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Abstract. We show how to find sufficiently small integer solutions to a polynomial
in a single variable moduloN, and to a polynomial in two variables over the integers.
The methods sometimes extend to more variables. As applications: RSA encryption
with exponent 3 is vulnerable if the opponent knows two-thirds of the message, or if
two messages agree over eight-ninths of their length; and we can find the factors of
N = P Q if we are given the high order14 log2 N bits of P.
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1. Introduction

It is easy to compute the integer roots of a polynomial in a single variable over the
integers

p(x) = 0.

But two related problems can be hard:

(1) finding integer roots of amodularpolynomial in one variable:

p(x) = 0(modN);
(2) finding integer roots of a polynomial inseveralvariables:

p(x, y) = 0.

In this paper we restrict these problems to the case where there exists a solution small
enough (with respect toN or to the coefficients ofp), and we can solve the problems in
these special cases, using lattice basis reduction techniques.

Let N be a large composite integer of unknown factorization. Let

p(x) = xδ + pδ−1xδ−1+ · · · + p2x2+ p1x + p0
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be a monic integer polynomial of degreeδ in a single variablex. Suppose there is an
integer solutionx0 to

p(x0) = 0(modN)

satisfying

|x0| < N1/δ.

We will show how to find such a solutionx0, in time polynomial in(log N, 2δ).
Suppose next that

p(x, y) =
∑

i j

pi j x
i y j

is an irreducible integer polynomial in two variables over the integers (not moduloN
this time), with degreeδ in each variable separately. LetX andY be upper bounds on
the desired integer solution(x0, y0), and set

W = max
i j
|pi j |Xi Y j .

We will find an integer solution(x0, y0) satisfying p(x0, y0) = 0 if one exists with
|x0| ≤ X, |y0| ≤ Y, provided

XY < W3/(2δ).

The techniques used in the two cases are similar. We use the coefficients of the
polynomial p to build a matrixM , whose rows give the basis of an integer lattice.
We will consider a row vectorr whose entries are powers of the desired solutions:xi

0 or
xi

0y j
0. The vectors = r M will be a relatively short lattice element. Using lattice basis

reduction techniques such as those due to Lov´asz [9] to analyzeM , we find a hyperplane
containing all the short lattice elements. The equation of this hyperplane translates to
a linear relation on the elements ofr , and then to a polynomial equationc(x0) = 0 or
c(x0, y0) = 0 overZ. In the univariate modular case we solvec(x0) = 0 directly forx0.
In the bivariate integer case we combinec(x0, y0) with p(x0, y0) and solve.

An important application of the univariate modular case is to RSA encryption [12]
with small exponent, when most of the message is fixed or “stereotyped.” Suppose the
plaintextmconsists of two pieces, a known pieceB and an unknown piecex: m= B+x.
Supposem is RSA-encrypted with an exponent of 3, so the ciphertextc is given by
c = m3 = (B+ x)3 (modN). If we know B, c, andN, we can apply the present results
to the modular polynomial equation

p(x) = (B+ x)3− c = 0(modN),

and recoverx as long as|x| < N1/3, that is,x has fewer than one-third of the bits of the
message, and these bits are consecutive.

A second application of the univariate modular case to RSA encryption with small
exponent concerns random padding. Suppose a messagem is padded with a random
valuer1 before encrypting with exponent 3, giving the ciphertext

c1 = (m+ r1)
3 (modN).
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Supposem is encrypted again with different random padding:

c2 = (m+ r2)
3 (modN).

We will show how to recoverm from c1, c2, N, as long as the random paddingri is less
than one-ninth of the bits ofN. This is completely different from Hastad’s [7] attack
on low-exponent RSA; he used encryptions under several different moduli, and we use
only one modulus.

The bivariate integer case can be applied to the problem of factoring an integer when
we know its high-order bits. If we knowN = P Q and we know the high-order14 log2 N
bits of P, then by solving the equation(P0+ x)(Q0+ y)− N over a suitable range ofx
andy we can find the factorization ofN. By comparison, Rivest and Shamir [13] need
about1

3 log2 N bits of P, and a recent work of the present author [4] required3
10 log2 N

bits. This has applications to some RSA-based cryptographic schemes; see, for example,
Vanstone and Zuccherato [15].

The rest of the paper is organized as follows. In Section 2 we recall the necessary facts
about lattice basis reduction. In Section 3 we present a heuristic approach, which does
not quite work, but whose ideas will be refined in the present work. For the univariate
modular case, we show in Section 4 how to build the matrixM , the rows of which
generate our lattice. In Section 5 we analyze the determinant of this matrix, and compare
to the length of the relevant vector. We complete the solution of the modular univariate
polynomial in Section 6. Applications to RSA encryption with low exponent and partial
information are given in Section 7 (where most of a message is known beforehand)
and Section 8 (where two messages agree over most of their length). In Section 10 we
develop the bivariate integer case, and apply it in Section 11 to the problem of factoring
integers with partial information. Section 12 investigates the extension of these results
to two or more variables moduloN or three or more variables over the integers. We give
concluding remarks and an open problem in Section 13.

This paper, containing material from the author’s papers [2] and [3], grew out of the
joint work with Franklin, Patarin, and Reiter [5], which in turn was inspired Franklin
and Reiter’s Crypto ’95 rump session talk [6].

2. Lattice Basis Reduction

We recall here some basic facts about lattice basis reduction. The reader is referred to
[9] for further information.

SupposeM is a squaren×n matrix with rational entries and with full rank. The rows
of M generate alattice L, a collection of vectors closed under addition and subtraction;
in fact the rows form abasisof L.

From [9] we learn how to compute areducedbasis(b1, b2, . . . ,bn) for L. The matrix
B with rowsbi is related toM by a series of elementary row operations; equivalently,
B = K M whereK is an invertible matrix, and bothK andK−1 have integer entries. The
computation ofB is done in time polynomial inn and in log(max{|ni j |, |di j |}), whereni j

anddi j are the numerator and denominator of the matrix elementMi, j in lowest terms.
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Remark. Lattice reduction works more efficiently with integer entries, but our lattice
is easier to describe with rational entries. Converting between the two is not difficult.

The basis elementsbi are relatively short. The Euclidean norm|b1| is within a mul-
tiplicative factor of 2(n−1)/2 of the norm of the smallest nonzero lattice element, and
similar estimates hold for the otherbi . SettingD = |det(M)| = |det(B)|, we have

D ≤
∏
|bi | ≤ 2n(n−1)/4D.

The first inequality is Hadamard’s inequality. The second is a property of the reduced
basis; see [9, equation (1.8)].

Let b∗i denote the component ofbi orthogonal to the span ofb1, b2, . . . ,bi−1. We
know that

D =
∏
|b∗i |.

From the discussion in [9] we know that the last basis elementbn satisfies

|b∗n| ≥ D1/n2−(n−1)/4.

(Note the direction of the inequality.) This follows from|b∗i |2 ≤ 2|b∗i+1|2 and D =∏ |b∗i |.
Each lattice elements can be expressed ass = ∑

si bi , where thesi are integers.
Further,|s| ≥ |sn| × |b∗n|. So if ssatisfies|s| < |b∗n|, thensn must be 0, andsmust lie in
the hyperplane spanned byb1, b2, . . . ,bn−1. Thus we have proved:

Lemma 1. If a lattice elements satisfies|s| < D1/n2−(n−1)/4 thens lies in the hyper-
plane spanned byb1, b2, . . . ,bn−1.

In our applications, we are not necessarily looking for the shortest nonzero vector
in the lattice, but for a relatively short vector, and Lemma 1 serves to confine all such
short vectors to a hyperplane. Lemma 2 generalizes this concept from a hyperplane to a
subspace of smaller dimension.

Lemma 2. If a lattice elementssatisfies|s| < |b∗i | for all i = k+ 1, . . . ,n, thens lies
in the space spanned byb1, b2, . . . ,bk.

Lemma 2 will be useful when we wish to develop more than one equation. This will
be necessary when solving a modular polynomial with more than one variable, or an
integer polynomial with more than two variables. See Section 12.

3. Motivation

Lattice reduction techniques seem inherently linear. It is not immediately obvious how
to apply these techniques to the nonlinear problem of solving polynomial equations.

To motivate the present work, we start with a heuristic approach to solving a modular
polynomial equation by lattice basis reduction techniques. This approach does not quite
work, but it gives ideas upon which we can build the algorithms which do work.
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Given a monic univariate modular polynomial equation

p(x) = xδ + pδ−1xδ−1+ · · · + p2x2+ p1x + p0 = 0(modN)

to which we wish to find a small rootx0, we could proceed as follows:
Establish a suitable upper boundX on the size of the desired rootx0. Build a (δ +

2)× (δ+ 2)matrix M , with diagonal elements given by 1, X−1, X−2, . . . , X−δ, N, and
with right-hand columnp0, p1, p2, . . . , pδ−1, pδ = 1, N; all other entries are 0.

M =



1 0 0 · · · 0 p0

0 X−1 0 · · · 0 p1

0 0 X−2 · · · 0 p2
...

...
...

. . .
...

...

0 0 0 · · · X−δ pδ
0 0 0 · · · 0 N


.

Supposep(x0) = y0N for unknown integersx0 andy0 with |x0| < X. Consider the
row vectorr consisting of powers ofx0 andy0:

r = (1, x0, x2
0, . . . , x

δ−1
0 , xδ0,−y0).

Consider the row vector

s= r M =
(

1,

(
x0

X

)
,

(
x0

X

)2

, . . . ,

(
x0

X

)δ−1

,

(
x0

X

)δ
, 0

)
.

Its last element isp(x0)− y0N = 0. The vectors is an element of the lattice spanned by
the rows ofM . Its Euclidean norm is bounded by

√
δ + 1 since each entry(x0/X)i is

bounded by 1. Ifs is among the shorter vectors of this lattice, we might find it by lattice
basis reduction techniques.

From the discussion in Section 2, we need to compare|s| to theδ + 2 root of the
determinant of the matrixM . If

|s| < |det(M)|1/(δ+2),

thenswill be among the shorter vectors, and the lattice basis reduction techniques might
find it. (For the present discussion we ignore factors like 2−(n−1)/4 dependent only on
the size of the matrix. We will take account of them later.)

We can easily evaluate det(M) becauseM is upper triangular:

det(M) = (1)(X−1)(X−2) · · · (X−δ)N = N X−δ(δ+1)/2.

Ignoring factors like 2−(n−1)/4 andδ + 1, we require roughly that det(M) > 1, and so
we require roughly that

X(δ2+δ)/2 < N,

X < N2/(δ2+δ),
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quite a small bound onX, especially for moderately large values ofδ. By contrast, the
present paper will develop a more reasonable bound of (roughly)

X < N1/δ.

One problem with this heuristic approach is that, although the entriesri of the vector
r are supposed to represent powers ofx0, there is no way (within the lattice struc-
ture) to enforce that relationship, for example, to enforce the requirementri+1/ri =
r j+1/r j .

A second, related, problem is that we have many unknownsri and only one relation
p(x0) = y0N. Each unknownri contributes a factorX−i to det(M), and the lone relation
p(x0) = y0N contributes a factorN. The resulting imbalance, and the requirement
det(M) > 1, lead to the stringent requirementXδ(δ+1)/2 < N.

In the new approach we will work with several relations: for example,xi
0 p(x0)

j =
0(modN j ). This allows us to reuse the unknownsri and amortize their “cost” over the
several relations. Each relation, meanwhile, contributes a factor ofN j to det(M). Because
det(M) now contains several powers ofN, the requirement det(M) > 1 translates to a
much looser requirement onX.

The fact that the equationsxi
0 p(x0)

j = 0(modN j ) hold modN j (rather than just
mod N) improves this situation, by contributing larger powers ofN to det(M). Using
only equations of the formxi p(x) = 0(modN), we could find solutionsx0 up to about
X′ = N1/(2δ−1). With the additional equationsxi p(x) j = 0(modN j ), we are able to
improve this bound toX = N1/δ.

Notice that theri satisfy several equations that differ only by shifts in the powers of
x0. If p(x) = x3+ Ax2+ Bx+C, then two equations derived fromp(x0) = 0(modN)
andx0 p(x0) = 0(modN) are

r3+ Ar2+ Br1+ Cr0 = 0(modN),

r4+ Ar3+ Br2+ Cr1 = 0(modN).

The present approach allows us to recapture the flavor of the requirement that the various
ri should be related by (for example)r3/r2 = r4/r3, since the roles played byr3 andr2

in the first equation are the same as the roles played byr4 andr3 in the second equation.
This is offered only as an intuitive explanation for the success of the present approach;
it will not be used in the technical discussions that follow.

The use of Lemma 1 allows a qualitative innovation in the application of lattice
basis reduction techniques, which may be of interest in its own right. We can state
with certainty that the present algorithm will find all sufficiently small solutions, in all
cases; by contrast, many applications of lattice basis reduction techniques can only be
guaranteed to work in a large proportion of problem instances. By looking at the last
element of the reduced basis (rather than the first), we can confineall sufficiently short
lattice elements to a hyperplane whose equation we compute. In particular, the rela-
tively short vectors, corresponding to the desired solution, lies in this hyperplane. The
equation of that hyperplane, together with the interpretationri = xi

0, gives a poly-
nomial equation whichx0 is guaranteed to satisfy. This guarantee is a new aspect of
the present work.
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4. Building the Matrix: Univariate Modular Case

In this section we show how to build the appropriate lattice for the case of a univariate
modular polynomial.N is a large composite integer of unknown factorization. We are
given the polynomial

p(x) = xδ + pδ−1xδ−1+ · · · + p2x2+ p1x + p0 = 0(modN),

which we assume to be monic, that is,pδ = 1.
Suppose there is an integerx0 satisfying

p(x0) = 0(modN)

with

|x0| < N(1/δ)−ε

2

for someε > 0. We wish to findx0.
Begin by selecting an integer

h ≥ max

(
δ − 1+ εδ

εδ2
,

7

δ

)
.

The first condition ensures that

h− 1

hδ − 1
≥ 1

δ
− ε.

The second condition ensures thathδ ≥ 7.
For each pair of integersi, j satisfying 0≤ i < δ, 1 ≤ j < h, we define the

polynomial

qi j (x) = xi p(x) j .

For the desired solutionx0 we know thatp(x0) = y0N for some integery0, so that

qi j (x0) = 0(modN j ).

We will build a rational matrixM of size(2hδ− δ)× (2hδ− δ), using the coefficients
of the polynomialsqi j (x), in such a way that an integer linear combination of the rows of
M corresponding to powers ofx andy will give a vector with relatively small Euclidean
norm. Multiplying by least common denominator will produce an integer matrix on
which lattice basis reduction can be applied.

The matrixM is broken into blocks. The upper right block, of size(hδ)× (hδ − δ),
has rows indexed by the integerg with 0≤ g < hδ, and columns indexed byγ (i, j ) =
hδ + i + ( j − 1)δ with 0≤ i < δ and 1≤ j < h, so thathδ ≤ γ (i, j ) < 2hδ − δ. The
entry at(g, γ (i, j )) is the coefficient ofxg in the polynomialqi j (x).

The lower right(hδ − δ)× (hδ − δ) block is a diagonal matrix, with the valueN j in
each columnγ (i, j ).
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The upper left(hδ)×(hδ) block is a diagonal matrix, whose value in rowg is a rational
approximation toX−g/

√
hδ, whereX = 1

2 N(1/δ)−ε is an upper bound to the solutions
|x| of interest.

The lower left(hδ − δ)× (hδ) block is zero.
We illustrate the matrixM in the caseh = 3,δ = 2. Assume thatp(x) = x2+ax+b

and p(x)2 = x4+ cx3+ dx2+ ex+ f . For simplicity we writeτ instead of 1/
√

hδ.

M =



τ 0 0 0 0 0 b 0 f 0
0 τX−1 0 0 0 0 a b e f
0 0 τX−2 0 0 0 1 a d e
0 0 0 τX−3 0 0 0 1 c d
0 0 0 0 τX−4 0 0 0 1 c
0 0 0 0 0 τX−5 0 0 0 1
0 0 0 0 0 0 N 0 0 0
0 0 0 0 0 0 0 N 0 0
0 0 0 0 0 0 0 0 N2 0
0 0 0 0 0 0 0 0 0 N2


.

The rows ofM span a lattice. Of interest to us is one vectors in that lattice, related to
the unknown solutionx0. Consider a row vectorr whose left-hand elements are powers
of x0:

rg = xg
0 ,

and whose right-hand elements are the negatives of powers ofx0 andy0:

rγ (i, j ) = −xi
0y j

0,

r = (1, x0, x2
0, . . . , x

hδ−1
0 ,−y0,−x0y0, . . . ,−xδ−1

0 y0,−y2
0,−x0y2

0, . . . ,−xδ−1
0 yh−1

0 ).

The products= r M is a row vector with left-hand elements given by

sg = (x0/X)g√
hδ

and right-hand elements by

sγ (i, j ) = qi j (x0)− xi
0y j

0 N j = 0.

The Euclidean norm ofs is estimated by

|s| =
[∑

g

sg
2

]1/2

<

[∑
g

(
1√
hδ

)2
]1/2

= 1.

Because the right-hand elementshδ − δ of the desired vectors are 0, we can restrict
our attention to the sublatticêM of M consisting of points with right-hand elements
0, namelyM ∩ (Rhδ × {0}hδ−δ). To do this computationally, we take advantage of the
fact thatp(x) and henceqi j (x) are monic polynomials, so that certainhδ − δ rows of
the upper right block ofM form an upper triangular matrix with 1 on the diagonal.
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This implies that we can do elementary row operations onM to produce a block matrix
M̃ whose lower-right(hδ − δ) × (hδ − δ) block is the identity and whose upper-right
(hδ)× (hδ − δ) block is zero.

The upper-left(hδ) × (hδ) block M̂ of M̃ represents the desired sublattice: anhδ-
dimensional lattice, of whichs is one relatively short element.

5. Analysis of the Determinant

M is an upper triangular matrix, so its determinant is just the product of the diagonal
elements:

det(M) =
∏

g

1

Xg
√

hδ

∏
i j

N j

= Nδh(h−1)/2X−(hδ)(hδ−1)/2

√
hδ

hδ

= [N(h−1)/2X−(hδ−1)/2(hδ)−1/2]hδ.

By construction,

det(M) = det(M̃) = det(M̂)× det(I ) = det(M̂).

We will be invoking Lemma 1 on the smaller matrix̂M , whose dimension isn = hδ.
Since we know

|s| < 1,

the required condition is

1≤ |det(M̂)|1/hδ2−(hδ−1)/4.

Since

det(M̂) = (N(h−1)/2X−(hδ−1)/2(hδ)−1/2)hδ,

this holds if

1≤ N(h−1)/2X−(hδ−1)/2(hδ)−1/22−(hδ−1)/4,

that is, if

X ≤ N(h−1)/(hδ−1)(hδ)−1/(hδ−1)2−1/2.

So the hypothesis of Lemma 1 will hold if

X ≤ N(h−1)/(hδ−1)(hδ)−1/(hδ−1)2−1/2.

By our choice ofh we havehδ ≥ 7, so that (by a computation)

(hδ)−1/(hδ−1) > 2−1/2.

Also by our choice ofh we know

h− 1

hδ − 1
≥ 1

δ
− ε.
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So if we select

X ≤ 1
2 N(1/δ)−ε,

we will have

|s| < 1≤ det(M̂)1/n2−(n−1)/4,

as required.

6. Finishing the Solution

Now we can tie the pieces together.
Apply a lattice basis reduction routine to the row basis of the matrixM̂ , producing a

basisb1, b2, . . . ,bn, satisfying

|b∗n| ≥ det(M̂)1/n2−(n−1)/4,

where, as before,n = hδ = dim(M̂).
By the calculation in the previous section, we have

|b∗n| ≥ 1.

By Lemma 1, any vector in the lattice generated by the rows ofM̂ with length less
than 1 must lie in the hyperplane spanned byb1, b2, . . . ,bn−1.

In terms of the larger matrixM and the vectorsr , s with r M = s, there is anhδ-
dimensional space of vectorsr such thatr M = shas 0’s in its right-handhδ− δ entries.
By Lemma 1, those integer vectorsr which additionally satisfy|s| < 1 must lie in a
space of dimension one smaller, namely dimensionhδ − 1. This gives rise to a linear
equation on the entriesrg, 0≤ g < hδ. That is, we compute coefficientscg, not all zero,
such that:

For any integer vectorr = (rg, rγ (i, j )) such thats= r M has right-hand entries0 and
|s| < 1, we must have ∑

cgrg = 0.

This holds for all short vectorss in the lattice with right-hand side 0. In particular, it
holds for the vector obtained fromr where

rg = xg
0 , rγ (i, j ) = −xi

0y j
0 .

Thus we have computed coefficientscg of a polynomialC(x) such that the small
solutionx0 satisfies

C(x0) =
∑

cgxg
0 = 0.

This is a polynomial equation holding inZ, not just moduloN. We can solve this
polynomial for x0 easily, using known techniques for solving univariate polynomial
equations overZ. (The Sturm sequence [14] will suffice.) Thus we have produced the
desired solutionx0.
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Remark. If there are several short solutionsx0, this procedure will find all of them
simultaneously. All will be roots of the polynomial

C(x0) =
∑

cgxg
0 = 0.

We have proved:

Theorem 1. Let p(x) be a polynomial of degreeδ in one variable modulo an integer
N of unknown factorization. Let X be the bound on the desired solution x0. If

X < 1
2 N1/δ−ε,

then in time polynomial in(log N, δ,1/ε), we can find all integers x0 with p(x0) =
0(modN) and|x0| < X.

Proof. The lattice basis reduction step operated on a matrix of sizehδ = O(δ/ε), and
the matrix entries are not too large. By [9] this step is done in polynomial time. The rest
of the algorithm is also polynomial time.

Corollary 1. With the hypothesis of Theorem1, except that

X ≤ N1/δ,

then in time polynomial in(log N, 2δ), we can find all integers x0 such that p(x0) =
0(modN) and|x0| ≤ X.

Proof. Cover the interval [−N1/δ, N1/δ] by four intervals Ii of length 1
2 N1/δ, each

centered at some integerxi . For each valuei , apply Theorem 1 withε = 1/log N to the
polynomialpi (x) = p(x+ xi ) to find all solutionsx0 = x+ xi within the intervalIi , in
time polynomial in(log N, 2δ).

7. Application: Stereotyped Messages

An important application of the univariate modular case is to RSA encryption [12] with
small exponent, when most of the message is fixed or “stereotyped.” Suppose the plaintext
m consists of two pieces:

(1) A known pieceB = 2kb, such as the ASCII representation of “October 19, 1995.
The secret key for the day is.”

(2) An unknown piecex, such as “Squeamish Ossifrage,” whose length is less than
one-third the length ofN.

Suppose this is RSA-encrypted with an exponent of 3, so the ciphertextc is given by
c = m3 = (B+ x)3 (modN). If we know B, c andN, we can apply the present results
to the polynomialp(x) = (B+ x)3− c, and recoverx0 satisfying

p(x0) = (B+ x0)
3− c = 0(modN)
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as long as such anx0 exists with|x0| < N1/3, that is, the length ofx0 is less than one-third
of the length ofN.

This is obvious whenB = 0: if the plaintext is justx0 < N1/3, thenx3
0 < N, and the

ciphertext isc = x3
0 as integers, so that we could recoverx0 = c1/3 by taking the integer

cube root. But the present paper makes it possible for nonzeroB as well.

Remark. The boundX on recoverable valuesx0 depends on the modulusN. If x0 has
250 bits andN has 512 bits, and an RSA exponent of 3 is used, the present techniques
fail to recoverx0 becausex0 > N1/3. But if we upgrade to a 1024-bit modulusN
while keeping the unknownx0 at 250 bits, thesex0 are now vulnerable to attack because
x0 < N1/3.

The attack works equally well if the unknownx0 lies in the most significant bits of the
messagem rather than the least significant bits—we are just multiplyingx by a known
constant 2k.

An interesting variant occurs when the unknownx is split between two blocks:

“TODAY’S KEY IS swordfish AND THE PASSWORD IS joe.”

We can view this as two unknowns:x = “swordfish” andy = “joe,” and one known
pieceB = “TODAY’S KEY IS ——– AND THE PASSWORD IS —,” presuming that
we know (or correctly guess) the lengths ofx andy. The plaintext message is

m= B+ 2kx + y,

the ciphertext is

c = m3 (modN),

and the polynomial which we wish to solve is

p(x, y) = c− (B+ 2kx + y)3 = 0(modN),

with a solution(x0, y0) suitably bounded.
We defer consideration of this case until Section 12.

8. Application to RSA with Random Padding: Two Messages

To introduce the second application (which was actually the starting point of the present
investigation), we recall the recent result of Franklin and Reiter [6].

Suppose two messagesm andm′ satisfy aknownaffine relation, say

m′ = m+ r

with r known. Suppose we know the RSA-encryptions of the two messages with an
exponent of 3:

c = m3 (modN),

c′ = (m′)3 = m3+ 3m2r + 3mr2+ r 3 (modN).
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Then we can recoverm from c, c′, r , andN:

m= r (c′ + 2c− r 3)

c′ − c+ 2r 3
= r (3m3+ 3m2r + 3mr2)

3m2r + 3mr2+ 3r 3
(modN).

What if we do not know the exact relation betweenm andm′, but we do know thatr
is small, say

m′ = m+ r,

|r | < N1/9.

Can we still findm?
One can imagine a protocol in which messagesM are subjected to random padding

before being RSA-encrypted with an exponent of 3. PerhapsM is left-shifted byk bits,
and a randomk-bit quantity R is added, to form a plaintextm; the ciphertextc is then
the cube ofm (modN):

c = m3 = (2k M + R)3 (modN).

Now suppose the same unknown messageM is encrypted twice, but with a different
random pad each time. Let the second random pad beR′ = R+ r so that the second
plaintext ism′ = m+ r . Then we see the two ciphertexts

c = m3 = (2k M + R)3 (modN),

c′ = (m′)3 = (2k M + R′)3 = (m+ r )3 (modN).

Can we recoverr andm, given knowledge ofc, c′, andN?
We can eliminatem from the two equations above by taking their resultant:

Resultantm(m
3− c, (m+ r )3− c′)

= r 9+ (3c− 3c′)r 6+ (3c2+ 21cc′ + 3(c′)2)r 3+ (c− c′)3 = 0(modN).

This is a univariate polynomial inr of degree 9 (modN). If its solution r satisfies
|r | < N1/9, we can apply the present work to recoverr . We can then apply Franklin and
Reiter’s result to recoverm, and strip off the padding to getM .

As before, this works just as well if the padding goes in the high-order bits, or in the
middle; just divide each plaintext by the appropriate power of 2 to move the random bits
to the low-order bits.

The warning is clear: If the message is subject to random padding of length less than
one-ninth the length ofN, and then encrypted with an exponent of 3, multiple encryptions
of the same message will reveal the message.

Notice that for a 1024-bit RSA key, this attack tolerates 100 bits of padding fairly
easily.

Some possible steps to avoid this attack.

(1) Randomize the message in other ways; for example, by the methods of Bellare
and Rogaway [1]. This spreads the randomization throughout the message in a nonlinear
manner, and completely blocks the present attack.
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(2) Spread the random padding into several blocks (not one contiguous block). Then
the present attack needs to be modified. The padding could be two small blocksr and
s, positioned so that the encryption isc = (2l r + 2km+ s)3 (modN). Two encryptions
of the same message would yield a resultant which is a single equation in two small
integer variablesr ands. The generalized attack of Section 12 might work, provided that
|r | and |s| are subject to boundsR andS with RS< N1/9. The computation is more
complicated and results are not guaranteed.

(3) Spread the padding throughout the message: two bits out of each eight-bit byte,
for example. This seems to be a much more effective defense against the present attack.

(4) Increase the amount of padding. This decreases efficiency; also if the padding is
less than one-sixth the length ofN, an alternate solution shown in Appendix 1 might
still recover the message if multiple encryptions have been done.

(5) Make the “random” padding depend on the message deterministically. For example,
we could subject the message to a hashing function, and append that hash value as the
random padding. Then two encryptions would be identical, because the random padding
would be identical. A possible weakness still exists: suppose a time-stamp is included
in each message, and this time-stamp occupies the low-order bits, next to the padding.
Then two plaintexts for the same message (with different time stamps) will differ in the
time-stamp and the pad; just letr combine these two fields and proceed as before.

(6) Use larger exponents for RSA encryption. If the exponent ise, the attack apparently
tolerates random padding of length up to 1/e2 times the length ofN. So already fore= 7
the attack is useless: on a 1024-bit RSA key withe= 7, the attack would tolerate only
21 bits of padding, and this would be better treated by exhaustion.

9. RSA Signatures

The present work does not not show any weaknesses in the RSA signature scheme
with a small validating exponent. For example, using the exponente = 3, and using
several related messagesmi = m0+ i, i = 0, 1, 2, . . . ,100, the knowledge of signatures
m1/3

i (modN) for m0,m1, . . . ,m99 does not help us deduce the signature form100.
A crude analogy might illustrate the situation. Knowledge of the real cube roots

101/3, 111/3, 121/3, 131/3 does not help us to compute 141/3, since the five quantities are
linearly independent over the rationals; in fact, 141/3 is not inQ(101/3, 111/3, 121/3, 131/3).
But given the real cubes 103, 113, 123, 133, we can easily compute 143 from

103− 4× 113+ 6× 123− 4× 133+ 143 = 0.

10. Bivariate Integer Case

We consider next the case of a single polynomial equation in two variables over the
integers (not modN):

p(x, y) =
∑

0≤i, j≤δ
pi j x

i y j = 0

for which we wish to find small integer solutions(x0, y0). We assume thatp(x, y) has
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maximum degreeδ in each variable separately, and thatp(x, y) is irreducible over the
integers. In particular, its coefficients are relatively prime as a set.

The basic outline is the same as before.
We create several polynomials

qi j (x, y) = xi y j p(x, y)

satisfied by the desired solution(x0, y0), and build from these a matrixM representing a
lattice. There will be a sublattice, represented by a smaller matrixM̂ , corresponding to
vectors with right-hand side equal to 0. One vectorr with entriesrgh = xg

0 yh
0 will give

rise to a short vectors= r M in the sublattice. By lattice basis reduction techniques we
confine all such short vectors to a hyperplane, whose equation,∑

cghrgh = 0,

for our special vectorr , translates to a polynomial equation onx0 andy0:

C(x0, y0) =
∑

cghxg
0 yh

0 = 0.

We will see thatC(x, y) is not a multiple ofp(x, y), so that sincep is irreducible, the
resultant ofC and p gives us enough information to find(x0, y0).

There are some technical differences between this bivariate integer case and the earlier
univariate modular case.

In the modular case, we expressed the boundX in terms of the modulusN and the
degree ofp. Here, instead ofN, we express boundsX andY in terms of the coefficients
of p. Define a polynomial̃p(x, y) = p(x X, yY), so thatp̃i j = pi j Xi Y j . DefineW =
maxi j | p̃i j | as the largest possible term inp(x, y) in the region of interest. Then we will
find a solution(x0, y0) bounded in absolute values by(X,Y) (if one exists) provided
that

XY < W{2/(3δ)}−ε.

The matricesM1 andM̂ are rectangular rather than square, so that we are dealing with
ak-dimensional lattice inZn with k < n. The lattice basis reduction routines handle this
easily enough, but the quantity analogous to det(M) is harder to analyze in this case.

A minor difference is that we use polynomialsqi j (x, y) = xi y j p(x, y) rather than
qi jk (x, y) = xi y j p(x, y)k to build our matrixM . It turns out that using powers ofp
would not help us, because we no longer gain the advantage that came from introducing
moduli N j instead ofN.

We begin by selecting an integerk > 2/(3ε).
For all pairs of integers(i, j ) with 0 ≤ i < k and 0≤ j < k, form the polynomial

qi j (x, y) = xi y j p(x, y). Obviouslyqi j (x0, y0) = 0.
Form a matrixM1 with (k + δ)2 rows, indexed byγ (g, h) = (k + δ)g + h with

0 ≤ g, h < k + δ. M1 has(k + δ)2 + k2 columns, the left-hand columns indexed
by γ (g, h) and the right-hand columns indexed byβ(i, j ) = (k + δ)2 + ki + j with
0≤ i, j < k. The left-hand block is a diagonal matrix whose(γ (g, h), γ (g, h)) entry is
given byX−gY−h. The(γ (g, h), β(i, j )) entry of the right-hand block is the coefficient
of xgyh in the polynomialqi j (x, y).
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Perform elementary row operations onM1 to produce a matrixM2 whose right-hand
block has thek2× k2 identity matrix on the bottom and the(2kδ+ δ2)× k2 zero matrix
on the top. We can do this because the greatest common divisor of the coefficients ofp
is 1 (p being irreducible). The lattice formed by these top(2kδ + δ2) rows of M2 is the
sublattice of the original lattice obtained by setting to 0 all the right-hand columns.

Now do lattice basis reduction on the top 2kδ+δ2 rows ofM2; let the resulting 2kδ+δ2

rows form a new matrixM3.
Consider the(k+ δ)2-long row vectorr whoseγ (g, h) entry isxg

0 yh
0 . The row vector

s of length(k+ δ)2+ k2 given bys= r M1 satisfies

sγ (g,h) =
(

x0

X

)g( y0

Y

)h

,

|sγ (g,h)| ≤ 1,

sβ(i, j ) = qi j (x0, y0) = 0,

|s| < k+ δ.
Because its right-hand side is 0,s is one of the vectors in the row lattice spanned by

M3. We will show that it is a “relatively short” vector in the lattice. To do this, we need
to estimate the sizes of the other vectors inM3.

To that end, letM4 be the matrix obtained fromM1 by multiplying theγ (g, h) row
by XgYh and multiplying theβ(i, j ) column byX−i Y− j . So M4 = 11M112 where
11 and12 are diagonal matrices. The left-hand block ofM4 is the(k+ δ)2 × (k+ δ)2
identity matrix. Each column in the right-hand block represents the coefficients of the
polynomialxi y j p(x X, yY) = xi y j p̃(x, y): If g = i + a andh = j + b, then

(M1)γ (g,h),β(i, j ) = pab,

(M4)γ (g,h),β(i, j ) = pabXgYh X−i Y− j = pabXaYb = p̃ab.

The right-hand columns are all shifted versions of one fixed column vectorv, representing
the coefficients of the polynomial̃p(x, y), namely

vγ (a,b) = pabXaYb = p̃ab.

The largest element of each has absolute valueW. These columns are selected columns
of a Toeplitz matrix.

A lemma, whose proof is given in Appendix 2, says that these columns are nearly
orthogonal.

Lemma 3. There is a k2× k2 submatrix of M4 with determinant at least

Wk2
2−6k2δ2−2k2

(in absolute value). If the largest coefficient of̃p is one ofp̃00, p̃0δ, p̃δ0, or p̃δδ, then the
bound is Wk2

.

The lemma finds ak2×k2 matrix of the right-hand block ofM4 with large determinant.
Select 2kδ + δ2 columns of the left-hand block ofM4 (the identity matrix) to extend
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this to an(k + δ)2 × (k + δ)2 submatrix ofM4 with the same determinant. LetT be
the((k+ δ)2+ k2)× (k+ δ)2 permutation matrix selecting the appropriate(k+ δ)2 =
(2kδ + δ2)+ (k2) columns. So we have

|det(11M112T)| ≥ Wk2
2−6k2δ2−2k2

.

Now12T = T13 where13 is a diagonal matrix differing from12 by the deletion
of K 1’s on the diagonal, so that

|det(11M1T13)| ≥ Wk2
2−6k2δ2−2k2

.

We compute the determinants of1i :

det(11) =
∏

XgYh = (XY)(k+δ)
2(k+δ−1)/2,

det(12) = det(13) =
∏

X−i Y− j = (XY)−k2(k−1)/2.

Remark. Much cancellation goes on between det(11) and det(12): all the factorsXi Y j

with 0 ≤ i < k and 0≤ j < k are cancelled, leaving only those factorsXgYh with
(g, h) ∈ {0, . . . , k + δ − 1}2 − {0, . . . , k − 1}2. Thus the shape of theboundaryof the
region of applicable(g, h) is important, and must be considered when designing the
algorithm.

Multiplying the two determinants, we get

det(11) det(12) = (XY)[(k+δ)
2(k+δ−1)−k2(k−1)]/2

= (XY)[3k2δ+k(3δ2−2δ)+(δ3−δ2)]/2,

and since

|det(M1T)| ≥ Wk2
2−6k2δ2−2k2

det(11) det(12)
,

we obtain

|det(M1T)| ≥ Wk2
2−6k2δ2−2k2

(XY)−[3k2δ+k(3δ2−2δ)+(δ3−δ2)]/2.

Let this lower bound be calledE. M3T is obtained fromM1T by elementary row
operations, so

|det(M3T)| = |det(M1T)| ≥ E.

The rowsT in M3T obtained fromsby deleting columns has Euclidean length bounded
by that ofs:

|sT | ≤ |s| < k+ δ.
M3T has a block lower triangular structure, with ak2×k2 identity matrix in the lower

right. Let M̂ denote the upper-left block ofM3T , with dimension 2kδ+ δ2 on each side.
We have

|det(M̂)| = |det(M3T)| ≥ E.
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We wish to apply Lemma 1 tôM andsT , with n = 2kδ + δ2. If we can guarantee

k+ δ ≤ E1/n2−(n−1)/4,

then from

|sT | < k+ δ,
E ≤ det(M̂),

we will have

|sT | < det(M̂)1/n2−(n−1)/4

as required by Lemma 1.
This requirement translates to

(k+ δ)n ≤ E × 2−n(n−1)/4.

Recalling

n = 2kδ + δ2,

E = Wk2
2−6k2δ2−2k2

(XY)−[3k2δ+k(3δ2−2δ)+(δ3−δ2)]/2,

and omitting some tedious computations, we translate the requirement to

XY ≤ W2/3δ−ε′2−(14δ/3)−o(δ),

where

ε′ ≈ 2

3k

(
1− 2

3δ

)
.

The rest of the construction proceeds as before. AssumeXY satisfies this bound.
Then from Lemma 1, applying lattice basis reduction toM̂ will produce a hyperplane
containing all lattice vectors as short assT . The equation of this hyperplane, and the
construction ofs, yield the polynomial equation

C(x0, y0) =
∑

cghxg
0 yh

0 = 0.

Further,C(x, y) is not a multiple ofp(x, y), since all the multiples ofp(x, y) of suf-
ficiently low degree were already used to define the sublatticeM̂ . Since p(x, y) is
irreducible,

Q(x) = Resultanty(C(x, y), p(x, y))

gives a nontrivial integer polynomial. We can easily compute its roots, which include
x0. Finally, givenx0, we can easily find thosey solving p(x0, y) = 0.

Tying this all together, we have:

Theorem 2. Let p(x, y) be an irreducible polynomial in two variables overZ, of
maximum degreeδ in each variable separately. Let X, Y be bounds on the desired



Small Solutions to Polynomial Equations, and Low Exponent RSA Vulnerabilities 251

solutions x0, y0. Define p̃(x, y) = p(x X, yY) and let W be the absolute value of the
largest coefficient of̃p. If

XY < W{2/(3δ)}−ε2−14δ/3

then in time polynomial in(logW, δ,1/ε), we can find all integer pairs(x0, y0) with
p(x0, y0) = 0, |x0| < X, and|y0| < Y.

Proof. The lattice basis reduction step operated on a matrix of size 2kδ + δ2, where
k = O(1/ε). By [9] this step is done in polynomial time. The rest of the algorithm is
also polynomial time.

Corollary 2. With the hypothesis of Theorem2, except that

XY ≤ W2/(3δ),

then in time polynomial in(logW, 2δ), we can find all integer pairs(x0, y0) with
p(x0, y0) = 0, |x0| ≤ X, and|y0| ≤ Y.

Proof. Setε = 1/logW, and do exhaustive search on the high-orderO(δ) unknown
bits of x. The running time is still polynomial, but of higher degree in(logW).

Remark. Theorem 2 was developed for the case wherep had degreeδ independently in
each variable. If the set of indices of nonzero coefficients ofp (that is, its Newton polygon)
has a different shape, it is useful to select the indices of the polynomialsqi j (x, y) and
monomialsxgyh in a different manner. The shape of the region of allowable monomials
(g, h), and in particular its boundary, interacts with the shape of the Newton polygon of
p in determining the efficiency of the algorithm.

Theorem 3. With the hypothesis of Theorem2, except that p has total degreeδ, the
appropriate bound is

XY < W1/δ2−13δ/2.

Proof (Sketch). We use polynomialsqi j = xi y j p(x, y) wherei + j < k (rather than
i < k and j < k independently as before). The set of indices(i, j ) now forms a triangle
rather than a square. The relevant determinant is now

Wk(k+1)/2(XY)−{(k+δ+1)(k+δ)(k+δ−1)−(k+1)k(k−1)}/62−3(2δ2)((1/2)k2)−(kδ)2/4−o(k2)

= Wk(k+1)/2(XY)−{3k2δ+3kδ2+δ3−δ}/62−3δ2k2−(kδ)2/4−o(k2).

Solve forXY to get

XY < W(1/δ)−ε2−13δ/2,

whereε = O(1/k). As in Corollary 2, setε = 1/logW and exhaust on high-order bits
while maintaining polynomial time.
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Remark. This shows how the shape of the region of indices(g, h) of monomials, and
particularly the boundary of that shape, affects the outcome. Theorem 3 is better than
Theorem 2 ifp is a general polynomial of total degreeδ, but Theorem 2 is better ifp
has degreeδ in each variable independently.

As another example, ifp(x, y) has degreeG in x and H in y (independently), then
for any positive parameterα we can tolerate rangesX andY satisfying

W >> XG+(αH/2)YH+(G/(2α))

by allowing 0≤ i ≤ kα and 0≤ j ≤ k.

11. Factoring with High Bits Known

We can apply the present techniques to the problem of factoring an integer when we
know the high-order bits of one of the factors.

Suppose we knowN = P Q and we know the high-order14 log2 N bits of P. By
division we know the high-order14 log2 N bits of Q as well.

We write

P = P0+ x0,

Q = Q0+ y0,

whereP0 andQ0 are known, whileP, Q, x0, andy0 are unknown. Define the boundsX
andY on the unknownsx0 andy0 by

|x0| < P0N−1/4 = X,

|y0| < Q0N−1/4 = Y.

Define the polynomial

p(x, y) = (P0+ x)(Q0+ y)− N

= (P0Q0− N)+ Q0x + P0y+ xy,

wherex andy are dummy variables. One integer solution ofp(x, y) = 0 is given by the
desired(x0, y0), namely,

p(x0, y0) = P Q− N = 0.

We haveδ = 1, and the quantityW is given by

W = max
i j
(|pi j |Xi Y j )

= max(|P0Q0− N|, Q0X, P0Y, XY)

= N3/4.

An easy computation gives

XY = P0Q0N−1/2 ≈ N1/2

= W2/(3δ),

so that the hypothesis of Corollary 2 is satisfied. Thus we have:
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Theorem 4. In polynomial time we can find the factorization of N= P Q if we know
the high-order( 1

4 log2 N) bits of P.

By comparison, Rivest and Shamir [13] need about( 1
3 log2 N) bits of P, and a recent

paper by the present author [4] used a lattice-based method (less efficient than that of
this paper) to factorN using( 3

10 log2 N) bits of P.
Theorem 4 has applications to some RSA-based cryptographic schemes. For example,

Vanstone and Zuccherato [15] design an ID-based RSA encryption scheme, where a
person’s identity is encoded in his RSA modulusN = P Q. In one variant of the scheme
(Section 3.1 of [15]), a 1024-bitN is created by specifying (in a public manner) the
high-order 512− 248= 264 bits ofP and hence ofQ. By the present techniques, this
is enough information to allow the attacker to factorN.

If we know the low-order bits ofP instead of the high-order bits, we get the same
results, but a twist in the proof is worth noticing.

Theorem 5. In polynomial time we can find the factorization of N= P Q if we know
the low-order( 1

4 log2 N) bits of P.

Let k = b 1
4 log2 Nc, so that

2k ≈ N1/4.

Write

P = 2kx0+ P0,

Q = 2ky0+ Q0,

whereP0 andQ0 are known, whileP, Q, x0, andy0 are unknown. Iterate over possible
values of

` = dlog2(P)e,
and define boundsX andY by

|x0| < X = 2`−k ≈ P N−1/4,

|y0| < Y = N21−`−k ≈ QN−1/4.

Define the polynomial

p(x, y) = [(2kx + P0)(2
ky+ Q0)− N]/2k

= 2kxy+ Q0x + P0y+ [(P0Q0− N)/2k],

so that(x0, y0) is a root of the equation

p(x0, y0) = P Q− N

2k
= 0.

The term(P0Q0− N)/2k is an integer by construction. We needed to definep(x, y)
as above, rather than the apparent choice

p′(x, y) = (2kx + P0)(2
ky+ Q0)− N,
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because the coefficients ofp′ all have the common factor 2k, so thatp′would be reducible
overZ, namely,p′ = 2k × p, violating the hypothesis of Theorem 2. In particular, the
construction in Section 10 would fail when we tried to create matrixM2 from M1.

The rest of the proof continues as before, withXY = O(N1/2) andW = 2(N3/4).
(The fact thatXY differs fromW2/3 by a constant multiple merely means that we have
to do some trial and error.)

12. Extension to More Variables

Suppose we have a polynomialp(x, y, z) in three variables over the integers. (The
following remarks, suitably adapted, will also apply to a polynomialp(x, y) in two
variables moduloN.)

We could try to mimic the present approach. If the rangesX,Y, Z are small enough,
we will end up with a polynomial relationC(x, y, z), not a multiple ofp, which is
satisfied by(x0, y0, z0). Then the resultant ofp(x, y, z) andC(x, y, z) with respect toz
will give a polynomialr (x, y) in two variables. We can then try to solver (x, y) = 0 by
the current methods. But the degree ofr (x, y) will be quite high, so that the rangesX
andY which can be tolerated will be quite small.

A much more promising approach, which works often but not always, is as follows. If
the rangesX,Y, Z are small enough, we are guaranteed to find a space of codimension 1
(a hyperplane) containing all the short vectors of the latticeM̂ . But we might easily find
a space of larger codimension. (There is a good possibility that for many basis vectors
bi the orthogonal component|b∗i | exceeds our known upper bound on|s|, and each one
increases the codimension of the space containing all the short vectors.) We develop
several polynomial equationsCi (x, y, z) satisfyingCi (x0, y0, z0) = 0; the number of
such equations is equal to the codimension of this space. We can then take resultants and
g.c.d.s of the variousCi (x, y, z) andp(x, y, z) and hope to produce a single polynomial
equation in a single variabler (x) = 0, which we solve over the reals.

This is only a heuristic approach, which might or might not work for a given polynomial
p. One potential obstacle is that we might not obtain enough equationsCi (x, y, z) = 0.
A related concern is that the equations we obtain might be redundant: for example, we
might haveC1(x, y, z) = xC2(x, y, z). We see no way to guarantee that we will gather
enough independent equations to enable a solution.

Indeed, certain counterexamples show that this procedure must fail for some polynomi-
als. In the casep(x, y) = 0(modN), we adapt an example of Manders and Adleman [10].
Letn = q1q2 . . .qm be the product of the firstmodd primes. Then logn ≈ m logm. Also
the modular equationx2 = 1(modn) has 2m solutions. LetN = nh for a sufficiently
large integerh. Look for solutions to

p(x, y) = x2− yn− 1= 0(modN),

|x| < n = X,

|y| < n = Y.

There are at least 2m+1 pairs (x0, y0) satisfying these equations. We cannot hope to
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produce them all in time polynomial in logN. And yet we can arrange that any criterion

XY < Nε

such as the hypothesis of Theorem 1 can be satisfied by proper choice ofh > 2/ε.
If faced with this problem, our algorithm will probably return the equation

p(x, y) = x2− yn− 1= 0

(moving it from a modular equation to an integer equation), but then be unable to proceed
further (if we maintainX = n) because the appropriate boundsXY < Wc or X < nc

are not satisfied. If we allowX = n1/2 it may still be able to proceed, but we will not
have exponentially many solutions in this case.

However, we need not overemphasize the negative. The extended algorithm will often
work, even in cases when it is not guaranteed.

An important application of the extended algorithm was alluded to in Section 7.
Suppose a plaintext messagem, consists of two unknown blocks of bits and a known
piece, is subjected to RSA encryption with exponent 3. The message may be:

m= “TODAY’S KEY IS swordfish AND THE PASSWORD IS joe.”

We can view this as two unknowns:x = “swordfish” andy = “joe,” and one known
piece,

B = “TODAY’S KEY IS ——– AND THE PASSWORD IS —.”

We presume that we know the lengths ofx and y, or can iterate over their possible
values.

The plaintext message is

m= B+ 2kx + y,

the ciphertext is

c = m3 (modN),

and the polynomial which we wish to solve is

p(x, y) = c− (B+ 2kx + y)3 = 0(modN),

with a solution(x0, y0) suitably bounded, and withc, k, B, N known andx, y unknown.
The polynomialp(x, y) has total degree 3. We select a bound 3t on the degree of the

monomials in our algorithm, so that we have monomialsxgyh with g + h < 3t . We
introduce polynomial equations

qi jk (x, y) = xi y j p(x, y)k = 0(modNk),

with j ≤ 2, k ≥ 1, andi + j + 3k < 3t .
The determinant of the related matrix has powers ofN totaling(

4
2

)
+
(

7
2

)
+ · · · +

(
3t − 2

2

)
= 3t2(t − 1)

2
.
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The powers of 1/X come to(
1
2

)
+
(

2
2

)
+
(

3
2

)
+ · · · +

(
3t
2

)
=
(

3t + 1
3

)
= 27t3− 1

6

as do the powers of 1/Y. So our requirement becomes

(XY)27t3−1 < N9t3−9t2
,

(XY) < N1/3−ε,

with ε ≈ 1/(3t).
If this requirement is met we will get at least one equationC(x, y) = 0.
We tried an experiment on a scaled-down version of this. Rather than a cubic equation,

we used a quadratic equation of the form

(B0+ 2kx + y)2 = c (modN).

We had variablesx0, y0 bounded by 223, and a modulusN ≈ 2150. We used monomials
of total degree bounded by 5, so that there were 21 monomials and ten polynomial
equations. The resulting requirement,(XY)35 < N13, was met handily: 21610 < 21950.
The matrix was represented as integers, and was scaled in such a way that the desired
solution s had Euclidean length about 1038. We ran basis reduction on the resulting
21× 21 matrix. The results were much better than expected: For eachi = 2, 3, . . . ,21
we had|b∗i | ≈ 1041 > |s|, while |b1| = |s| ≈ 1038, so that instead of confining the
short vectors to a hyperplane the algorithm actually confined them to a one-dimensional
subspace—we could just read off the answers. The computation time was disappointing
though: the lattice basis reduction required 45 hours. Clearly much experimentation
needs to be done yet with more optimized lattice basis reduction algorithms.

13. Conclusion and Open Problem

We have shown algorithms for finding solutions to univariate modular polynomial equa-
tions p(x) = 0(modN), and bivariate integer polynomial equationsp(x, y) = 0, as
long as the solutions are suitably bounded with respect toN or to the coefficients ofp,
respectively.

We used the coefficients ofp to build a lattice containing a short vector based on the
unknown solution(x0, y0); this need not be the shortest vector. We then used a novel
application of lattice basis reduction methods: rather than search for the shortest vector,
we confine all relatively short vectors to a hyperplane. The equation of this hyperplane,
when applied to our special short vector, gives a polynomial over the integers satisfied
by (x0, y0), from which the solution follows.

We showed several applications to RSA with small encryption exponent, and to integer
factorization with partial knowledge. We believe that other applications will arise. For
example, Patarin [11] pointed out that the method of padding a message by repetition:
(“Attack at dawn. . . Attack at dawn. . . ”) amounts to multiplying a short message (x
= “Attack at dawn. . . ”) by 2k + 1. If the message is short enough, and RSA with small
exponent is used, the present techniques can derive the message again.
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Joye and Quisquater [8] give many other cryptographic applications of the techniques
presented here.

The present paper shows several potential exposures concerning RSA with small
exponent. Specific implementations of RSA should be examined with regard to these
exposures.

Conventional wisdom states that RSA should not be applied directly to messages,
but rather that the messages should be randomized in some way prior to encryption, for
example, by the methods of Bellare and Rogaway [1]. The results of the present paper
give particular reinforcement to this wisdom in the case of small encrypting exponent.

The paper does not show any weaknesses in the RSA signature scheme with a small
validating exponent.
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Appendix 1. Another Solution for Multiple Encryptions

This material is related to the application in Section 8, but only tangentially to the main
paper.

In Section 8 we had two encryptions of the same message with different random pads.
If instead of two encryptions we have several, sayk+1, then we can mount other attacks
which might tolerate larger fields of random padding. We sketch here an attack which
(heuristically) seems to tolerate random padding up toα times the length ofN where

α <
k− 2

6k− 3
<

1

6
.

Let the ciphertexts be

A0 = m3 (modN),

Ai = (m+ ri )
3 (modN),

ci = Ai − A0 = 3m2ri + 3mr2
i + r 3

i (modN),

so that we knowA0, Ai , ci , andN, but notm or ri . We assume the padding is small:

|ri | < Nα.

For indicesi < j < p definedi j = ri r j (ri − r j ) andei jp = −ri r j r p(ri − r j )(r j −
r p)(r p − ri ). TheC(k, 2) = (k2) linearly independent quantitiesdi j each satisfy|di j | <



258 D. Coppersmith

N3α, and theC(k, 3) linearly independent quantitiesei jp each satisfy|ei jp | < N6α. One
can check the following identity:

di j cp + djpci − dipcj = ei jp (modN).

This suggests lattice basis reduction on the row basis of the following matrix.M is a
square upper triangular integer matrix of dimension(C(k, 2) + C(k, 3)). Its upper-left
C(k, 2)×C(k, 2) block is the identity times an integer approximation toN3α. Its lower-
left C(k, 3)×C(k, 2) block is 0. Its lower-rightC(k, 3)×C(k, 3) block is N times the
identity. Its upper-rightC(k, 2) × C(k, 3) block has rows indexed by pairs of indices
(i, j ), i < j , and columns indexed by triples of indices(i, j, p), i < j < p. Column
(i, j, p) has three nonzero entries:cp at row(i, j ), ci at row( j, p), and−cj at row(i, p).

Consider the integer row vectorr whose firstC(k, 2) entries aredi j , and whose last
C(k, 3) entries are the integers(ei jp − (di j cp+ djpci − dipcj ))/N. The productr M = s
has left-hand elementsdi j N3α and right-hand elementsei jp ; all its entries are bounded
by N6α. We hope that lattice basis reduction will find this row.

The determinant ofM is N3αC(k,2)+C(k,3). This is larger than(N6α)C(k,2)+C(k,3) because
of our choice ofα. Sos is among the shorter elements of the lattice generated by the
rows of M .

Contrary to the rest of this paper, we actually want to finds, not just confine it to a
hyperplane. The difficulty in findings depends on its rank among the short elements. If
|ri | are much smaller thanNα, then we can hope thats is the shortest lattice element,
and that lattice basis reduction methods can recover it efficiently. We do not here supply
efficiency estimates or probabilities of success; we treat this as a heuristic attack.

Assuming that we can actually finds, we will be able to recover the valuesri by taking
g.c.d. of elements ofr = sM−1:

g.c.d.{d1,2, d1,3, . . . ,d1,k} = g.c.d.{r1r2(r1− r2), r1r3(r1− r3), . . . , r1rk(r1− rk)}
= r1× g.c.d.{r2(r1− r2), r3(r1− r3), . . . , rk(r1− rk)},

and hopefully the latter g.c.d. will be small enough to discover by exhaustive search.
Having foundri , we can recoverm by Franklin and Reiter’s technique.

If we have 14 encryptions of the same message (k = 13), then we can tolerate a
random padding of about 150 bits in a 1024-bit RSA message.

Appendix 2. Nearly Orthogonal Toeplitz Columns

In this Appendix we give a proof of the technical result needed in Section 10: that several
columns of the matrixM4 are “nearly orthogonal.” A modification of this proof would
apply to any Toeplitz matrix.

Proof of Lemma 3. Let W = |vγ (a,b)| = | p̃ab| be the largest coefficient of̃p. Select
indices(c, d) to maximize the quantity

8(c−a)2+(d−b)2| p̃cd|.
Select the rows

γ (c+ i, d + j ), 0≤ i, j < k,



Small Solutions to Polynomial Equations, and Low Exponent RSA Vulnerabilities 259

of M4 to create the desired submatrix̃M . Define an index functionµ(i, j ) = ki + j .
Then the matrix element̃Mµ(g,h),µ(i, j ) is the coefficient ofxc+gyd+h in xi y j p̃(x, y),
namely

M̃µ(g,h),µ(i, j ) = p̃g−i+c,h− j+d.

Multiply the µ(g, h) row of M̃ by 82(c−a)g+2(d−b)h, and multiply theµ(i, j ) column
by 8−2(c−a)i−2(d−b) j , to create a new matrixM ′ with the same determinant. Its typical
element is

M ′µ(g,h),µ(i, j ) = p̃g−i+c,h− j+d82(c−a)(g−i )+2(d−b)(h− j ).

From maximality of(c, d) we find

| p̃g−i+c,h− j+d|8(g−i+c−a)2+(h− j+d−b)2 ≤ | p̃cd|8(c−a)2+(d−b)2,

from which

| p̃g−i+c,h− j+d|82(g−i )(c−a)+2(h− j )(d−b) ≤ | p̃cd|8−(g−i )2−(h− j )2.

Thus each diagonal entry ofM ′ is p̃cd, and each off-diagonal entry is bounded by
| p̃cd|8−(g−i )2−(h− j )2. This implies thatM ′ is diagonally dominant, because the absolute
values of the off-diagonal entries in itsµ(i, j ) row sum to at most

| p̃cd| ×
∑

(g,h)6=(i, j )
8−(g−i )2−(h− j )2

= | p̃cd| ×
∑

(a,b)6=(0,0)
8−a2−b2

= | p̃cd| ×
[
−1+

∑
(a,b)

8−a2−b2

]

= | p̃cd| ×
−1+

(∑
a

8−a2

)2
 < 3

4| p̃cd|.

Each eigenvalue ofM ′ is within 3
4| p̃cd| of p̃cd, and so exceeds14| p̃cd| in absolute value.

By choice of(c, d) we know

8(c−a)2+(d−b)2| p̃cd| ≥ 80| p̃ab| = W,

| p̃cd| ≥ 8−2δ2
W,

det(M ′) ≥ ( 1
48−2δ2

W)k
2 = Wk2

2−6k2δ2−2k2
.

For the second claim of the lemma: If the largest coefficient ofp̃ is eitherp̃00 or p̃δδ,
set(c, d) = (a, b) and notice thatM̃ is a triangular matrix whose diagonal entries have
absolute valueW. If the largest coefficient is either̃p0δ or p̃δ0, redefine the indexing
function asµ(i, j ) = ki + (k − 1− j ) so that againM̃ is a triangular matrix whose
diagonal entries have absolute valueW. Similar results hold if(a, b) is any corner of the
Newton polygon associated with̃p.
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