# Structured sparsity-inducing norms through submodular functions

# **Francis Bach**

Sierra team, INRIA - Ecole Normale Supérieure - CNRS



# Thanks to R. Jenatton, J. Mairal, G. Obozinski June 2011

# Outline

- Introduction: Sparse methods for machine learning
  - Need for structured sparsity: Going beyond the  $\ell_1$ -norm
- Submodular functions
  - Lovász extension
- Structured sparsity through submodular functions
  - Relaxation of the penalization of supports
  - Examples
  - Unified algorithms and analysis
- Extensions to symmetric submodular functions
  - Shaping level sets

## Sparsity in supervised machine learning

- Observed data  $(x_i, y_i) \in \mathbb{R}^p \times \mathbb{R}$ ,  $i = 1, \dots, n$ 
  - Response vector  $y = (y_1, \dots, y_n)^\top \in \mathbb{R}^n$
  - Design matrix  $X = (x_1, \ldots, x_n)^\top \in \mathbb{R}^{n \times p}$
- Regularized empirical risk minimization:

$$\min_{w \in \mathbb{R}^p} \frac{1}{n} \sum_{i=1}^n \ell(y_i, w^\top x_i) + \lambda \Omega(w) = \left[ \min_{w \in \mathbb{R}^p} L(y, Xw) + \lambda \Omega(w) \right]$$

- Norm  $\Omega$  to promote sparsity
  - square loss +  $\ell_1$ -norm  $\Rightarrow$  basis pursuit in signal processing (Chen et al., 2001), Lasso in statistics/machine learning (Tibshirani, 1996)
  - Proxy for interpretability
  - Allow high-dimensional inference:  $\log p$

$$\log p = O(n)$$

#### **Sparsity in unsupervised machine learning**

• Multiple responses/signals  $y = (y^1, \dots, y^k) \in \mathbb{R}^{n \times k}$ 

$$\min_{w^1,\dots,w^k \in \mathbb{R}^p} \sum_{j=1}^k \left\{ L(y^j, Xw^j) + \lambda \Omega(w^j) \right\}$$

#### **Sparsity in unsupervised machine learning**

• Multiple responses/signals  $y = (y^1, \dots, y^k) \in \mathbb{R}^{n \times k}$ 

$$\min_{w^1,\dots,w^k \in \mathbb{R}^p} \sum_{j=1}^k \left\{ L(y^j, Xw^j) + \lambda \Omega(w^j) \right\}$$

● Only responses are observed ⇒ Dictionary learning

- Learn  $X = (x^1, \dots, x^p) \in \mathbb{R}^{n \times p}$  such that  $\forall j, \|x^j\|_2 \leqslant 1$ 

$$\min_{\substack{X=(x^1,\ldots,x^p) \ w^1,\ldots,w^k \in \mathbb{R}^p}} \sum_{j=1}^k \left\{ L(y^j, Xw^j) + \lambda \Omega(w^j) \right\}$$
• Olshausen and Field (1997); Elad and Aharon (2006)

• sparse PCA: replace  $||x^j||_2 \leq 1$  by  $\Theta(x^j) \leq 1$ 

## **Sparsity in signal processing**

• Multiple responses/signals  $x = (x^1, \dots, x^k) \in \mathbb{R}^{n \times k}$ 

$$\min_{\alpha^1,\dots,\alpha^k \in \mathbb{R}^p} \sum_{j=1}^k \left\{ L(x^j, D\alpha^j) + \lambda \Omega(\alpha^j) \right\}$$

- Only responses are observed  $\Rightarrow$  **Dictionary learning** 
  - Learn  $D = (d^1, \dots, d^p) \in \mathbb{R}^{n \times p}$  such that  $\forall j, \|d^j\|_2 \leqslant 1$

$$\min_{\substack{D=(d^1,\ldots,d^p) \ \alpha^1,\ldots,\alpha^k \in \mathbb{R}^p}} \sum_{j=1}^k \left\{ L(x^j, D\alpha^j) + \lambda \Omega(\alpha^j) \right\}$$
• Olshausen and Field (1997); Elad and Aharon (2006)

• sparse PCA: replace  $||d^j||_2 \leq 1$  by  $\Theta(d^j) \leq 1$ 

# Why structured sparsity?

#### • Interpretability

- Structured dictionary elements (Jenatton et al., 2009b)
- Dictionary elements "organized" in a tree or a grid (Kavukcuoglu et al., 2009; Jenatton et al., 2010; Mairal et al., 2010)



raw data

sparse PCA

 $\bullet$  Unstructed sparse PCA  $\Rightarrow$  many zeros do not lead to better interpretability



raw data

sparse PCA

 $\bullet$  Unstructed sparse PCA  $\Rightarrow$  many zeros do not lead to better interpretability



raw data

Structured sparse PCA

• Enforce selection of convex nonzero patterns  $\Rightarrow$  robustness to occlusion in face identification



raw data

Structured sparse PCA

• Enforce selection of convex nonzero patterns  $\Rightarrow$  robustness to occlusion in face identification

# Why structured sparsity?

#### • Interpretability

- Structured dictionary elements (Jenatton et al., 2009b)
- Dictionary elements "organized" in a tree or a grid (Kavukcuoglu et al., 2009; Jenatton et al., 2010; Mairal et al., 2010)

## Modelling of text corpora (Jenatton et al., 2010)



# Why structured sparsity?

#### • Interpretability

- Structured dictionary elements (Jenatton et al., 2009b)
- Dictionary elements "organized" in a tree or a grid (Kavukcuoglu et al., 2009; Jenatton et al., 2010; Mairal et al., 2010)

# Why structured sparsity?

#### • Interpretability

- Structured dictionary elements (Jenatton et al., 2009b)
- Dictionary elements "organized" in a tree or a grid (Kavukcuoglu et al., 2009; Jenatton et al., 2010; Mairal et al., 2010)

#### • Stability and identifiability

- Optimization problem  $\min_{w \in \mathbb{R}^p} L(y, Xw) + \lambda \|w\|_1$  is unstable
- "Codes"  $w^j$  often used in later processing (Mairal et al., 2009)

#### • Prediction or estimation performance

 When prior knowledge matches data (Haupt and Nowak, 2006; Baraniuk et al., 2008; Jenatton et al., 2009a; Huang et al., 2009)

#### • Numerical efficiency

- Non-linear variable selection with  $2^p$  subsets (Bach, 2008)

## $\ell_1$ -norm = convex envelope of cardinality of support

- Let  $w \in \mathbb{R}^p$ . Let  $V = \{1, \ldots, p\}$  and  $\operatorname{Supp}(w) = \{j \in V, w_j \neq 0\}$
- Cardinality of support:  $||w||_0 = Card(Supp(w))$
- Convex envelope = largest convex lower bound (see, e.g., Boyd and Vandenberghe, 2004)



•  $\ell_1$ -norm = convex envelope of  $\ell_0$ -quasi-norm on the  $\ell_\infty$ -ball  $[-1,1]^p$ 

# Convex envelopes of general functions of the support (Bach, 2010)

- Let  $F: 2^V \to \mathbb{R}$  be a set-function
  - Assume F is non-decreasing (i.e.,  $A \subset B \Rightarrow F(A) \leqslant F(B)$ )
  - Explicit prior knowledge on supports (Haupt and Nowak, 2006; Baraniuk et al., 2008; Huang et al., 2009)
- Define  $\Theta(w) = F(\operatorname{Supp}(w))$ : How to get its convex envelope?
  - 1. Possible if F is also **submodular**
  - 2. Allows **unified** theory and algorithm
  - 3. Provides new regularizers

•  $F: 2^V \to \mathbb{R}$  is **submodular** if and only if

 $\forall A, B \subset V, \quad F(A) + F(B) \ge F(A \cap B) + F(A \cup B)$ 

 $\Leftrightarrow \ \forall k \in V, \quad A \mapsto F(A \cup \{k\}) - F(A) \text{ is non-increasing}$ 

•  $F: 2^V \to \mathbb{R}$  is **submodular** if and only if

 $\forall A, B \subset V, \quad F(A) + F(B) \ge F(A \cap B) + F(A \cup B)$  $\Leftrightarrow \quad \forall k \in V, \quad A \mapsto F(A \cup \{k\}) - F(A) \text{ is non-increasing}$ 

Intuition 1: defined like concave functions ("diminishing returns")
 – Example: F : A → g(Card(A)) is submodular if g is concave

•  $F: 2^V \to \mathbb{R}$  is submodular if and only if

 $\begin{aligned} \forall A,B \subset V, \quad F(A)+F(B) \geqslant F(A \cap B)+F(A \cup B) \\ \Leftrightarrow \quad \forall k \in V, \quad A \mapsto F(A \cup \{k\})-F(A) \text{ is non-increasing} \end{aligned}$ 

- Intuition 1: defined like concave functions ("diminishing returns")
   Example: F : A → g(Card(A)) is submodular if g is concave
- Intuition 2: behave like convex functions
  - Polynomial-time minimization, conjugacy theory

•  $F: 2^V \to \mathbb{R}$  is **submodular** if and only if

 $\begin{aligned} \forall A,B \subset V, \quad F(A) + F(B) \geqslant F(A \cap B) + F(A \cup B) \\ \Leftrightarrow \quad \forall k \in V, \quad A \mapsto F(A \cup \{k\}) - F(A) \text{ is non-increasing} \end{aligned}$ 

- Intuition 1: defined like concave functions ("diminishing returns")
   Example: F : A → g(Card(A)) is submodular if g is concave
- Intuition 2: behave like convex functions
  - Polynomial-time minimization, conjugacy theory
- Used in several areas of signal processing and machine learning
  - Total variation/graph cuts (Chambolle, 2005; Boykov et al., 2001)
  - Optimal design (Krause and Guestrin, 2005)

#### Submodular functions - Lovász extension

- Subsets may be identified with elements of  $\{0,1\}^p$
- Given any set-function F and w such that  $w_{j_1} \ge \cdots \ge w_{j_p}$ , define:

$$f(w) = \sum_{k=1}^{p} w_{j_k}[F(\{j_1, \dots, j_k\}) - F(\{j_1, \dots, j_{k-1}\})]$$

- If  $w = 1_A$ ,  $f(w) = F(A) \Rightarrow$  extension from  $\{0, 1\}^p$  to  $\mathbb{R}^p$ - f is piecewise affine and positively homogeneous
- F is submodular if and only if f is convex
  - Minimizing f(w) on  $w \in [0,1]^p$  equivalent to minimizing F on  $2^V$

## Submodular functions and structured sparsity

- Let  $F: 2^V \to \mathbb{R}$  be a non-decreasing submodular set-function
- **Proposition**: the convex envelope of  $\Theta : w \mapsto F(\operatorname{Supp}(w))$  on the  $\ell_{\infty}$ -ball is  $\Omega : w \mapsto f(|w|)$  where f is the Lovász extension of F

## Submodular functions and structured sparsity

- Let  $F: 2^V \to \mathbb{R}$  be a non-decreasing submodular set-function
- **Proposition**: the convex envelope of  $\Theta : w \mapsto F(\operatorname{Supp}(w))$  on the  $\ell_{\infty}$ -ball is  $\Omega : w \mapsto f(|w|)$  where f is the Lovász extension of F
- Sparsity-inducing properties:  $\Omega$  is a polyhedral norm



- A if stable if for all  $B \supset A$ ,  $B \neq A \Rightarrow F(B) > F(A)$
- With probability one, stable sets are the only allowed active sets

#### **Polyhedral unit balls**



# Submodular functions and structured sparsity Examples

- From  $\Omega(w)$  to F(A): provides new insights into existing norms
  - Grouped norms with overlapping groups (Jenatton et al., 2009a)

$$\Omega(w) = \sum_{G \in \mathcal{G}} \|w_G\|_{\infty}$$

- $\ell_1$ - $\ell_\infty$  norm  $\Rightarrow$  sparsity at the group level
- Some  $w_G$ 's are set to zero for some groups G

$$(\operatorname{Supp}(w))^c = \bigcup_{G \in \mathcal{H}} G \text{ for some } \mathcal{H} \subseteq \mathcal{G}$$

# Submodular functions and structured sparsity Examples

- From  $\Omega(w)$  to F(A): provides new insights into existing norms
  - Grouped norms with overlapping groups (Jenatton et al., 2009a)

$$\Omega(w) = \sum_{G \in \mathcal{G}} \|w_G\|_{\infty} \quad \Rightarrow \quad F(A) = \operatorname{Card}(\{G \in \mathcal{G}, \ G \cap A \neq \emptyset\})$$

- $\ell_1$ - $\ell_\infty$  norm  $\Rightarrow$  sparsity at the group level
- Some  $w_G$ 's are set to zero for some groups G

$$(\operatorname{Supp}(w))^c = \bigcup_{G \in \mathcal{H}} G \text{ for some } \mathcal{H} \subseteq \mathcal{G}$$

- Justification not only limited to allowed sparsity patterns

## Selection of contiguous patterns in a sequence

• Selection of contiguous patterns in a sequence



• G is the set of blue groups: any union of blue groups set to zero leads to the selection of a **contiguous pattern** 

## Selection of contiguous patterns in a sequence

• Selection of contiguous patterns in a sequence



- G is the set of blue groups: any union of blue groups set to zero leads to the selection of a **contiguous pattern**
- $\sum_{G \in \mathcal{G}} \|w_G\|_{\infty} \Rightarrow F(A) = p 2 + \operatorname{Range}(A) \text{ if } A \neq \emptyset$ 
  - Jump from 0 to p-1: tends to include all variables simultaneously
  - Add  $\nu |A|$  to smooth the kink: all sparsity patterns are possible
  - Contiguous patterns are favored (and not forced)

## **Extensions of norms with overlapping groups**

• Selection of rectangles (at any position) in a 2-D grids



• Hierarchies



# Application to background subtraction (Mairal, Jenatton, Obozinski, and Bach, 2010)

Background

 $\ell_1$ -norm

Structured norm



# Topographic dictionaries (Mairal, Jenatton, Obozinski, and Bach, 2010)



# Submodular functions and structured sparsity Examples

- From  $\Omega(w)$  to F(A): provides new insights into existing norms
  - Grouped norms with overlapping groups (Jenatton et al., 2009a)

$$\Omega(w) = \sum_{G \in \mathcal{G}} \|w_G\|_{\infty} \quad \Rightarrow \quad F(A) = \operatorname{Card}(\{G \in \mathcal{G}, \ G \cap A \neq \emptyset\})$$

- Justification not only limited to allowed sparsity patterns

# Submodular functions and structured sparsity Examples

- From  $\Omega(w)$  to F(A): provides new insights into existing norms
  - Grouped norms with overlapping groups (Jenatton et al., 2009a)

$$\Omega(w) = \sum_{G \in \mathcal{G}} \|w_G\|_{\infty} \quad \Rightarrow \quad F(A) = \operatorname{Card}(\{G \in \mathcal{G}, \ G \cap A \neq \emptyset\})$$

- Justification not only limited to allowed sparsity patterns
- From F(A) to  $\Omega(w)$ : provides new sparsity-inducing norms

 $- F(A) = g(Card(A)) \Rightarrow \Omega$  is a combination of **order statistics** 

– Non-factorial priors for supervised learning:  $\Omega$  depends on the eigenvalues of  $X_A^\top X_A$  and not simply on the cardinality of A

#### Non-factorial priors for supervised learning

- Selection of subset A from design  $X \in \mathbb{R}^{n \times p}$  with  $\ell_2$ -penalization
- Frequentist analysis (Mallow's  $C_L$ ): tr  $X_A^{\top} X_A (X_A^{\top} X_A + \lambda I)^{-1}$ 
  - Not submodular
- Bayesian analysis (marginal likelihood):  $\log \det(X_A^{\top}X_A + \lambda I)$

- Submodular (also true for  $tr(X_A^{\top}X_A)^{1/2}$ )

| p   | n   | k  | submod.      | $\ell_2$ vs. submod.            | $\ell_1$ vs. submod.            | greedy vs. submod.               |
|-----|-----|----|--------------|---------------------------------|---------------------------------|----------------------------------|
| 120 | 120 | 80 | $40.8\pm0.8$ | $-2.6 \pm 0.5$                  | $\textbf{0.6}\pm\textbf{0.0}$   | $\textbf{21.8} \pm \textbf{0.9}$ |
| 120 | 120 | 40 | $35.9\pm0.8$ | $\textbf{2.4}\pm\textbf{0.4}$   | $\textbf{0.3}\pm\textbf{0.0}$   | $\textbf{15.8} \pm \textbf{1.0}$ |
| 120 | 120 | 20 | $29.0\pm1.0$ | $\textbf{9.4}\pm\textbf{0.5}$   | $\textbf{-0.1}\pm0.0$           | $\textbf{6.7} \pm \textbf{0.9}$  |
| 120 | 120 | 10 | $20.4\pm1.0$ | $\textbf{17.5}\pm\textbf{0.5}$  | $-0.2\pm0.0$                    | $-2.8\pm0.8$                     |
| 120 | 20  | 20 | $49.4\pm2.0$ | $0.4\pm0.5$                     | $\textbf{2.2} \pm \textbf{0.8}$ | $\textbf{23.5} \pm \textbf{2.1}$ |
| 120 | 20  | 10 | $49.2\pm2.0$ | $0.0\pm0.6$                     | $1.0\pm0.8$                     | $\textbf{20.3} \pm \textbf{2.6}$ |
| 120 | 20  | 6  | $43.5\pm2.0$ | $\textbf{3.5} \pm \textbf{0.8}$ | $\textbf{0.9}\pm\textbf{0.6}$   | $\textbf{24.4} \pm \textbf{3.0}$ |
| 120 | 20  | 4  | $41.0\pm2.1$ | <b>4.8</b> ± <b>0.7</b>         | $-1.3\pm0.5$                    | $\textbf{25.1} \pm \textbf{3.5}$ |

## **Unified optimization algorithms**

- Polyhedral norm with  $O(3^p)$  faces and extreme points
  - Not suitable to linear programming toolboxes
- Subgradient ( $w \mapsto \Omega(w)$  non-differentiable)
  - subgradient may be obtained in polynomial time  $\Rightarrow$  too slow

## **Unified optimization algorithms**

- Polyhedral norm with  $O(3^p)$  faces and extreme points
  - Not suitable to linear programming toolboxes
- Subgradient ( $w \mapsto \Omega(w)$  non-differentiable)
  - subgradient may be obtained in polynomial time  $\Rightarrow$  too slow
- **Proximal methods** (e.g., Beck and Teboulle, 2009)
  - $\min_{w \in \mathbb{R}^p} L(y, Xw) + \lambda \Omega(w)$ : differentiable + non-differentiable
  - Efficient when (P):  $\min_{w \in \mathbb{R}^p} \frac{1}{2} ||w v||_2^2 + \lambda \Omega(w)$  is "easy"
- Proposition: (P) is equivalent to  $\min_{A \subset V} \lambda F(A) \sum_{j \in A} |v_j|$  with minimum-norm-point algorithm
  - Possible complexity bound  ${\cal O}(p^6)$ , but empirically  ${\cal O}(p^2)$  (or more)
  - Faster algorithm for special case (Mairal et al., 2010)

#### **Proximal methods for Lovász extensions**

• **Proposition** (Chambolle and Darbon, 2009): let  $w^*$  be the solution of  $\min_{w \in \mathbb{R}^p} \frac{1}{2} ||w - v||_2^2 + \lambda f(w)$ . Then the solutions of

$$\min_{A \subset V} \lambda F(A) + \sum_{j \in A} (\alpha - v_j)$$

are the sets  $A^{\alpha}$  such that  $\{w^* > \alpha\} \subset A^{\alpha} \subset \{w^* \ge \alpha\}$ 

- Parametric submodular function optimization
  - General decomposition strategy for f(|w|) and f(w) (Groenevelt, 1991)
  - Efficient only when submodular minimization is efficient
  - Otherwise, minimum-norm-point algorithm (a.k.a. Frank Wolfe) is preferable

## **Comparison of optimization algorithms**

- Synthetic example with p = 1000 and  $F(A) = |A|^{1/2}$
- ISTA: proximal method
- FISTA: accelerated variant (Beck and Teboulle, 2009)



# Comparison of optimization algorithms (Mairal, Jenatton, Obozinski, and Bach, 2010) Small scale

• Specific norms which can be implemented through network flows



# Comparison of optimization algorithms (Mairal, Jenatton, Obozinski, and Bach, 2010) Large scale

• Specific norms which can be implemented through network flows



## **Unified theoretical analysis**

#### • Decomposability

- Key to theoretical analysis (Negahban et al., 2009)
- **Property**:  $\forall w \in \mathbb{R}^p$ , and  $\forall J \subset V$ , if  $\min_{j \in J} |w_j| \ge \max_{j \in J^c} |w_j|$ , then  $\Omega(w) = \Omega_J(w_J) + \Omega^J(w_{J^c})$

#### • Support recovery

 Extension of known sufficient condition (Zhao and Yu, 2006; Negahban and Wainwright, 2008)

#### • High-dimensional inference

- Extension of known sufficient condition (Bickel et al., 2009)
- Matches with analysis of Negahban et al. (2009) for common cases

# Support recovery - $\min_{w \in \mathbb{R}^p} \frac{1}{2n} ||y - Xw||_2^2 + \lambda \Omega(w)$

Notation

$$-\rho(J) = \min_{B \subset J^c} \frac{F(B \cup J) - F(J)}{F(B)} \in (0, 1] \text{ (for } J \text{ stable)}$$
$$-c(J) = \sup_{w \in \mathbb{R}^p} \Omega_J(w_J) / ||w_J||_2 \leq |J|^{1/2} \max_{k \in V} F(\{k\})$$

- Proposition
  - Assume  $y = Xw^* + \sigma\varepsilon$  , with  $\varepsilon \sim \mathcal{N}(0,I)$
  - J = smallest stable set containing the support of  $w^*$
  - Assume  $\nu = \min_{j, w_j^* \neq 0} |w_j^*| > 0$ - Let  $Q = \frac{1}{n} X^\top X \in \mathbb{R}^{p \times p}$ . Assume  $\kappa = \lambda_{\min}(Q_{JJ}) > 0$ - Assume that for  $\eta > 0$ ,  $(\Omega^J)^*[(\Omega_J(Q_{JJ}^{-1}Q_{Jj}))_{j \in J^c}] \leq 1 - \eta$ - If  $\lambda \leq \frac{\kappa \nu}{2c(J)}$ ,  $\hat{w}$  has support equal to J, with probability larger than  $1 - 3P(\Omega^*(z) > \frac{\lambda \eta \rho(J) \sqrt{n}}{2\sigma})$
  - $\boldsymbol{z}$  is a multivariate normal with covariance matrix  $\boldsymbol{Q}$

**Consistency** -  $\min_{w \in \mathbb{R}^p} \frac{1}{2n} \|y - Xw\|_2^2 + \lambda \Omega(w)$ 

#### Proposition

– Assume 
$$y = Xw^* + \sigma \varepsilon$$
, with  $\varepsilon \sim \mathcal{N}(0, I)$ 

-J = smallest stable set containing the support of  $w^*$ 

- Let 
$$Q = \frac{1}{n} X^{\top} X \in \mathbb{R}^{p \times p}$$

- Assume that  $\forall \Delta$  s.t.  $\Omega^{J}(\Delta_{J^{c}}) \leq 3\Omega_{J}(\Delta_{J}), \ \Delta^{\top}Q\Delta \geq \kappa \|\Delta_{J}\|_{2}^{2}$ - Then  $\left[\Omega(\hat{w} - w^{*}) \leq \frac{24c(J)^{2}\lambda}{\kappa o(J)^{2}}\right]$  and  $\left[\frac{1}{n}\|X\hat{w} - Xw^{*}\|_{2}^{2} \leq \frac{36c(J)^{2}\lambda^{2}}{\kappa \rho(J)^{2}}\right]$ 

- Then 
$$\left| \Omega(\hat{w} - w^*) \leqslant \frac{24c(J)^2 \lambda}{\kappa \rho(J)^2} \right|$$
 and  $\left| \frac{1}{n} \right|$ 

with probability larger than  $1 - P(\Omega^*(z) > \frac{\lambda \rho(J) \sqrt{n}}{2\sigma})$ 

- -z is a multivariate normal with covariance matrix Q
- **Concentration inequality** (z normal with covariance matrix Q):
  - $-\mathcal{T}$  set of stable inseparable sets

- Then 
$$P(\Omega^*(z) > t) \leq \sum_{A \in \mathcal{T}} 2^{|A|} \exp\left(-\frac{t^2 F(A)^2/2}{1^\top Q_{AA^1}}\right)$$

# Outline

- Introduction: Sparse methods for machine learning
  - Need for structured sparsity: Going beyond the  $\ell_1$ -norm
- Submodular functions
  - Lovász extension
- Structured sparsity through submodular functions
  - Relaxation of the penalization of supports
  - Examples
  - Unified algorithms and analysis
- Extensions to symmetric submodular functions
  - Shaping level sets

## Symmetric submodular functions (Bach, 2010a)

- Let  $F: 2^V \to \mathbb{R}$  be a symmetric submodular set-function
- Proposition: The Lovász extension f(w) is the convex envelope of the function w → max<sub>α∈ℝ</sub> F({w ≥ α}) on the set [0,1]<sup>p</sup> + ℝ1<sub>V</sub> = {w ∈ ℝ<sup>p</sup>, max<sub>k∈V</sub> w<sub>k</sub> - min<sub>k∈V</sub> w<sub>k</sub> ≤ 1}.

## Symmetric submodular functions (Bach, 2010a)

- Let  $F: 2^V \to \mathbb{R}$  be a symmetric submodular set-function
- Proposition: The Lovász extension f(w) is the convex envelope of the function w → max<sub>α∈ℝ</sub> F({w ≥ α}) on the set [0,1]<sup>p</sup> + ℝ1<sub>V</sub> = {w ∈ ℝ<sup>p</sup>, max<sub>k∈V</sub> w<sub>k</sub> − min<sub>k∈V</sub> w<sub>k</sub> ≤ 1}.



## Symmetric submodular functions - Examples

- From  $\Omega(w)$  to F(A): provides new insights into existing norms
  - Cuts total variation

$$F(A) = \sum_{k \in A, j \in V \setminus A} d(k, j) \quad \Rightarrow \quad f(w) = \sum_{k, j \in V} d(k, j)(w_k - w_j)_+$$



- NB: graph may be directed

#### Symmetric submodular functions - Examples

• From F(A) to  $\Omega(w)$ : provides new sparsity-inducing norms

–  $F(A) = g(Card(A)) \Rightarrow$  priors on the size and numbers of clusters



 Convex formulations for clustering (Hocking, Joulin, Bach, and Vert, 2011)

#### Symmetric submodular functions - Examples

- From F(A) to  $\Omega(w)$ : provides new sparsity-inducing norms
  - Regular functions (Boykov et al., 2001; Chambolle and Darbon, 2009)



## Conclusion

#### • Structured sparsity for machine learning and statistics

- Many applications (image, audio, text, etc.)
- May be achieved through structured sparsity-inducing norms
- Link with submodular functions
- Unified analysis and algorithms

## Conclusion

#### • Structured sparsity for machine learning and statistics

- Many applications (image, audio, text, etc.)
- May be achieved through structured sparsity-inducing norms
- Link with submodular functions
- Unified analysis and algorithms

#### • On-going work on structured sparsity

- Norm design beyond submodular functions
- Links with greedy methods (Haupt and Nowak, 2006; Baraniuk et al., 2008; Huang et al., 2009)
- Extensions to matrices

## References

- F. Bach. Exploring large feature spaces with hierarchical multiple kernel learning. In Advances in Neural Information Processing Systems, 2008.
- F. Bach. Structured sparsity-inducing norms through submodular functions. In NIPS, 2010.
- F. Bach. Shaping level sets with submodular functions. Technical Report 00542949, HAL, 2010a.
- F. Bach. Convex analysis and optimization with submodular functions: a tutorial. Technical Report 00527714, HAL, 2010b.
- R. G. Baraniuk, V. Cevher, M. F. Duarte, and C. Hegde. Model-based compressive sensing. Technical report, arXiv:0808.3572, 2008.
- A. Beck and M. Teboulle. A fast iterative shrinkage-thresholding algorithm for linear inverse problems. *SIAM Journal on Imaging Sciences*, 2(1):183–202, 2009.
- P. Bickel, Y. Ritov, and A. Tsybakov. Simultaneous analysis of Lasso and Dantzig selector. *Annals of Statistics*, 37(4):1705–1732, 2009.
- S. P. Boyd and L. Vandenberghe. Convex Optimization. Cambridge University Press, 2004.
- Y. Boykov, O. Veksler, and R. Zabih. Fast approximate energy minimization via graph cuts. *IEEE Trans. PAMI*, 23(11):1222–1239, 2001.
- A. Chambolle. Total variation minimization and a class of binary MRF models. In *Energy Minimization Methods in Computer Vision and Pattern Recognition*, pages 136–152. Springer, 2005.
- A. Chambolle and J. Darbon. On total variation minimization and surface evolution using parametric maximum flows. *International Journal of Computer Vision*, 84(3):288–307, 2009.

- S. S. Chen, D. L. Donoho, and M. A. Saunders. Atomic decomposition by basis pursuit. *SIAM Review*, 43(1):129–159, 2001.
- M. Elad and M. Aharon. Image denoising via sparse and redundant representations over learned dictionaries. *IEEE Transactions on Image Processing*, 15(12):3736–3745, 2006.
- S. Fujishige. Submodular Functions and Optimization. Elsevier, 2005.
- H. Groenevelt. Two algorithms for maximizing a separable concave function over a polymatroid feasible region. *European Journal of Operational Research*, 54(2):227–236, 1991.
- J. Haupt and R. Nowak. Signal reconstruction from noisy random projections. *IEEE Transactions on Information Theory*, 52(9):4036–4048, 2006.
- T. Hocking, A. Joulin, F. Bach, and J.-P. Vert. Clusterpath: an algorithm for clustering using convex fusion penalties. In *Proc. ICML*, 2011.
- J. Huang, T. Zhang, and D. Metaxas. Learning with structured sparsity. In *Proceedings of the 26th International Conference on Machine Learning (ICML)*, 2009.
- R. Jenatton, J.Y. Audibert, and F. Bach. Structured variable selection with sparsity-inducing norms. Technical report, arXiv:0904.3523, 2009a.
- R. Jenatton, G. Obozinski, and F. Bach. Structured sparse principal component analysis. Technical report, arXiv:0909.1440, 2009b.
- R. Jenatton, J. Mairal, G. Obozinski, and F. Bach. Proximal methods for sparse hierarchical dictionary learning. In *Submitted to ICML*, 2010.
- K. Kavukcuoglu, M. Ranzato, R. Fergus, and Y. LeCun. Learning invariant features through topographic filter maps. In *Proceedings of CVPR*, 2009.

- A. Krause and C. Guestrin. Near-optimal nonmyopic value of information in graphical models. In *Proc. UAI*, 2005.
- J. Mairal, F. Bach, J. Ponce, G. Sapiro, and A. Zisserman. Supervised dictionary learning. *Advances in Neural Information Processing Systems (NIPS)*, 21, 2009.
- J. Mairal, R. Jenatton, G. Obozinski, and F. Bach. Network flow algorithms for structured sparsity. In *NIPS*, 2010.
- S. Negahban and M. J. Wainwright. Joint support recovery under high-dimensional scaling: Benefits and perils of  $\ell_1$ - $\ell_{\infty}$ -regularization. In *Adv. NIPS*, 2008.
- S. Negahban, P. Ravikumar, M. J. Wainwright, and B. Yu. A unified framework for high-dimensional analysis of M-estimators with decomposable regularizers. 2009.
- B. A. Olshausen and D. J. Field. Sparse coding with an overcomplete basis set: A strategy employed by V1? *Vision Research*, 37:3311–3325, 1997.
- R. Tibshirani. Regression shrinkage and selection via the lasso. *Journal of The Royal Statistical Society Series B*, 58(1):267–288, 1996.
- P. Zhao and B. Yu. On model selection consistency of Lasso. *Journal of Machine Learning Research*, 7:2541–2563, 2006.