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Abstract

Sparse methods for supervised learning aim at finding good linear predictors from
as few variables as possible, i.e., with small cardinality of their supports. This
combinatorial selection problem is often turned into a convex optimization prob-
lem by replacing the cardinality function by its convex envelope (tightest convex
lower bound), in this case theℓ1-norm. In this paper, we investigate more gen-
eral set-functions than the cardinality, that may incorporate prior knowledge or
structural constraints which are common in many applications: namely, we show
that for nondecreasing submodular set-functions, the corresponding convex en-
velope can be obtained from its Lovász extension, a common tool in submodu-
lar analysis. This defines a family of polyhedral norms, for which we provide
generic algorithmic tools (subgradients and proximal operators) and theoretical
results (conditions for support recovery or high-dimensional inference). By se-
lecting specific submodular functions, we can give a new interpretation to known
norms, such as those based on rank-statistics or grouped norms with potentially
overlapping groups; we also define new norms, in particular ones that can be used
as non-factorial priors for supervised learning.

1 Introduction

The concept of parsimony is central in many scientific domains. In the context of statistics, signal
processing or machine learning, it takes the form of variable or feature selection problems, and is
commonly used in two situations: First, to make the model or the prediction more interpretable or
cheaper to use, i.e., even if the underlying problem does notadmit sparse solutions, one looks for the
best sparse approximation. Second, sparsity can also be used given prior knowledge that the model
should be sparse. In these two situations, reducing parsimony to finding models with low cardinality
turns out to be limiting, and structured parsimony has emerged as a fruitful practical extension, with
applications to image processing, text processing or bioinformatics (see, e.g., [1, 2, 3, 4, 5, 6, 7]
and Section 4). For example, in [4], structured sparsity is used to encode prior knowledge regarding
network relationship between genes, while in [6], it is usedas an alternative to structured non-
parametric Bayesian process based priors for topic models.

Most of the work based on convex optimization and the design of dedicated sparsity-inducing norms
has focused mainly on the specific allowed set of sparsity patterns [1, 2, 4, 6]: ifw ∈ R

p denotes the
predictor we aim to estimate, andSupp(w) denotes its support, then these norms are designed so that
penalizing with these norms only leads to supports from a given family of allowed patterns. In this
paper, we instead follow the approach of [8, 3] and consider specific penalty functionsF (Supp(w))
of the support set, which go beyond the cardinality function, but are not limited or designed to only
forbid certain sparsity patterns. As shown in Section 6.2, these may also lead to restricted sets of
supports but their interpretation in terms of anexplicit penalty on the support leads to additional
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insights into the behavior of structured sparsity-inducing norms (see, e.g., Section 4.1). While direct
greedy approaches (i.e., forward selection) to the problemare considered in [8, 3], we provide
convex relaxations to the functionw 7→ F (Supp(w)), which extend the traditional link between the
ℓ1-norm and the cardinality function.

This is done for a particular ensemble of set-functionsF , namelynondecreasing submodular func-
tions. Submodular functions may be seen as the set-function equivalent of convex functions, and
exhibit many interesting properties that we review in Section 2—see [9] for a tutorial on submodu-
lar analysis and [10, 11] for other applications to machine learning. This paper makes the following
contributions:

− We make explicit links between submodularity and sparsity by showing that the convex enve-
lope of the functionw 7→ F (Supp(w)) on theℓ∞-ball may be readily obtained from the Lovász
extension of the submodular function (Section 3).

− We provide generic algorithmic tools, i.e., subgradients and proximal operators (Section 5), as
well as theoretical guarantees, i.e., conditions for support recovery or high-dimensional inference
(Section 6), that extend classical results for theℓ1-norm and show that many norms may be tackled
by the exact same analysis and algorithms.

− By selecting specific submodular functions in Section 4, we recover and give a new interpre-
tation to known norms, such as those based on rank-statistics or grouped norms with potentially
overlapping groups [1, 2, 7], and we define new norms, in particular ones that can be used as non-
factorial priors for supervised learning (Section 4). These are illustrated on simulation experiments
in Section 7, where they outperform related greedy approaches [3].

Notation. For w ∈ R
p, Supp(w) ⊂ V = {1, . . . , p} denotes the support ofw, defined as

Supp(w) = {j ∈ V, wj 6= 0}. Forw ∈ R
p andq ∈ [1,∞], we denote by‖w‖q theℓq-norm ofw.

We denote by|w| ∈ R
p the vector of absolute values of the components ofw. Moreover, given a

vectorw and a matrixQ, wA andQAA are the corresponding subvector and submatrix ofw andQ.
Finally, forw ∈ R

p andA ⊂ V , w(A) =
∑

k∈A wk (this defines a modular set-function).

2 Review of submodular function theory

Throughout this paper, we consider anondecreasing submodularfunctionF defined on the power
set2V of V = {1, . . . , p}, i.e., such that:

∀A,B ⊂ V, F (A) + F (B) > F (A ∪B) + F (A ∩B), (submodularity)
∀A,B ⊂ V, A ⊂ B ⇒ F (A) 6 F (B). (monotonicity)

Moreover, we assume thatF (∅) = 0. These set-functions are often referred to aspolymatroid
set-functions[12, 13]. Also, without loss of generality, we may assume that F is strictly positive
on singletons, i.e., for allk ∈ V , F ({k}) > 0. Indeed, ifF ({k}) = 0, then by submodularity and
monotonicity, ifA ∋ k, F (A) = F (A\{k}) and thus we can simply considerV \{k} instead ofV .

Classical examples are the cardinality function (which will lead to theℓ1-norm) and, given a partition
of V into B1 ∪ · · · ∪Bk = V , the set-functionA 7→ F (A) which is equal to the number of groups
B1, . . . , Bk with non empty intersection withA (which will lead to the groupedℓ1/ℓ∞-norm [1, 14]).

Lovász extension. Given any set-functionF , one can define itsLovász extensionf : Rp
+ → R, as

follows; givenw ∈ R
p
+, we can order the components ofw in decreasing orderwj1 > · · · > wjp >

0, the valuef(w) is then defined as:

f(w) =
∑p

k=1 wjk [F ({j1, . . . , jk})− F ({j1, . . . , jk−1})]. (1)

The Lovász extensionf is always piecewise-linear, and whenF is submodular, it is also convex
(see, e.g., [12, 9]). Moreover, for allδ ∈ {0, 1}p, f(δ) = F (Supp(δ)): f is indeed an extension
from vectors in{0, 1}p (which can be identified with indicator vectors of sets) to all vectors inRp

+.
Moreover, it turns out that minimizingF over subsets, i.e., minimizingf over{0, 1}p is equivalent
to minimizingf over[0, 1]p [13].

Submodular polyhedron and greedy algorithm. We denote byP the submodular poly-
hedron [12], defined as the set ofs ∈ R

p
+ such that for allA ⊂ V , s(A) 6 F (A), i.e.,

P = {s ∈ R
p
+, ∀A ⊂ V, s(A) 6 F (A)}, where we use the notations(A) =

∑

k∈A sk. One
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(1,0)/F({1})

(1,1)/F({1,2})(0,1)/F({2})

Figure 1: Polyhedral unit ball, for 4 different submodular functions (two variables), with different
stable inseparable sets leading to different sets of extreme points; changing values ofF may make
some of the extreme points disappear. From left to right:F (A) = |A|1/2 (all possible extreme
points),F (A) = |A| (leading to theℓ1-norm),F (A) = min{|A|, 1} (leading to theℓ∞-norm),
F (A) = 1

21{A∩{2}6=∅} + 1{A 6=∅} (leading to the structured normΩ(w) = 1
2 |w2|+ ‖w‖∞).

important result in submodular analysis is that ifF is a nondecreasing submodular function, then
we have a representation off as a maximum of linear functions [12, 9], i.e., for allw ∈ R

p
+,

f(w) = max
s∈P

w⊤s. (2)

Instead of solving a linear program withp+ 2p contraints, a solutions may then be obtained by the
following “greedy algorithm”: order the components ofw in decreasing orderwj1 > · · · > wjp ,
and then take for allk ∈ {1, . . . , p}, sjk = F ({j1, . . . , jk})− F ({j1, . . . , jk−1}).
Stable sets. A setA is saidstableif it cannot be augmented without increasingF , i.e., if for all
setsB ⊃ A, B 6= A ⇒ F (B) > F (A). If F is strictly increasing (such as for the cardinality), then
all sets are stable. The set of stable sets is closed by intersection [13], and will correspond to the set
of allowed sparsity patterns (see Section 6.2).

Separable sets.A setA is separable if we can find a partition ofA intoA = B1∪· · ·∪Bk such that
F (A) = F (B1) + · · ·+ F (Bk). A setA is inseparable if it is not separable. As shown in [13], the
submodular polytopeP has full dimensionp as soon asF is strictly positive on all singletons, and its
faces are exactly the sets{sk = 0} for k ∈ V and{s(A) = F (A)} for stableandinseparable setsA.
We denote byT the set of such sets. This implies thatP = {s ∈ R

p
+, ∀A ∈ T , s(A) 6 F (A)}.

These stable inseparable sets will play a role when describing extreme points of unit balls of our
new norms (Section 3) and for deriving concentration inequalities in Section 6.3. For the cardinality
function, stable and inseparable sets are singletons.

3 Definition and properties of structured norms

We define the functionΩ(w) = f(|w|), where|w| is the vector inRp composed of absolute values
of w andf the Lovász extension ofF . We have the following properties (see proof in [15]), which
show that we indeed define a norm and that it is the desired convex envelope:

Proposition 1 (Convex envelope, dual norm)Assume that the set-functionF is submodular, non-
decreasing, and strictly positive for all singletons. DefineΩ : w 7→ f(|w|). Then:

(i) Ω is a norm onRp,

(ii) Ω is the convex envelope of the functiong : w 7→ F (Supp(w)) on the unitℓ∞-ball,

(iii) the dual norm (see, e.g., [16]) ofΩ is equal toΩ∗(s) = maxA⊂V
‖sA‖1

F (A) = maxA∈T
‖sA‖1

F (A) .

We provide examples of submodular set-functions and norms in Section 4, where we go from set-
functions to norms, and vice-versa. From the definition of the Lovász extension in Eq. (1), we see
thatΩ is a polyhedral norm (i.e., its unit ball is a polyhedron). The following proposition gives the
set of extreme points of the unit ball (see proof in [15] and examples in Figure 1):

Proposition 2 (Extreme points of unit ball) The extreme points of the unit ball ofΩ are the vec-
tors 1

F (A)s, with s ∈ {−1, 0, 1}p, Supp(s) = A andA a stable inseparable set.

This proposition shows, that depending on the number and cardinality of the inseparable stable sets,
we can go from2p (only singletons) to3p − 1 extreme points (all possible sign vectors). We show
in Figure 1 examples of balls forp = 2, as well as sets of extreme points. These extreme points will
play a role in concentration inequalities derived in Section 6.
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Figure 2: Sequence and groups: (left) groups for contiguouspatterns, (right) groups for penalizing
the number of jumps in the indicator vector sequence.
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Figure 3: Regularization path for a penalized least-squares problem (black: variables that should
be active, red: variables that should be left out). From leftto right: ℓ1-norm penalization (a wrong
variable is included with the correct ones), polyhedral norm for rectangles in 2D, with zoom (all
variables come in together), mix of the two norms (correct behavior).

4 Examples of nondecreasing submodular functions

We consider three main types of submodular functions with potential applications to regularization
for supervised learning. Some existing norms are shown to beexamples of our frameworks (Sec-
tion 4.1, Section 4.3), while other novel norms are designedfrom specific submodular functions
(Section 4.2). Other examples of submodular functions, in particular in terms of matroids and en-
tropies, may be found in [12, 10, 11] and could also lead to interesting new norms. Note that set
covers, which are common examples of submodular functions are subcases of set-functions defined
in Section 4.1 (see, e.g., [9]).

4.1 Norms defined with non-overlapping or overlapping groups

We consider grouped norms defined with potentially overlapping groups [1, 2], i.e.,Ω(w) =
∑

G⊂V d(G)‖wG‖∞ whered is a nonnegative set-function (with potentiallyd(G) = 0 whenG
should not be considered in the norm). It is a norm as soon as∪G,d(G)>0G = V and it corresponds
to the nondecreasing submodular functionF (A) =

∑

G∩A 6=∅
d(G). In the case whereℓ∞-norms

are replaced byℓ2-norms, [2] has shown that the set of allowed sparsity patterns are intersections of
complements of groupsG with strictly positive weights. These sets happen to be the set of stable
sets for the corresponding submodular function; thus the analysis provided in Section 6.2 extends the
result of [2] to the new case ofℓ∞-norms. However, in our situation, we can give a reinterpretation
through a submodular function that counts the number of times the supportA intersects groupsG
with non zero weights. This goes beyond restricting the set of allowed sparsity patterns to stable
sets. We show later in this section some insights gained by this reinterpretation. We now give some
examples of norms, with various topologies of groups.

Hierarchical norms. Hierarchical norms defined on directed acyclic graphs [1, 5,6] correspond
to the set-functionF (A) which is the cardinality of the union of ancestors of elements inA. These
have been applied to bioinformatics [5], computer vision and topic models [6].

Norms defined on grids. If we assume that thep variables are organized in a 1D, 2D or 3D
grid, [2] considers norms based on overlapping groups leading to stable sets equal to rectangular or
convex shapes, with applications in computer vision [17]. For example, for the groups defined in
the left side of Figure 2 (with unit weights), we haveF (A) = p − 2 + range(A) if A 6= ∅ and
F (∅) = 0 (the range ofA is equal tomax(A)−min(A) + 1). From empty sets to non-empty sets,
there is a gap ofp − 1, which is larger than differences among non-empty sets. This leads to the
undesired result, which has been already observed by [2], ofadding all variables in one step, rather
than gradually, when the regularization parameter decreases in a regularized optimization problem.
In order to counterbalance this effect, adding a constant times the cardinality function has the effect
of making the first gap relatively smaller. This correspondsto adding a constant times theℓ1-norm
and, as shown in Figure 3, solves the problem of having all variables coming together. All patterns
are then allowed, but contiguous ones areencouraged rather than forced.
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Another interesting new norm may be defined from the groups inthe right side of Figure 2. Indeed, it
corresponds to the functionF (A) equal to|A| plus the number of intervals ofA. Note that this also
favors contiguous patterns but is not limited to selecting asingle interval (like the norm obtained
from groups in the left side of Figure 2). Note that it is to be contrasted with the total variation
(a.k.a. fused Lasso penalty [18]), which is a relaxation of the number of jumps in a vectorw rather
than in its support. In 2D or 3D, this extends to the notion of perimeter and area, but we do not
pursue such extensions here.

4.2 Spectral functions of submatrices

Given a positive semidefinite matrixQ ∈ R
p×p and a real-valued functionh fromR+ → R, one may

definetr[h(Q)] as
∑p

i=1 h(λi) whereλ1, . . . , λp are the (nonnegative) eigenvalues ofQ [19]. We
can thus define the set-functionF (A) = tr h(QAA) for A ⊂ V . The functionsh(λ) = log(λ+t) for
t > 0 lead to submodular functions, as they correspond to entropies of Gaussian random variables
(see, e.g., [12, 9]). Thus, since forq ∈ (0, 1), λq = q sin qπ

π

∫∞
0 log(1 + λ/t)tq−1dt (see, e.g., [20]),

h(λ) = λq for q ∈ (0, 1] are positive linear combinations of functions that lead to nondecreasing
submodular functions. Thus, they are also nondecreasing submodular functions, and, to the best of
our knowledge, provide novel examples of such functions.

In the context of supervised learning from a design matrixX ∈ R
n×p, we naturally useQ = X⊤X .

If h is linear, thenF (A) = trX⊤
AXA =

∑

k∈A X⊤
k Xk (whereXA denotes the submatrix ofX with

columns inA) and we obtain a weighted cardinality function and hence anda weightedℓ1-norm,
which is afactorial prior, i.e., it is a sum of terms depending on each variable independently.

In a frequentist setting, the MallowsCL penalty [21] depends on the degrees of freedom, of the
form trX⊤

AXA(X
⊤
AXA + λI)−1. This is a non-factorial prior but unfortunately it does notlead to

a submodular function. In a Bayesian context however, it is shown by [22] that penalties of the form
log det(X⊤

AXA + λI) (which lead to submodular functions) correspond to marginal likelihoods
associated to the setA and have good behavior when used within a non-convex framework. This
highlights the need for non-factorial priors which are sub-linear functions of the eigenvalues of
X⊤

AXA, which is exactly what nondecreasing submodular function of submatrices are. We do not
pursue the extensive evaluation of non-factorial convex priors in this paper but provide in simulations
examples withF (A) = tr(X⊤

AXA)
1/2 (which is equal to the trace norm ofXA [16]).

4.3 Functions of cardinality

ForF (A) = h(|A|) whereh is nondecreasing, such thath(0) = 0 and concave, then, from Eq. (1),
Ω(w) is defined from the rank statistics of|w| ∈ R

p
+, i.e., if |w(1)| > |w(2)| > · · · > |w(p)|,

thenΩ(w) =
∑p

k=1[h(k) − h(k − 1)]|w(k)|. This includes the sum of theq largest elements, and
might lead to interesting new norms for unstructured variable selection but this is not pursued here.
However, the algorithms and analysis presented in Section 5and Section 6 apply to this case.

5 Convex analysis and optimization

In this section we provide algorithmic tools related to optimization problems based on the regular-
ization by our novel sparsity-inducing norms. Note that since these norms are polyhedral norms with
unit balls having potentially an exponential number of vertices or faces, regular linear programming
toolboxes may not be used.

Subgradient. FromΩ(w) = maxs∈P s⊤|w| and the greedy algorithm1 presented in Section 2,
one can easily get inpolynomial timeone subgradient as one of the maximizerss. This allows to use
subgradient descent, with, as shown in Figure 4, slow convergence compared to proximal methods.

Proximal operator. Given regularized problems of the formminw∈Rp L(w) + λΩ(w), where
L is differentiable with Lipschitz-continuous gradient,proximal methodshave been shown to be
particularly efficient first-order methods (see, e.g., [23]). In this paper, we consider the methods
“ISTA” and its accelerated variants “FISTA” [23], which arecompared in Figure 4.

1The greedy algorithm to find extreme points of the submodularpolyhedron should not be confused with
the greedy algorithm (e.g., forward selection) that we consider in Section 7.
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To apply these methods, it suffices to be able to solve efficiently problems of the form:
minw∈Rp

1
2‖w − z‖22 + λΩ(w). In the case of theℓ1-norm, this reduces to soft thresholding ofz,

the following proposition (see proof in [15]) shows that this is equivalent to a particular algorithm
for submodular function minimization, namely the minimum-norm-point algorithm, which has no
complexity bound but is empirically faster than algorithmswith such bounds [12]:

Proposition 3 (Proximal operator) Let z ∈ R
p and λ > 0, minimizing 1

2‖w − z‖22 + λΩ(w)
is equivalent to finding the minimum of the submodular function A 7→ λF (A) − |z|(A) with the
minimum-norm-point algorithm.

In [15], it is shown how a solution for one problem may be obtained from a solution to the other
problem. Moreover, any algorithm for minimizing submodular functions allows to get directly the
support of the unique solution of the proximal problem and that with a sequence of submodular
function minimizations, the full solution may also be obtained. Similar links between convex opti-
mization and minimization of submodular functions have been considered (see, e.g., [24]). However,
these are dedicated tosymmetricsubmodular functions (such as the ones obtained from graph cuts)
and are thus not directly applicable to our situation ofnon-increasingsubmodular functions.

Finally, note that using the minimum-norm-point algorithmleads to agenericalgorithm that can be
applied toany submodular functionsF , and that it may be rather inefficient for simpler subcases
(e.g., theℓ1/ℓ∞-norm, tree-structured groups [6], or general overlappinggroups [7]).

6 Sparsity-inducing properties

In this section, we consider a fixed design matrixX ∈ R
n×p andy ∈ R

n a vector of random
responses. Givenλ > 0, we defineŵ as a minimizer of the regularized least-squares cost:

minw∈Rp
1
2n‖y −Xw‖22 + λΩ(w). (3)

We study the sparsity-inducing properties of solutions of Eq. (3), i.e., we determine in Section 6.2
which patterns are allowed and in Section 6.3 which sufficient conditions lead to correct estimation.
Like recent analysis of sparsity-inducing norms [25], the analysis provided in this section relies
heavily on decomposability properties of our normΩ.

6.1 Decomposability

For a subsetJ of V , we denote byFJ : 2J → R the restriction of F to J , defined forA ⊂ J
by FJ (A) = F (A), and byF J : 2J

c → R the contractionof F by J , defined forA ⊂ Jc by
F J(A) = F (A∪ J)− F (A). These two functions are submodular and nondecreasing as soon asF
is (see, e.g., [12]).

We denote byΩJ the norm onRJ defined through the submodular functionFJ , andΩJ the pseudo-
norm defined onRJc

defined throughF J (as shown in Proposition 4, it is a norm only whenJ is
a stable set). Note thatΩJc (a norm onJc) is in general different fromΩJ . Moreover,ΩJ(wJ ) is
actually equal toΩ(w̃) wherew̃J = wJ andw̃Jc = 0, i.e., it is the restriction ofΩ to J .

We can now prove the following decomposition properties, which show that under certain circum-
stances, we can decompose the normΩ on subsetsJ and their complements:

Proposition 4 (Decomposition)GivenJ ⊂ V andΩJ andΩJ defined as above, we have:

(i) ∀w ∈ R
p, Ω(w) > ΩJ(wJ ) + ΩJ (wJc),

(ii) ∀w ∈ R
p, if minj∈J |wj | > maxj∈Jc |wj | , thenΩ(w) = ΩJ (wJ ) + ΩJ(wJc),

(iii) ΩJ is a norm onRJc

if and only ifJ is a stable set.

6.2 Sparsity patterns

In this section, we do not make any assumptions regarding thecorrect specification of the linear
model. We show that with probability one, only stable support sets may be obtained (see proof in
[15]). For simplicity, we assume invertibility ofX⊤X , which forbids the high-dimensional situation
p > n we consider in Section 6.3, but we could consider assumptions similar to the ones used in [2].
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Proposition 5 (Stable sparsity patterns)Assumey ∈ R
n has an absolutely continuous density

with respect to the Lebesgue measure and thatX⊤X is invertible. Then the minimizer̂w of Eq. (3)
is unique and, with probability one, its supportSupp(ŵ) is a stable set.

6.3 High-dimensional inference
We now assume that the linear model is well-specified and extend results from [26] for sufficient
support recovery conditions and from [25] for estimation consistency. As seen in Proposition 4,
the normΩ is decomposable and we use this property extensively in thissection. We denote by
ρ(J) = minB⊂Jc

F (B∪J)−F (J)
F (B) ; by submodularity and monotonicity ofF , ρ(J) is always between

zero and one, and, as soon asJ is stable it is strictly positive (for theℓ1-norm,ρ(J) = 1). Moreover,
we denote byc(J) = supw∈Rp ΩJ(wJ )/‖wJ‖2, the equivalence constant between the normΩJ and
theℓ2-norm. We always havec(J) 6 |J |1/2 maxk∈V F ({k}) (with equality for theℓ1-norm).

The following propositions allow us to get back and extend well-known results for theℓ1-norm, i.e.,
Propositions 6 and 8 extend results based on support recovery conditions [26]; while Propositions 7
and 8 extend results based on restricted eigenvalue conditions (see, e.g., [25]). We can also get back
results for theℓ1/ℓ∞-norm [14]. As shown in [15], proof techniques are similar and are adapted
through the decomposition properties from Proposition 4.

Proposition 6 (Support recovery) Assume thaty = Xw∗+σε, whereε is a standard multivariate
normal vector. LetQ = 1

nX
⊤X ∈ R

p×p. Denote byJ the smallest stable set containing the
supportSupp(w∗) of w∗. Defineν = minj,w∗

j
6=0 |w∗

j | > 0, assumeκ = λmin(QJJ ) > 0 and that

for η > 0, (ΩJ )∗[(ΩJ (Q
−1
JJQJj))j∈Jc ] 6 1 − η. Then, ifλ 6

κν
2c(J) , the minimizerŵ is unique

and has support equal toJ , with probability larger than1− 3P
(

Ω∗(z) > ληρ(J)
√
n

2σ

)

, wherez is a
multivariate normal with covariance matrixQ.

Proposition 7 (Consistency)Assume thaty = Xw∗ + σε, whereε is a standard multivariate
normal vector. LetQ = 1

nX
⊤X ∈ R

p×p. Denote byJ the smallest stable set containing the support
Supp(w∗) ofw∗. Assume that for all∆ such thatΩJ (∆Jc) 6 3ΩJ(∆J ), ∆⊤Q∆ > κ‖∆J‖22. Then

we haveΩ(ŵ − w∗) 6
24c(J)2λ
κρ(J)2 and 1

n‖Xŵ − Xw∗‖22 6
36c(J)2λ2

κρ(J)2 , with probability larger than

1− P
(

Ω∗(z) > λρ(J)
√
n

2σ

)

wherez is a multivariate normal with covariance matrixQ.

Proposition 8 (Concentration inequalities) Letz be a normal variable with covariance matrixQ.

LetT be the set of stable inseparable sets. ThenP (Ω∗(z) > t) 6
∑

A∈T 2|A| exp
(

− t2F (A)2/2
1⊤QAA1

)

.

7 Experiments

We provide illustrations on toy examples of some of the results presented in the paper. We consider
the regularized least-squares problem of Eq. (3), with datagenerated as follows: givenp, n, k, the
design matrixX ∈ R

n×p is a matrix of i.i.d. Gaussian components, normalized to have unit ℓ2-
norm columns. A setJ of cardinalityk is chosen at random and the weightsw∗

J are sampled from a
standard multivariate Gaussian distribution andw∗

Jc = 0. We then takey = Xw∗+n−1/2‖Xw∗‖2 ε
whereε is a standard Gaussian vector (this corresponds to a unit signal-to-noise ratio).

Proximal methods vs. subgradient descent. For the submodular functionF (A) = |A|1/2 (a
simple submodular function beyond the cardinality) we compare three optimization algorithms de-
scribed in Section 5, subgradient descent and two proximal methods, ISTA and its accelerated ver-
sion FISTA [23], forp = n = 1000, k = 100 andλ = 0.1. Other settings and other set-functions
would lead to similar results than the ones presented in Figure 4: FISTA is faster than ISTA, and
much faster than subgradient descent.

Relaxation of combinatorial optimization problem. We compare three strategies for solving
the combinatorial optimization problemminw∈Rp

1
2n‖y − Xw‖22 + λF (Supp(w)) with F (A) =

tr(X⊤
AXA)

1/2, the approach based on our sparsity-inducing norms, the simpler greedy (forward
selection) approach proposed in [8, 3], and by thresholdingthe ordinary least-squares estimate. For
all methods, we try all possible regularization parameters. We see in the right plots of Figure 4 that
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Figure 4: (Left) Comparison of iterative optimization algorithms (value of objective function vs. run-
ning time). (Middle/Right) Relaxation of combinatorial optimization problem, showing residual er-
ror 1

n‖y − Xŵ‖22 vs. penaltyF (Supp(ŵ)): (middle) high-dimensional case (p = 120, n = 20,
k = 40), (right) lower-dimensional case (p = 120, n = 120, k = 40).

p n k submodular ℓ2 vs. submod. ℓ1 vs. submod. greedy vs. submod.
120 120 80 40.8± 0.8 -2.6± 0.5 0.6± 0.0 21.8± 0.9
120 120 40 35.9± 0.8 2.4± 0.4 0.3± 0.0 15.8± 1.0
120 120 20 29.0± 1.0 9.4± 0.5 -0.1± 0.0 6.7± 0.9
120 120 10 20.4± 1.0 17.5± 0.5 -0.2± 0.0 -2.8± 0.8
120 120 6 15.4± 0.9 22.7± 0.5 -0.2± 0.0 -5.3± 0.8
120 120 4 11.7± 0.9 26.3± 0.5 -0.1± 0.0 -6.0± 0.8
120 20 80 46.8± 2.1 -0.6± 0.5 3.0± 0.9 22.9± 2.3
120 20 40 47.9± 1.9 -0.3± 0.5 3.5± 0.9 23.7± 2.0
120 20 20 49.4± 2.0 0.4± 0.5 2.2± 0.8 23.5± 2.1
120 20 10 49.2± 2.0 0.0± 0.6 1.0± 0.8 20.3± 2.6
120 20 6 43.5± 2.0 3.5± 0.8 0.9± 0.6 24.4± 3.0
120 20 4 41.0± 2.1 4.8± 0.7 -1.3± 0.5 25.1± 3.5

Table 1: Normalized mean-square prediction errors‖Xŵ − Xw∗‖22/n (multiplied by 100) with
optimal regularization parameters (averaged over 50 replications, with standard deviations divided
by

√
50). The performance of the submodular method is shown, then differences from all methods to

this particular one are computed, and shown in bold when theyare significantly greater than zero, as
measured by a paired t-test with level 5% (i.e., when the submodular method is significantly better).

for hard cases (middle plot) convex optimization techniques perform better than other approaches,
while for easier cases with more observations (right plot),it does as well as greedy approaches.

Non factorial priors for variable selection. We now focus on the predictive performance and
compare our new norm withF (A) = tr(X⊤

AXA)
1/2, with greedy approaches [3] and to regulariza-

tion by ℓ1 or ℓ2 norms. As shown in Table 1, the new norm based on non-factorial priors is more
robust than theℓ1-norm to lower number of observationsn and to larger cardinality of supportk.

8 Conclusions

We have presented a family of sparsity-inducing norms dedicated to incorporating prior knowl-
edge or structural constraints on the support of linear predictors. We have provided a set of com-
mon algorithms and theoretical results, as well as simulations on synthetic examples illustrating the
good behavior of these norms. Several avenues are worth investigating: first, we could follow cur-
rent practice in sparse methods, e.g., by considering related adapted concave penalties to enhance
sparsity-inducing norms, or by extending some of the concepts for norms of matrices, with potential
applications in matrix factorization or multi-task learning (see, e.g., [27] for application of submod-
ular functions to dictionary learning). Second, links between submodularity and sparsity could be
studied further, in particular by considering submodular relaxations of other combinatorial func-
tions, or studying links with other polyhedral norms such asthe total variation, which are known to
be similarly associated with symmetric submodular set-functions such as graph cuts [24].
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