be
solved efficiently. This gives a lower bound on the complexity of the new algorithm. However
this assumption is too strong and we do not know how to achieve this lower bound; hence the
improvement remains purely theoretical. In Sect. 3.3 we describe a concrete algorithm which
takes into account the actual running time of the lower levels and achieves a better asymptotic
running time than previous approaches.

3.1 Theoretical Improvement

Our basic idea is to enhance the algorithm of [5] by allowing more representations of the solution
of the initial knapsack. Instead of decomposing the original solution into two binary coefficient
vectors of weight n/4, we consider decompositions that contain 0s, 1s and -1s. More precisely,
we choose a parameter α and search for decompositions containing (1/4 + α)n 1s and αn -1s.
Put differently, we split the 1s of the original solution into pairs (0, 1) or (1, 0) as before and

6

the 0s into pairs (0, 0), (1,−1) or (−1, 1). The number of such decompositions is

ND =

(
n/2

n/4

)(
n/2

αn, αn, (1/2− 2α)n

)
.

As in Sect. 2.2, we choose a modulus M ≈ ND, a random value R modulo M and search for
solutions of the two subknapsacks

σ1 =

n∑
i=1

aiyi ≡ R (mod M) and σ2 =

n∑
i=1

aizi ≡ S −R (mod M) ,

where y and z contain (1/4+α)n 1s and αn -1s each. The expected number of solutions to each
of these new modular subknapsacks is

L =

(
n

(1/4+α)n,αn,(3/4−2α)n
)

M
.

Using: (
n

xn, yn, (1− x− y)n

)
= Õ(2g(x,y)n)

where:
g(x, y) := −x log2 x− y log2 y − (1− x− y) log2(1− x− y)

we obtain:

log2 L ≈ n ·
(
g(1/4 + α, α)− 1

2
− g(2α, 2α)

2

)
.

Assuming that creating the lists and searching for collisions can be done in time Õ(L) and
minimizing on α, we obtain a time complexity Õ(L) = Õ(20.151n) for α ≈ 0.103.

This analysis shows that adding more representations of the original solution has the po-
tential to give better algorithms. However, there are many obstacles to achieve such a good
algorithm. A first obstacle is that the size of the modulus M should never be larger than the
size of the knapsack elements. Indeed, we want the knapsack after reduction modulo M to
behave like a random knapsack, which is not the case if M is larger than the original knapsack
elements. Thus, we want to ensure M < 2n. Optimizing for α under this condition, we get
α = 0.05677 and L ≈ 20.173n.

In the sequel, we have a closer look at the complexity of the levels below and we show that it
is possible to build algorithms based on this new idea with a better asymptotic time complexity
than in [5].

3.2 The Basic Building Block

Before describing our algorithm, we recall a classical basic building block that we extensively
use. This building block performs the following task: given two lists of numbers La and Lb of
respective sizes |La| and |Lb|, together with two integers M and R, the algorithm computes the
list LR such that:

LR = {x+ y | x ∈ La, y ∈ Lb s.t. x+ y ≡ R (mod M)} .

7

Algorithm 1: Compute list LR.

Sort the lists La and Lb (by increasing order of the values modulo M);
Let Target← R;
Let i← 0 and j ← |Lb| − 1;
while i < |La| and j ≥ 0 do

Let Sum← (La[i] (mod M)) + (Lb[j] (mod M));
if Sum < Target then Increment i;
if Sum > Target then Decrement j;
if Sum = Target then

Let i0, i1 ← i;
while i1 < |La| and La[i1] ≡ La[i0] (mod M) do Increment i1;
Let j0, j1 ← j;
while j1 ≥ 0 and Lb[j1] ≡ Lb[j0] (mod M) do Decrement j1;
for i← i0 to i1 − 1 do

for j ← j1 + 1 to j0 do Append La[i] + Lb[j] to LR
end
Let i← i1 and j ← j1;

end

end
Let Target← R+M ;
Let i← 0 and j ← |Lb| − 1;
Repeat the above loop with the new target;

To solve this problem, we use a classical algorithm [16] whose description is given in pseudo-code
by Algorithm 1.

The complexity of Algorithm 1 is Õ(max(|La|, |Lb|, |LR|)). Moreover, assuming that the
values of the initial lists modulo M are randomly distributed, the expected size of LR is |La| ·
|Lb|/M . However, this cannot be guaranteed in general.

Using a slight variation of Algorithm 1, it is also possible given La and Lb together with a
target integer R to construct the set:

LR = {x+ y | x ∈ La, y ∈ Lb s.t. x+ y = R} .

The only differences are that we sort the lists by value (not by modular values) and then run
the loop with a single target value R (instead of 2).

3.3 Devising a Concrete Algorithm

In order to achieve a concrete algorithm along the lines of the theoretical analysis from Sect. 3.1,
we must be able to solve the subknapsacks that arise after decomposing the original knapsack
problem in a reasonably efficient manner. The difficulty here is that a direct use of an adapted
Schroeppel-Shamir algorithm is too costly.

Instead, we use the idea of decomposing a knapsack into two subknapsacks several times.
More precisely, we introduce three levels of decomposition; see Fig. 2 for an illustration. The
first decomposition follows the method described in Sect. 3.1, with a different (smaller) choice
for the value α denoting the proportion of -1s added on each side. At the second or middle level,
we decompose each subknapsack from the first level into two. We also add some new -1s in the
decompositions. The number of additional -1s for each of the four subknapsacks at the middle

8

level is controlled by a new parameter β. In the last level, we finally decompose into a total of
eight different subknapsacks. At this level, we use a parameter γ to denote the proportion of
extra -1s in the subknapsacks.

σ
(1)
ω σ

(2)
ω σ

(3)
ω σ

(4)
ω σ

(5)
ω σ

(6)
ω σ

(7)
ω σ

(8)
ω

σ
(1)
ω σ

(2)
ω σ

(3)
ω σ

(4)
ω σ

(5)
ω σ

(6)
ω σ

(7)
ω σ

(8)
ω+ + + + + + + = S

σ
(1)
κ σ

(2)
κ σ

(3)
κ σ

(4)
κ

σ
(1)
ν σ

(2)
ν

Golden solution ε
corresponding to sum σε

L(3)
κ

L(2)
ν

≡Mν R
(1)
ν

≡Mκ R
(1)
κ +R

(2)
κ

≡Mω R
(1)
ω +R

(2)
ω +R

(3)
ω +R

(4)
ω

≡Mκ R
(1)
κ

≡Mω R
(1)
ω +R

(2)
ω

γ

β

α

Fig. 2. Iterative decomposition in three steps. σ
(j)
χ : partial sum, R

(j)
χ : target value, Mχ : modulus, α, β and γ :

proportion of additional −1s

Notation. We use a different Greek letter (ε, κ, ω or ν) to denote the coefficient vectors of
each subknapsack. In the original knapsack, we carry on using the letter ε. At the first level of
decomposition, we now use ν(1) and ν(2) for the coefficient vectors of the two subknapsacks. At
the middle level, we choose the notation κ(1) to κ(4). At the bottom level, we use the letters ω(1)

to ω(8). We then let Nχ(x) denote the number of occurrences of x ∈ {−1, 0, 1} in the coefficient
vector χ. For a knapsack of n elements, we have:

Nε(1) = n/2, Nε(−1) = 0,
Nν(1) ≈ (1/4 + α)n, Nν(−1) ≈ αn,
Nκ(1) ≈ (1/8 + α/2 + β)n, Nκ(−1) ≈ (α/2 + β)n,
Nω(1) ≈ (1/16 + α/4 + β/2 + γ)n, Nω(−1) ≈ (α/4 + β/2 + γ)n .

We always have Nχ(0) = n − Nχ(1) − Nχ(−1). Since all these numbers need to be rounded
to integers for a concrete knapsack instance, we write ≈ instead of = above. For each of the
coefficient vectors χ(j) we introduce the corresponding partial sum:

σ(j)χ =

n∑
i=1

χ
(j)
i ai .

To control the size of the lists of solutions that arise at each level of decomposition, we
introduce a modulus and target values for each of the subknapsacks. We denote the modulus

9

corresponding to the bottom level by Mω, we introduce 7 random values R
(j)
ω (for 1 ≤ j ≤ 7)

and let R
(8)
ω = S −

∑7
j=1R

(j)
ω . We solve the eight modular subknapsacks:

σ(j)ω ≡ R(j)
ω (mod Mω) for 1 ≤ j ≤ 8 .

We denote by L(j)
ω , the list of solutions of each of these subknapsacks. Figure 2 illustrates the

decomposition and Fig. 3 shows the merge of the lists until the golden solution is found in the
last list K0.

Basic Principle and Modular Constraints. To build solutions at the middle level κ, we

consider sums of two partial solutions from two neighboring lists L(2j−1)
ω and L(2j)

ω containing
solutions of the last level. By construction, we see that:

σ(j)κ = σ(2j−1)ω + σ(2j)ω ≡ R(2j−1)
ω +R(2j)

ω (mod Mω)

which means that all these partial sums already have some fixed value modulo Mω. To prune
the size of the lists of solutions at this level, we add an extra constraint modulo Mκ (chosen

coprime to Mω). Thus, we introduce three random values R
(j)
κ (for 1 ≤ j ≤ 3) and let R

(4)
κ =

S −
∑3

j=1R
(j)
κ . The new lists of solutions are denoted by L(j)

κ .

For the first level, we proceed similarly, adding partial solutions from L(2j−1)
κ and L(2j)

κ .
Clearly, the resulting sums already have fixed values modulo Mκ and Mω. Again, we introduce

a modulus Mν , a random value R
(1)
ν and we let R

(2)
ν = S −R(1)

ν to reduce the size of the lists.
Finally, the (presumably unique) solution of the original knapsack is found by searching for

a collision of the form σ
(1)
ν + σ

(2)
ν = S with σ

(1)
ν ∈ L(1)

ν and σ
(2)
ν ∈ L(2)

ν . Figure 2 illustrates the
technique.

To transform this informal description into a formal algorithm and to analyze its complexity,

we need to specify how the lists L(j)
ω are constructed. We also explain how to merge solutions

from one level to solutions at the next level and specify the choices of the moduli Mω, Mκ and
Mν in the next paragraph.

Algorithmic Details. The eight lists L(j)
ω can be constructed using a straightforward adap-

tation of the simple birthday paradox algorithm. It suffices to split the n elements into two
random subsets of size n/2 and to assume that the 1s and -1s are evenly4 distributed between
the two halves. As with the case of binary coefficient vectors, the probability of this event is
the inverse of a polynomial in n. Thus by repeating polynomially many times, we recover all

of L(j)
ω with overwhelming probability. Assuming that the elements in L(j)

ω are random modulo

Mω, the expected size of L(j)
ω is:

Lω =
Lω
Mω

=

(
n

Nω(1),Nω(−1),Nω(0)
)

Mω
,

where Lω is the multinomial coefficient that counts the number of ways to choose Nω(1) 1s,
Nω(−1) -1s and Nω(0) 0s among n elements. Since the number of ways to choose Nω(1)/2 1s,

4 Or almost evenly when the number of 1s and/or -1s are odd.

10

L(1)
ω L(2)

ω L(3)
ω L(4)

ω L(5)
ω L(6)

ω L(7)
ω L(8)

ω

σ
(1)
ω σ

(2)
ω σ

(3)
ω σ

(4)
ω σ

(5)
ω σ

(6)
ω σ

(7)
ω σ

(8)
ω+ + + + + + + = S

L(1)
κ L(2)

κ L(3)
κ L(4)

κ

L(1)
ν L(2)

ν

K0 with solution

K(1)
κ K(2)

κ K(3)
κ K(4)

κ

K(1)
ν K(2)

ν

collision and
Mκ-constraint

consistence

collision and
Mν-constraint

consistence

Fig. 3. Merge of the partial solutions via check of collision and consistency

Nω(−1)/2 -1s and Nω(0)/2 0s among n/2 elements is ≈ L1/2ω for large n, the running time of

the construction of each L(j)
ω is max(|L(j)

ω |,L1/2ω).

At the middle level, the expected size of L(j)
κ is upper bounded by

Lκ =
Lκ

Mω ·Mκ
=

(
n

Nκ(1),Nκ(−1),Nκ(0)
)

Mω ·Mκ
.

This is only an upper bound on the expected size since the definition of Lκ ignores the fact
that we discard solutions that cannot be decomposed with the modular constraints of the lower
level.

To construct these lists, we match values from L(2j−1)
ω and L(2j)

ω modulo Mκ using Al-

gorithm 1 from Sect. 3.2. We let K(j)
κ denote the resulting list; see Fig. 3. We then remove

inconsistent solutions from K(j)
κ in order to produce L(j)

κ . We say that a solution is inconsistent
when the vector ω(2j−1) + ω(2j) contains 2s or -2s and/or does not have the number of 1s, -1s
and 0s specified by Nκ(1), Nκ(−1) and Nκ(0). According to Sect. 3.2, the cost of this step is

max(|L(2j−1)
ω |, |L(2j)

ω |, |K(j)
κ |).

Proceeding in the same way, we give an upper bound on the expected size of L(j)
ν by

Lν =
Lν

Mω ·Mκ ·Mν
=

(
n

Nν(1),Nν(−1),Nν(0)
)

Mω ·Mκ ·Mν
.

Using the same notation as above, the cost to construct the two lists L(j)
ν is max(|L(2j−1)

κ |, |L(2j)
κ |, |K(j)

ν |).
Finally, the last step is to apply the integer variant of Algorithm 1 to the two integer lists

L(1)
ν and L(2)

ν , obtaining a list K0 of (possibly inconsistent) solutions. The cost of this step is

max(|L(1)
ν |, |L(2)

ν |, |K0|).

11

To estimate the size of K0, we count the number of expected solutions in a modular merge
modulo the multiple of Mω ·Mκ ·Mν closest to 2n. This overestimates the size of K0 since it is
slightly easier to find a knapsack solution modulo this value than a knapsack solution over the
integers. This yields an estimate equal to:

L2
ν ·

Mν ·Mκ ·Mω

2n
.

If K0 contains at least one consistent solution, we obtain a solution of the initial knapsack
problem.

To conclude the description of the algorithm, we need to specify the values of the moduli
Mω, Mκ and Mν . The key idea at this point is to choose each modulus to ensure that each
solution appearing at a given level is represented (on average) by a single decomposition at
the previous level. Indeed, if we add a larger modular constraint, we lose solutions from one
level to the next and if we choose a smaller constraints, we construct each solution many times
which increases the overall cost. Using binomials and multinomials to compute the number of
decompositions we obtain the following conditions for the values of the moduli:

Mω ≈
(Nκ(1)
Nκ(1)/2

)
·
(Nκ(−1)
Nκ(−1)/2

)
·
(Nκ(0)
Nω(1)−Nκ(1)/2,Nω(−1)−Nκ(−1)/2, ?

)
≈

2(1/8+α+2β−2γ log2 γ−(7/8−α−2β−2γ) log2 (7/8−α−2β−2γ)+(7/8−α−2β) log2 (7/8−α−2β) ,

Mκ ·Mω ≈
(Nν(1)
Nν(1)/2

)
·
(Nν(−1)
Nν(−1)/2

)
·
(Nν(0)
Nκ(1)−Nν(1)/2,Nκ(−1)−Nν(−1)/2, ?

)
≈

2(1/4+2α−2β log2 β−(3/4−2α−2β) log2(3/4−2α−2β)+(3/4−2α) log2(3/4−2α))n ,

Mν ·Mκ ·Mω ≈
(n/2
n/4

)
·
(n/2
Nν(−1),Nν(−1), ?

)
≈ 2(1/2−2α log2 α−(1/2−2α) log2(1/2−2α)+(1/2) log2(1/2))n

≈ 2(−2α log2 α−(1/2−2α) log2(1/2−2α))n .

The ? symbol in the above multinomials denotes the number of remaining elements (corre-
sponding to 0s) after specifying the number of 1s and -1s introduced to decompose the set of
0s from the lower level.

The overall running time of the algorithm is the maximum of the individual costs to run
Algorithm 1 and the construction of the eight lists, which gives:

Õ(max(max
j
|L(j)
ω |,max

j
L1/2ω ,max

j
|K(j)

κ |,max
j
|L(j)
κ |,max

j
|K(j)

ν |,max
j
|L(j)
ν |, |K0|)) .

Assuming that each list has a size close to its expected value (see Sect. 3.5), the expected
running time is:

T (α, β, γ) = Õ(max(Lω,L1/2ω ,
L2
ω

Mκ
, Lκ,

L2
κ

Mν
, Lν , L

2
ν ·

Mν ·Mκ ·Mω

2n
)) .

Since none of the Kχ lists need to be stored, the amount of memory required is:

Õ(max(Lω,L1/2ω , Lκ, Lν)) .

12

Finally, there is an additional, very important, parameter to consider, the probability of success

psucc taken over the possible random choices of the R
(j)
χ values. This parameter is quite tricky

to estimate because it varies depending on the initial knapsack that we are solving. As an
illustration, consider the knapsack whose elements are all equal to 0. It is clear that unless all

the random R
(j)
χ are chosen equal to 0 then the algorithm cannot succeed. As a consequence, in

this case the probability of success is very low. There are many other bad knapsacks; however,
for a random knapsack, the expected probability of success is not too small (see Sect. 3.4 for a
discussion).

Numerical Results for the Complexity Analysis. Minimizing the expected running time
T (α, β, γ) results in:

α = 0.0267, β = 0.0168, γ = 0.0029 .

With these values, we obtain:

Lω ≈ 20.532n, Lω ≈ 20.291n, Lκ ≈ 20.279n, Lν ≈ 20.217n and
Mω ≈ 20.241n, Mκ ≈ 20.291n, Mν ≈ 20.267n .

As a consequence, we find that both the time and memory complexity are equal to Õ(20.291n).
We can also check that the product of the three moduli Mω ·Mκ ·Mν is smaller than the size
of the numbers in the initial knapsack, i.e. 2n.

However, we remark that γ is so small that for any achievable knapsack size n, the number
of −1s added at the last level is 0 in practice. Thus, in order to improve the practical choices of
the number of −1s at the higher levels, it is better to adjust the minimization with the added
constraint γ = 0. This leads to the alternative values:

α = 0.0194, β = 0.0119, γ = 0 .

With these values, we obtain:

Lω ≈ 20.463n, Lω ≈ 20.295n, Lκ ≈ 20.284n, Lν ≈ 20.234n and
Mω ≈ 20.168n, Mκ ≈ 20.295n, Mν ≈ 20.272n .

We can also remark that by choosing α = β = γ = 0, we recover the time complexity
Õ(20.337n) given by May and Meurer [9] for the algorithm of [5]. However, in our case, the
memory complexity is also Õ(20.337n), which indicates that our algorithm can probably be
improved in this respect.

Complexity for the Unbalanced Case. We also analyzed the complexity for τ−unbalanced
knapsacks. Figure 4 shows that the complexity is decreases for knapsack weight τ dropping
below 0.5. For τ larger than 0.5, the complexity increases. In this case, it is best to switch to
the complementary knapsack.

Extensions. To further improve the time complexity of solving knapsacks, we can consider
some extensions of our new algorithm. A first possibility would be to add more levels of decom-
position (into 16 or more subknapsacks). However, our trials to build a concrete algorithm with

13

0

0.05

0.1

0.15

0.2

0.25

0.3

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5

Fig. 4. Exponent in the complexity for unbalanced knapsacks

four levels could not beat the three-level algorithm. Moreover, we can also consider decomposi-
tions that use more values besides {−1, 0, 1}. In general, we could allow coefficient vectors for
the subknapsacks in ranges of the form [−B,B] or [−B,B + 1] for a (small) integer B. De-
vising and analyzing the exact algorithms with these extensions, however becomes much more
complex.

3.4 Analysis of the Probability of Success

In order to analyze the probability of success, it is convenient to bear in mind Fig. 2. We are
starting from an unknown but fixed golden solution of the knapsack and we wish to decompose
it seven times. (At each step we represent the 0s, 1s and −1s of the current coefficient vector by
a tuple (i, j) where i, j ∈ {0, 1,−1}.) For each of the seven splits, we add a modular constraint
modulo a number very close to the total number of decompositions. For example, during the
top level split, we are specifying that the sum of the left hand-side after the splitting should

be congruent to R
(1)
ν modulo Mν , to R

(1)
κ + R

(2)
κ modulo Mκ and to R

(1)
ω + R

(2)
ω + R

(3)
ω + R

(4)
ω

modulo Mω. Since the three moduli are coprime, this is equivalent to simply specifying a value
modulo Mν ·Mκ ·Mω. Each of the decompositions is considered successful if the current golden
solution admits at least one way of splitting which satisfies the modular constraint. In this case,
we focus on one of the admissible solutions for which we search for a decomposition in the level
below. Fixing the solution on the left-hand side also determines the solution of the right-hand
side.

Clearly, if each of the seven decompositions succeeds, the initial solution can be found by
the algorithm. Assuming independence, the overall probability of success is at least equal5 to
the product of the probability of success of the individual decompositions. If we do not assume
independence, we can still say that the overall probability of failure is smaller than the individual
probabilities of failure.

5 The probability can be larger, since we ignore multiple correct splits when they occur.

14

0

200000

400000

600000

800000

1e+06

0 200 400 600 800 1000 1200 1400 1600 1800

Knapsack Sums
Random Values

Fig. 5. Cumulative number of knapsacks (in a million) with less than a given number of not obtained values

Purely Random Heuristic Model. One approach to the analysis of the probability of an
individual decomposition succeeding is to assume that for each of the possible decompositions,
the resulting modular sum is a random value. We already know that there are knapsacks for
which this assumption does not hold, as illustrated by the all-zero example. This is true for a
large number of random, however, and is a very useful benchmark for the following analysis. For
simplicity, we assume here that the number of possible decompositions is equal to the modulus
M for a large set of random knapsacks.

In this case, it is well-known that for large values of M , the proportion of modular values
which are not attained after picking M random values is close to e−1 ' 0.36.

Experimental Behavior of Decompositions. In Section 5.1, we describe an implementation
of our algorithm on a 80-bit knapsack. To better understand the behavior of this implementa-
tion, it is useful to determine the probability of success of each decomposition. Three levels of
decomposition occur. At the top level, a balanced golden solution with 40 zeros and 40 ones
needs to be split into two partial solutions with 22 ones and two -1s each. At the middle level,
a golden solution with 22 ones and two -1s is to be split into two partial solutions with 12 ones
and two -1s. Finally, at the bottom level, we split 12 ones and two -1s into twice 6 ones and one
-1.

At the top level, the number of possible decompositions of a golden solution is larger than(
40
22

)(
40

2,2,36

)
≈ 256. As a consequence, it is not possible to perform experimental statistics of the

modular values of such a large set. At the middle level, the number of decompositions is larger
than

(
22
11

)(
2
1

)(
46

1,1,44

)
≈ 232. Thus, it is possible to perform some experiments, but doing a large

15

number of tests to perform a statistical analysis of the modular values is very cumbersome. At
the bottom level, the number of decompositions of a golden solution is

(
12
6

)(
2
1

)
= 1848. This is

small enough to perform significant statistics and, in particular, to study the fraction of modular
values which are not obtained (depending on a random choice of 14 knapsack elements, 12 1s
and two −1s, to be split). The value of the modulus used in this experiment is 1847, the closest
prime to 1848.

During our experimental study, we created one million modular subknapsacks from 14 ran-
domly selected values modulo 1847. Among these values 12 elements correspond to additions
and 2 to subtractions. From this set we computed (in Z1847) all of the 1848 values that can
be obtained by summing 6 out of the 12 addition elements and subtracting one of the subtrac-
tion elements. In each experiment, we counted the number of values which were not obtained;
the results are presented in Fig. 5. On the vertical axis we display the cumulative number of
knapsacks which result in x or less unobtained values. To allow comparison with the purely
random model, we display the same curve computed for one million of experiments where 1848
random numbers modulo 1847 are chosen. In particular, we see on this graph that for 99.99%
of the random knapsacks we have constructed the fraction of unobtained value stays below 2/3.
This means that experimentally, the probability of success of a decomposition at the bottom
level is, at least, 1/3 for a very large fraction of knapsacks. Assuming independence between
the probability of success of the seven splits and a similar behavior of three levels6, we conclude
that for 99.93% of random knapsacks an average number of 37 = 2187 repetitions suffices to
solve the initial problem.

Distribution of Modular Sums. When considering the decomposition of a given golden
solution (at any level), we can construct the set B of all left-hand sides which can appear. For
this set B we wish to study the distribution of the scalar product a·x =

∑n
i=1 aixi (mod M), for

given knapsack weights ai. Let Pa1,..,an(B, c) denote the probability that a knapsack of elements
a = (a1, .., an) ∈ ZnM results in the value c modulo M for a uniformly at random chosen solution
(x1, .., xn) from B,

Pa1,··· ,an(B, c) =
1

|B|

∣∣∣∣∣
{

(x1, · · · , xn) ∈ B such that
n∑
i=1

aixi ≡ c (mod M)

}∣∣∣∣∣ .
Our main tool to theoretically study the distribution of the scalar products is the following

theorem [11, Theorem 3.2]:

Theorem 1. For any set B ⊂ ZnM , the identity:

1

Mn

∑
(a1,··· ,an)∈ZnM

∑
c∈ZM

(
Pa1,··· ,an(B, c)− 1

M

)2

=
M − 1

M |B|

holds.

6 The limited number of experiments we have performed for the middle level seem to indicate a comparable
behavior. We performed 100 experiments and the number of not obtained values remained in the range 42%
– 43.1%.

16

With this equation we can prove a weak but sufficient result about the proportion of missed
values during a decomposition. Let Λ > 0 be an arbitrary integer. We want to find an upper
bound for the fraction fΛ of “bad” knapsacks modulo M with less than M/Λ obtained values.
First, we remark that for a knapsack (a1, · · · , an) that reaches less than M/Λ values, at least
(Λ− 1)M/Λ values modulo M are obtained 0 times. Since∑

c∈ZM

Pa1,··· ,an(B, c) = 1

some values c need to be obtained many times. As a consequence, we find that

∑
c∈ZM

(
Pa1,··· ,an(B, c)− 1

M

)2

≥ Λ− 1

Λ
·M · 1

M2
+

1

Λ
·M · (Λ− 1)2

M2
=
Λ− 1

M
.

This implies that the number Nbad of “bad” knapsacks satisfies:

Nbad ≤M
n · M − 1

(Λ− 1)|B|
.

With this bound, it is possible to construct a variation of our algorithm with a provable
probability of success. Given Λ ≥ 10 as a function of n, we repeat each split for 2Λ random
and independently picked values. The probability of failure of such a repeated split is at most
e−2 ≈ 0.135, except for a “bad” knapsack. Thus, the global probability of failure on the seven
splits is smaller than 95%. By choosing M smaller than |B| (but close to it), we ensure that the
total fraction of bad knapsacks is at most:

7

Λ− 1
.

This fraction becomes arbitrarily small by choosing a large enough value of Λ. Note that the
running time is multiplied by (2Λ)3, since there are three nested levels of decompositions. If
a probability of success of 5% is not sufficient, it is possible to increase the probability by
repeating the complete algorithm with independent random numbers. A polynomial number of
repetition leads to a probability of success exponentially close to 1 (with the exception of the
“bad” knapsacks).

3.5 Analysis of the Size of the Lists

Concerning the size of the lists that occur during the algorithm, both the simple heuristic model
and the experimental results (see Section 5.1) predict that the size of the lists are always very
close to the theoretical values at the bottom level and smaller (due to the overestimation) at
the levels above. It remains to use Theorem 1 to give an upper bound on the size of the various
lists.

For the sizes of the lists Lχ, we can use a direct application of the theorem. The set of
concern, B, is the set of all repartitions of 1s, 0s and -1s fulfilling the conditions of Lχ. The
modulus M is the product of all active moduli at the current and preceding levels. That is, for
level ω we have M = Mω; for level κ, M = Mω ·Mκ, and for level ν we take M = Mω ·Mκ ·Mν .

17

Once again, we fix an integer Λ and consider the number FΛ of knapsacks for which more
than M/(2Λ) values c have a probability that satisfies:

Pa1,··· ,an(B, c) ≥ Λ/M .

Due to Theorem 1, we find:

FΛ
Mn
· M

2Λ
· (Λ− 1)2

M2
≤ M − 1

M |B|
≤ 1

|B|
.

As a consequence:

FΛ ≤
2Λ

(Λ− 1)2
· M
|B|
·Mn ≤ 2Λ

(Λ− 1)2
·Mn .

The key point is that for a knapsack which is not one of the FΛ knapsacks above and for most
values of c (all but at most M/(2Λ)), the size of Lχ is smaller than Λ times the expected value
|B|/M , that is,

|Lχ| ≤
Λ |B|
M

.

To bound the size of the lists Kχ, we proceed slightly differently. The set B consists of 1s, 0s
and -1s that are allowed in the L lists and are matched to construct Kχ. We write M = M1 ·M2,
where M1 is the product of the active moduli for the L list and M2 is the modulus that is added
when constructing Kχ. Let σ (mod M) denote the target sum as a new modulo constraint for
elements in Kχ. Let σL (mod M1) and σR (mod M1) respectively denote the values of the sums
in the left-side and right-side lists L. Of course, we have σL +σR ≡ σ (mod M1). We can write:

|Kχ| =
∑

c ∈ ZM
c ≡ σL (mod M1)

(|B| · Pa1,··· ,an(B, c)) · (|B| · Pa1,··· ,an(B, σ − c))

≤

∑

c ∈ ZM
c ≡ σL

(|B| · Pa1,··· ,an(B, c))2 ×
∑

c ∈ ZM
c ≡ σR

(|B| · Pa1,··· ,an(B, c))2

1/2

. (4)

Thus to estimate the size of the lists Kχ, we need to find an upper bound for the value of sums
of the form: ∑

c ∈ ZM
c ≡ c1 (mod M1)

Pa1,··· ,an(B, c)2 .

To do this, it is useful to rewrite the relation from Theorem 1 as:

1

Mn

∑
(a1,··· ,an)∈ZnM

∑
c∈ZM

Pa1,··· ,an(B, c)2 =
M + |B| − 1

M |B|
.

18

Given Λ, we let GΛ denote the number of knapsacks for which more than M1/(8Λ) values c1
have a sum of squared probabilities that satisfy:∑

c ∈ ZM
c ≡ c1 (mod M1)

Pa1,··· ,an(B, c)2 ≥ Λ2

M2
1M2

.

We find that
GΛ
Mn
· M1

8Λ
· Λ2

M2
1M2

≤ M + |B| − 1

M |B|
;

and as a consequence

GΛ ≤
8

Λ
· M + |B|
|B|

·Mn .

Moreover, we can check with our concrete algorithm that we always have |B| ≥ M for the
construction of the lists Kχ. Thus we have GΛ ≤ (16/Λ)Mn. For a knapsack which is not one
of the GΛ knapsacks above and for most values 7 of σL mod M1, the size of Kχ is smaller than
Λ2 times the expected value |B|2/(M2

1 M2), that is,

|Kχ| ≤
Λ2 |B|2

M2
1 ·M2

.

Note, that this bound includes the case |K0|.

3.6 Provable Variant of the Concrete Algorithm

Following the ideas presented in Sect. 3.4, we can now describe a variant of our concrete al-
gorithm with provable probabilistic run-time and space requirements. First, fix a large enough
value of Λ. We redefine the notion of a “bad” knapsack in this section, by saying that a knapsack
is bad if it fails to fulfill one of the three criteria developed in Sect. 3.4 and Sect. 3.5. That is, if
there are too many values that yield incorrect splits or lists of type L or K which are too large.
We find that the total fraction of bad knapsacks is smaller than

7

(
1

Λ− 1
+

2Λ

(Λ− 1)2
+

16

Λ

)
≤ 140

Λ
for Λ ≥ 7 .

By choosing a large enough value for Λ, this fraction can become arbitrarily small.
Once again, we consider a variation of the concrete algorithm where at each level we repeat

the choice of random numbers often enough to be successful. For a “good” knapsack there are
three ways a decomposition can fail (or a merge can fail, depending on whether we are adopting
the view of Fig. 3 or of Figure 2). Firstly, we could choose a random value which does not permit
a decomposition of the golden solution; Secondly, we could choose a random value which makes
Lχ overflow; Thirdly, we could choose a random value which makes Kχ overflow. Note that the
last two events can be detected, in which case we erase the lists that have been constructed for

7 For all but at most 2M1/(8Λ) – the factor 2 in the numerator comes from the fact that there are two terms
to bound in ((4)).

19

this random value and turn to the next. For each modulus, the proportion of random values
which are incorrect with respect to at least one criteria is smaller than

Λ− 1

Λ
+

1

2Λ
+

2

8Λ
= 1− 1

4Λ
.

Thus by repeating each split 8Λ times, we make sure that the probability of failure of a given
split is at most e−2. Once again, this yields a global probability of success of 5%, which becomes
exponentially close to 1 by repeating polynomially many times. Given a real ε > 0, by setting
Λ = 2ε n we obtain the following theorem:

Theorem 2. For any real ε > 0 and for a fraction of at least 1 − 140 · 2−ε n of equibalanced
knapsacks with density D < 1 given by an n-tuple (a1, · · · , an) and a target value S, if ε =
(ε1, · · · , εn) is a solution of the knapsack then the algorithm described in Sect. 3.3 modified as
above finds the solution ε sought after in time Õ(2(0.291+3ε)n).

We recall that in the theorem, the term equibalanced means that the solution ε contains exactly
the same number of 0s and 1s.

4 Memory Complexity Improvement

In this section we first show a new algorithm of constant memory requirement and running
time Õ(23n/4). We then show how to decrease its time complexity down to Õ(20.72n) using a
technique similar to Howgrave-Graham and Joux [5]. Finally, we show a time memory tradeoff
for Schroeppel-Shamir’s algorithm down to Õ(2n/16) memory.

4.1 An Algorithm with Running Time Õ(23n/4) and Memory Õ(1)

We describe a simple algorithm that solves the knapsack problem in time Õ(23n/4) and constant
memory, using a meet-in-the-middle attack. This is done by formulating the meet-in-the-middle
attack as a collision search problem (see [15]); then a constant memory cycle-finding algorithm
can be used.

We define two functions f1, f2 : {0, 1}n/2 → {0, 1}n/2:

f1(x) =

n/2∑
i=1

aixi mod 2n/2, f2(y) = S −
n∑

i=n/2+1

aiyi mod 2n/2

where xi denotes the i-th bit of x, and similarly for yi. If we can find x, y ∈ {0, 1}n/2 such that
f1(x) = f2(y), then we get:

n/2∑
i=1

aixi +
n∑

i=n/2+1

aiyi = S mod 2n/2 .

This gives a solution of the knapsack problem that is only valid modulo 2n/2. Since there are
heuristically Õ(2n/2) such solutions holding modulo 2n/2, and only a single one that holds
over Z, a random (x, y) such that f1(x) = f2(y) leads to the correct knapsack solution with

20

probability roughly 2−n/2. Below we show that we can generate such random solution in time
Õ(2n/4) and constant memory. This gives an algorithm with total running time Õ(23n/4) and
constant memory.

From the two functions f1, f2 we define the function f : {0, 1}n/2 → {0, 1}n/2 where:

f(x) =

{
f1(x) if g(x) = 0

f2(x) if g(x) = 1

where g : {0, 1}n/2 → {0, 1} is a random bit function. Then a collision f(x) = f(y) for f gives a
desired collision f1(x) = f2(y) with probability 1/2. The function f : {0, 1}n/2 → {0, 1}n/2 is a
random function, therefore using Floyd’s cycle finding algorithm [6] we can find a collision for
f in time 2n/4 and constant memory.

However we need to obtain a random collision whereas Floyd’s cycle finding algorithm
is likely to produce always the same collision. A simple solution is to further randomize the
function f ; more precisely we apply Floyd’ cycle-finding algorithm to f ′ : {0, 1}n/2 → {0, 1}n/2
with f ′(x) = P (f(x)), where P is a random permutation in {0, 1}n/2. Then a new permutation
P is used every time a new collision (x, y) is required for f .

4.2 An Algorithm with Running Time Õ(20.72n) and Memory Õ(1)

In this section we show how to slightly decrease the running time down to Õ(20.72n), still with
constant memory; for this we use the Howgrave-Graham–Joux technique recalled in Sect. 2.1.
Again for simplicity we assume that n is a multiple of 4, and that the Hamming weight of the
knapsack solution ε is exactly n/2. As in (3) we write S as the sum σ1 +σ2 of two subknapsacks
with Hamming weight n/4 chosen among the n knapsack elements,

n∑
i=1

aiyi︸ ︷︷ ︸
σ1

+
n∑
i=1

aizi︸ ︷︷ ︸
σ2

= S .

We let W be the set of n-bit strings of Hamming weight n/4. We have #W = 2h(1/4) ' 20.81n.
We define the two functions f1, f2 : W → {0, 1}h(1/4)n:

f1(y) =

n∑
i=1

aiyi mod 2h(1/4)n, f2(z) = S −
n∑
i=1

aizi mod 2h(1/4)n

where yi denotes the i-th bit of y, and similarly for zi. We consider y, z ∈W such that:

f1(y) = f2(z) (5)

equivalently:
n∑
i=1

aiyi +
n∑
i=1

aizi = S mod 2h(1/4)n .

21

Since f1 and f2 are random functions heuristically there are 2h(1/4)n solutions to (5). More-

over given the correct solution ε of the knapsack, as in Sect. 2.1 there are
(n/2
n/4

)
' 2n/2 ways of

writing this correct solution as
n∑
i=1

aiyi +

n∑
i=1

aizi = S

where y and z both have Hamming weight n/4. All these 2n/2 solutions are solutions of (5).
Therefore the probability p that a random solution of (5) leads to the correct knapsack solution
is:

p =
2n/2

2h(1/4)n
' 2−.31n .

The input space of f1, f2 has size 2h(1/4)n. Therefore using the same cycle-finding algorithm
as in the previous section, a random solution of (5) can be found in time Õ(2h(1/4)n/2). The
total time complexity is therefore:

Õ(2h(1/4)n/2)/p = Õ(2h(1/4)n/2) · 2(h(1/4)−1/2)n

= Õ(2(3h(1/4)/2−1/2)n) = Õ(2.72n) .

Finally, we note that it is possible to further improve this complexity by adding −1s in the
decomposition (as in Sect. 3) but the time complexity improvement is almost negligible.

4.3 A Time-Memory Tradeoff on Schroeppel-Shamir down to 2n/16 Memory

The original Schroeppel-Shamir algorithm works in time Õ(2n/2) and memory Õ(2n/4). In this
section we describe a continuous time-memory tradeoff down to Õ(2n/16) memory. That is we
describe a variant of Schroeppel-Shamir with:

Running time: Õ(2(11/16−ε)n), Memory: Õ(2(1/16+ε)n)

for any 0 ≤ ε ≤ 3/16. For simplicity we first describe the algorithm with exactly Õ(2n/16)
memory. We write the knapsack as S = σ1 +σ2 +σ3 +σ4 as in (2) where each σi is a knapsack
of n/4 elements , that is:

σ1 =

n/4∑
i=1

εiai, σ2 =

n/2∑
i=n/4+1

εiai, σ3 =

3n/4∑
i=n/2+1

εiai, σ4 =

n∑
i=3n/4+1

εiai .

We guess three values R1, R2 and R3 of 3n/16-bit each and we let R4 such that R1 +R2 +
R3 +R4 = S mod 23n/16. We consider the four subknapsack equations

σi = Ri mod 23n/16 .

We solve these four equations independently by using the original Schroeppel-Shamir algo-
rithm. Therefore in time Õ(2n/8) and memory Õ(2n/16) we obtain four lists {σ1}, {σ2}, {σ3}
and {σ4} satisfying the four equations. Eventually to recover the knapsack solution we merge

22

these four lists using the same merging procedure as in the original Schroeppel-Shamir algo-
rithm; since each list has size Õ(2n/16), the merging procedure runs in time Õ(2n/8) and memory
Õ(2n/16). Since we have guessed three values of 3n/16-bit each, the total running time is:

Õ(23n/16)3 ·
(
Õ(2n/8) + Õ(2n/8)

)
= Õ(211n/16)

as required, and the memory consumption is Õ(2n/16).
It is easy to generalize the previous algorithm to memory Õ(2(1/16+ε)n) for any 0 ≤ ε < 3/16.

For this we take the Ri’s of size (3/16−ε)n-bit each. We can still build the four lists {σi} in time
Õ(2n/8) using Schroeppel-Shamir, but this time the size of the lists is Õ(2(1/16+ε)n), therefore
it requires Õ(2(1/16+ε)n) memory. The merging procedure now runs in time Õ(2(1/8+2ε)n), still
with memory Õ(2(1/16+ε)n). Therefore the total running time is:

Õ(2(3/16−ε)n)3 ·
(
Õ(2n/8) + Õ(2(1/8+2ε)n)

)
= Õ(2(11/16−ε)n)

as required, for a memory consumption Õ(2(1/16+ε)n).

1/2

9/16

5/8

11/16

3/4

0 1/16 1/8 3/16 1/4

T
im

e

Memory

1/2

9/16

5/8

11/16

3/4

0 1/16 1/8 3/16 1/4

T
im

e

Memory

Fig. 6. Illustration of the existing gap between our constant memory algorithm and our time-memory tradeoff
for Schroeppel-Shamir

Surprisingly there remains a gap between our variant of Schroeppel-Shamir with Õ(2n/16)
memory and our constant memory algorithm from Sect. 4.1; see Fig. 6 for an illustration.
Namely we were unable to find a variant of Schroeppel-Shamir requiring less than Õ(2n/16)
memory, nor a cycle-based algorithm requiring more than Õ(1) memory.

5 Implementation and Experimental Evidence

5.1 Implementation of the Improved Time Complexity Algorithm

In order to verify the correctness of the algorithm presented in Sect. 3.3, we have implemented
it. We ran our implementation on 50 random knapsacks containing 80 elements on 80 bits. The
target sum was constructed in each case as a sum of 40 knapsack elements. For each of these

23

knapsacks, we ran our implementation several times, choosing new random modular constraints
for each execution, until a solution was found. As shown in Fig. 7, we added two -1s at the first
level, one -1 at the second and none at the third level. At the same time, we collected some
statistics about the behavior of our code.

The total running time to solve the 50 knapsacks was 14 hours and 50 minutes on a Intel R©
CoreTM i7 CPU M 620 at 2.67GHz. The total number of repetitions of the basic algorithm was
equal to 280. We observed that a maximum of 16 repetitions (choice of a different random value
in level ν) was sufficient to find the solution. Also, 53% of the 50 random knapsacks needed
only up to 4 repetitions. On average, each knapsack required 5.6 repetitions. More precisely,
the distribution of the number of repetitions is presented in Table 1.

Table 1. Number of repetitions for 50 random knapsacks until a solution was found.

Number of Number of Number of Number of
repetitions corresponding knapsacks repetitions corresponding knapsacks

1 8 2 6
3 9 4 4
5 2 6 5
7 1 8 1
9 1 10 5
11 4 12 1
13 0 14 1
15 0 16 2

Table 2. Experimental versus theoretical sizes of the intermediate lists.

List type Min. size Max. size Theoretical estimate

Lω 12 024 816 12 056 576 Lω =
(80
6,1,73)
1 847

≈ 12 039 532

Kκ 61 487 864 61 725 556
L2
ω

2 352 689
≈ 61 610 489

Lκ 12 473 460 20 224 325 Lκ =
(80
12,2,66)

1 847·2 352 689
≈ 31 583 129

Kν 14 409 247 23 453 644
L2
κ

17 394 593
≈ 57 345 064

Lν 183 447 268 964 Lν =
(80
22,2,56)

1 847·2 352 689·17 394 593
≈ 592 402

K0 178 1 090
L2
ν ·1 847·2 352 689·17 394 593

280
≈ 21 942

During the execution of the 280 repetitions of the basic algorithm, we also noted the length
of the lists L and K (still containing inconsistent solutions) that occurred at each level. The
moduli were chosen as primes of size as discussed in Sect.3.3: Mω = 1 847, Mκ = 2 353 689, and
Mν = 17 394 593. The experimental and theoretical list sizes are given in Table 2. We see in

24

Table 2 that the sizes of Lω and Kκ are very close to the predicted values and do not vary a lot.
We already mentioned in Sect.3.3, that the prediction Lκ and Lν ignores the loss of solutions
which are incompatible with the modular constraints of the lower levels. The actual sizes of the
lists is therefore smaller than the predicted one. The effect is forwarded from level κ to level ν
resulting in an even bigger gap between theory and practice for |Lν | and |Kν |. The experimental
size of K0 counts inconsistent solutions corresponding to collisions over the integers. We recall
that our theoretical estimate upper bounds the size as it counts collisions modulo Mω ·Mκ ·Mν ,
a number close to 280.

Nω(1) = 6
Nω(−1) = 1
Nω(0) = 73

Nκ(1) = 12
Nκ(−1) = 2
Nκ(0) = 66

Nν(1) = 22
Nν(−1) = 2
Nν(0) = 56

Solution of the 80-bit knapsack
(containing 40 1s and 40 0s)

|L(1)
ν | ≤ 268964

|L(1)
κ | ≤ 20224325

|L(1)
ω | ≤ 12056576

Fig. 7. Decomposition of a single solution σε for an equibalanced knapsack of size 80. The decomposition into
Nχ(1) 1s, Nχ(−1) -1s and Nχ(0) 0s is the same within each level χ ∈ {ν, κ, ω}

Some More Tests. We also performed additional tests on 240 random knapsacks where we
repeated the search for a solution 10 times per knapsack. Figure 8 shows the distribution of
necessary repetitions until the solution was found. We observe an average of µ = 5.47 and a
maximum of 41 repetitions. In 95% of the cases less than 16 repetitions were enough to find
the solution. Furthermore, the results seem to be conform with a random variable following the
geometric distribution of expected value µ where we assume independence for each decompo-
sition and level and the same probability of success 1/µ. Figure 8 also depicts the probability
distribution of the random variable. None of the tested random knapsacks was distinctly easier
or more difficult to solve than the others within the 10 runs.

The sizes of the intermediate lists Lω,Lκ and Lν are given in Table 3. We present the
minimal and maximal sizes as well as the mean and the standard deviation for each of the lists.
The average running time per found solution is 3.05 minutes per repetition and 17.53 minutes
to find the solution on an Intel R© XeonTM CPU X5560 at 2.80GHz.

25

 0

 2

 4

 6

 8

 10

 12

 14

 16

 18

 0 5 10 15 20 25 30 35 40 45

pe
rc

en
t

repetitions

experiments
100*exp((x-1)*log(1-1/µ))

Fig. 8. Percentage of 240 random knapsacks, each run 10 times, per number of repetitions (red bar); Random
variable of geometric distribution in values x, probabilities px = 100 · exp((x− 1) · log(1− 1/µ)), where µ is the
average number of repetitions (green - -)

Table 3. Experimental sizes of the intermediate lists for 240 random knapsacks.

List type Min. size Max. size Mean Standard deviation Theoretical estimate

Lω 12 009 444 12 068 959 12 039 526 3 391 12 039 532

Lκ 12 231 570 20 233 425 19 924 351 202 256 31 583 129

Lν 177 662 269 786 263 337 3 437 592 402

26

Some Results with n = 96. We also tested the algorithm on equibalanced 96-bit knapsacks.
However, it was not possible to add the optimal number of -1s, because some of the lists required
too much memory. Instead, we used the following suboptimal choices:

– Split the initial knapsack into two subknapsack with 25 ones and one -1.
– Split again into subknapsacks with 14 ones and two -1s.
– Finally split into subknapsacks with 7 ones and one -1.

The chosen moduli are Mω = 6 863, Mκ = 248 868 793 and Mν = 42 589. We tried 5 different
knapsacks and solved all of them with an average number of repetitions equal to 7.8. The
runtime for a single trial is 47 minutes on a Intel R© XeonTM CPU X5560 at 2.80GHz using
13 Gbytes of memory8.

For comparison, we also ran on the same machine the latest version of our implementation
of a practical variant of the Howgrave-Graham–Joux algorithm. This variant took an average of
15 minutes to solve a knapsack on 96 bits, using 1.6 Gbytes of memory. However, this program
is much more optimized for the practical parameters. Moreover, it contains some wild heuristics
to reuse the computations of intermediate lists many times, in order to run faster. The new
algorithm can probably take practical profit of similar tricks. As a consequence, the runtimes on
96 bits are not so far from each other. We expect the cross-over point to occur around n = 128,
which means that 96 bits is close to the cross-over point between the two algorithms.

5.2 Constant Memory Algorithm

We have also implemented the constant memory algorithm based on cycle finding from Sect.
4.1. The results summarized in Table 4 seem consistent with a Õ(23n/4) time complexity. The
implementation was running on a Intel Core 2 Duo P8400 (2.26 GHz).

n log2 cf Running Time

24 21.5 .38 s
28 24.4 3.2 s
32 26.8 18.0 s
36 30.3 226 s
40 32.2 933 s

Table 4. Knapsack size n, log2 number of calls cf to f and running time on a C implementation running on a
Intel Core 2 Duo P8400 (2.26 GHz), averaged over 10 executions.

6 Conclusion

We have extended the Howgrave-Graham–Joux technique to get an algorithm with running
time down to Õ(20.291n). An implementation of an accessible example of 80 knapsack elements
shows the practicability of the method. We have described a constant memory algorithm based
on cycle finding with running time Õ(20.72n), and also a time-memory tradeoff for Schroeppel-
Shamir.
8 We would like to thank CEA/DAM(Commissariat à l’énergie atomique, Direction des applications militaires)

for kindly providing the necessary computing time on its servers.

27

Acknowledgments. We would like to thank Alexander May and Alexander Meurer for point-
ing out the inconsistency issue in Howgrave-Graham–Joux algorithm. We also thank Dan Bern-
stein for helpful comments on a preliminary version of this work.

References

1. Miklós Ajtai. The shortest vector problem in L2 is NP-hard for randomized reductions (extended abstract).
In STOC’98, pages 10–19, 1998.

2. Anja Becker, Jean-Sébastien Coron, and Antoine Joux. Improved generic algorithms for hard knapsacks.
Eurocrypt 2011.

3. Matthijs J. Coster, Antoine Joux, Brian A. LaMacchia, Andrew M. Odlyzko, Claus-Peter Schnorr, and
Jacques Stern. Improved low-density subset sum algorithms. Computational Complexity, 2:111–128, 1992.

4. M. R. Garey and David S. Johnson. Computers and Intractability: A Guide to the Theory of NP-
Completeness. W. H. Freeman, 1979.

5. Nick Howgrave-Graham and Antoine Joux. New generic algorithms for hard knapsacks. In EURO-
CRYPT’2010, pages 235–256, 2010.

6. Donald E. Knuth. The Art of Computer Programming, Volume II: Seminumerical Algorithms, 2nd Edition.
Addison-Wesley, 1981.

7. Jeffrey C. Lagarias and Andrew M. Odlyzko. Solving low-density subset sum problems. J. ACM, 32(1):229–
246, 1985.

8. Arjen K. Lenstra, Hendrik W. Lenstra, and László Lovász. Factoring polynomials with rational coefficients.
Mathematische Annalen, 261:515–534, 1982.

9. Alexander May and Alexander Meurer. Personal communication.
10. Ralph C. Merkle and Martin E. Hellman. Hiding information and signatures in trapdoor knapsacks. IEEE

Transactions On Information Theory, 24:525–530, 1978.
11. Phong Q. Nguyen, Igor E. Shparlinski, and Jacques Stern. Distribution of modular sums and the security

of the server aided exponentiation. In Progress in Computer Science and Applied Logic, volume 20 of Final
proceedings of Cryptography and Computational Number Theory workshop, Singapore (1999), pages 331–224,
2001.

12. Claus-Peter Schnorr. A hierarchy of polynomial time lattice basis reduction algorithms. Theor. Comput.
Sci., 53:201–224, 1987.

13. Richard Schroeppel and Adi Shamir. A T = O(2n/2), S = O(2n/4) algorithm for certain NP-complete
problems. SIAM J. Comput., 10(3):456–464, 1981.

14. Adi Shamir. A polynomial time algorithm for breaking the basic Merkle-Hellman cryptosystem. In
CRYPTO’82, pages 279–288, 1982.

15. Paul C. van Oorschot and Michael J. Wiener. Improving implementable meet-in-the-middle attacks by orders
of magnitude. In CRYPTO, pages 229–236, 1996.

16. David Wagner. A generalized birthday problem. In CRYPTO’2002, pages 288–303, 2002.

