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Submodular functions

From discrete to continuous domains

Summary

• Which functions can be minimized in polynomial time?

– Beyond convex functions

• Submodular functions

– Not convex, ... but “equivalent” to convex functions

– Usually defined on {0, 1}n
– Extension to continuous domains

• Preprint available on ArXiv, second version (Bach, 2015)



Submodularity (almost) everywhere

Clustering

• Semi-supervised clustering

⇒

• Submodular function minimization



Submodularity (almost) everywhere

Graph cuts and image segmentation

• Submodular function minimization



Submodularity (almost) everywhere

Sensor placement

• Each sensor covers a certain area (Krause and Guestrin, 2005)

– Goal: maximize coverage

• Submodular function maximization

• Extension to experimental design (Seeger, 2009)



Submodularity (almost) everywhere

Image denoising

• Total variation denoising (Chambolle, 2005)

• Submodular convex optimization problem



Submodularity (almost) everywhere

Combinatorial optimization problems

• Set V = {1, . . . , n}

• Power set 2V = set of all subsets, of cardinality 2n

• Minimization/maximization of a set-function F : 2V → R.

min
A⊂V

F (A) = min
A∈2V

F (A)



Submodularity (almost) everywhere

Combinatorial optimization problems

• Set V = {1, . . . , n}

• Power set 2V = set of all subsets, of cardinality 2n

• Minimization/maximization of a set-function F : 2V → R.

min
A⊂V

F (A) = min
A∈2V

F (A)

• Reformulation as (pseudo) Boolean function

min
x∈{0,1}n

H(x)

with H : {0, 1}n → R

and ∀A ⊂ V, H(1A) = F (A)

(0, 1, 1)~{2, 3}

(0, 1, 0)~{2}

(1, 0, 1)~{1, 3} (1, 1, 1)~{1, 2, 3}

(1, 1, 0)~{1, 2}

(0, 0, 1)~{3}

(0, 0, 0)~{ }

(1, 0, 0)~{1}



Outline

1. Submodular set-functions

– Definitions, examples

– Links with convexity through Lovász extension

– Minimization by convex optimization

2. From discrete to continuous domains

– Nonpositive second-order derivatives

– Invariances and examples

– Extensions on product measures through optimal transport

3. Minimization of continuous submodular functions

– Subgradient descent

– Frank-Wolfe optimization



Submodular functions - References

• Reference book based on combinatorial optimization

– Submodular Functions and Optimization (Fujishige, 2005)

• Tutorial monograph based on convex

optimization (Bach, 2013)

– Learning with submodular functions: a

convex optimization perspective



Submodular functions

Definitions

• Definition: H : {0, 1}n → R is submodular if and only if

∀x, y ∈ {0, 1}n, H(x) +H(y) > H(max{x, y}) +H(min{x, y})

– NB: equality for modular functions (linear functions of x)

– Always assume H(0) = 0



Submodular functions

Definitions

• Definition: H : {0, 1}n → R is submodular if and only if

∀x, y ∈ {0, 1}n, H(x) +H(y) > H(max{x, y}) +H(min{x, y})

– NB: equality for modular functions (linear functions of x)

– Always assume H(0) = 0

• Equivalent definition: (with ei ∈ R
n i-th canonical basis vector)

∀i ∈ {1, . . . , n}, x 7→ H(x+ ei)−H(x) is non-increasing

– “Concave property”: Diminishing returns



Submodular functions - Examples

(see, e.g., Fujishige, 2005; Bach, 2013)

• Concave functions of the cardinality

• Cuts

• Entropies

– Joint entropy of (Xk)xk=1, from n random variables X1, . . . ,Xn

• Functions of eigenvalues of sub-matrices

• Network flows

• Rank functions of matroids



Examples of submodular functions

Cardinality-based functions

• Modular function: H(x) = w⊤x for w ∈ R
n

– Cardinality example: If w = 1n, then H(x) = 1⊤nx

• If g is a concave function, then H : x 7→ g(1⊤nx) is submodular

– Diminishing return property

g(x 1n)

x 1n
T

T



Examples of submodular functions

Covers

S

3S

1S
2S

7

S6

S5

S4

S 8

• Let W be any “base” set, and for each k ∈ V , a set Sk ⊂ W

• Set cover defined as H(x) =
∣∣⋃

xk=1Sk

∣∣



Examples of submodular functions

Cuts

• Given a (un)directed graph, with vertex set V = {1, . . . , n} and edge

set E ⊂ V × V

– H(x) is the total number of edges going from {x = 1} to {x = 0}.

A
=
{x
=
1
}

• Generalization with d : {1, . . . , n} × {1, . . . , n} → R+

H(x) =
∑

j,k

d(k, j)(xk − xj)+



Choquet integral (Choquet, 1954) - Lovász extension

• Subsets may be identified with elements of {0, 1}n

• Given any function H and µ ∈ R
n such that µj1 > · · · > µjn, define:

h(µ) =

n∑

k=1

µjk[H(ej1 + · · ·+ ejk)−H(ej1 + · · ·+ ejk−1
)]

µ3

µ2

µ1

µ3>µ2>µ1

µ2>µ3>µ1
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Choquet integral (Choquet, 1954) - Lovász extension

• Subsets may be identified with elements of {0, 1}n

• Given any function H and µ ∈ R
n such that µj1 > · · · > µjn, define:

h(µ) =

n∑

k=1

µjk[H(ej1 + · · ·+ ejk)−H(ej1 + · · ·+ ejk−1
)]

• For H(x) = w⊤x, then h(µ) = w⊤µ

• For cuts, h(µ) =
∑

k,j∈V d(k, j)|µk − µj| is the total variation



Choquet integral (Choquet, 1954) - Lovász extension

• Subsets may be identified with elements of {0, 1}n

• Given any function H and µ ∈ R
n such that µj1 > · · · > µjn, define:

h(µ) =

n∑

k=1

µjk[H(ej1 + · · ·+ ejk)−H(ej1 + · · ·+ ejk−1
)]

• For H(x) = w⊤x, then h(µ) = w⊤µ

• For cuts, h(µ) =
∑

k,j∈V d(k, j)|µk − µj| is the total variation

• For any set-function H (even not submodular)

– h is piecewise-linear and positively homogeneous

– If x ∈ {0, 1}n, h(x) = H(x) ⇒ extension from {0, 1}n to [0, 1]n



Submodular set-functions

Links with convexity (Lovász, 1982)

1. H is submodular if and only if h is convex

2. If H is submodular, then

min
x∈{0,1}n

H(x) = min
µ∈{0,1}n

h(µ) = min
µ∈[0,1]n

h(µ)

3. If H is submodular, then a subgradient of h at any µ may be

computed by the “greedy algorithm”

– Order the components of µ ∈ R
n as µj1 > · · · > µjn

– Define wjk = H(ej1 + · · ·+ ejk)−H(ej1 + · · ·+ ejk−1
) for all k

– Moreover h(µ) = w⊤µ



Submodular set-functions

Links with convexity (Lovász, 1982)

1. H is submodular if and only if h is convex

2. If H is submodular, then

min
x∈{0,1}n

H(x) = min
µ∈{0,1}n

h(µ) = min
µ∈[0,1]n

h(µ)

3. If H is submodular, then a subgradient of h at any µ may be

computed by the “greedy algorithm”

• Consequences

– Submodular function minimization may be done in polynomial time

– Ellipsoid algorithm in O(n5) (Grötschel et al., 1981)



Exact submodular function minimization

Combinatorial algorithms

• Algorithms based on min
µ∈[0,1]n

h(µ) and its dual problem

• Output the subset A and a dual certificate of optimality

• Best algorithms have polynomial complexity (Schrijver, 2000; Iwata

et al., 2001; Orlin, 2009)

– Typically O(n6) or more

• Not practical for large problems...



Submodular function minimization

Through convex optimization

• Convex non-smooth optimization problem

min
x∈{0,1}n

H(x) = min
µ∈{0,1}n

h(µ) = min
µ∈[0,1]n

h(µ)

• Important properties of h for convex optimization

– Polyhedral function

– Known subgradients obtained from greedy algorithm

• Generic algorithms (blind to submodular structure)

– Some with complexity bounds, some without

– Subgradient, Frank-Wolfe, simplex, cutting-plane (ACCPM)

– See Bach (2013) for details



Outline

1. Submodular set-functions

– Definitions, examples

– Links with convexity through Lovász extension

– Minimization by convex optimization

2. From discrete to continuous domains

– Nonpositive second-order derivatives

– Invariances and examples

– Extensions on product measures through optimal transport

3. Minimization of continuous submodular functions

– Subgradient descent

– Frank-Wolfe optimization



From discrete to continuous domains

• Main insight: {0, 1} is totally ordered!



From discrete to continuous domains

• Main insight: {0, 1} is totally ordered!

• Extension to {0, . . . , k − 1}: H : {0, . . . , k − 1}n → R

∀x, y, H(x) +H(y) > H(min{x, y}) +H(max{x, y})

– Equivalent definition: with (ei)i∈{1,...,n} canonical basis of Rn

∀x, i 6= j, H(x+ ei) +H(x+ ej) > H(x) +H(x+ ei + ej)

– See Lorentz (1953); Topkis (1978)



From discrete to continuous domains

• Main insight: {0, 1} is totally ordered!

• Extension to {0, . . . , k − 1}: H : {0, . . . , k − 1}n → R

∀x, y, H(x) +H(y) > H(min{x, y}) +H(max{x, y})

– Equivalent definition: with (ei)i∈{1,...,n} canonical basis of Rn

∀x, i 6= j, H(x+ ei) +H(x+ ej) > H(x) +H(x+ ei + ej)

– See Lorentz (1953); Topkis (1978)

• Taylor expansion:

– H(x+ ei) +H(x+ ej) ≈ 2H(x) + ∂H
∂xi

+ ∂H
∂xj

+ 1
2
∂2H

∂x2
i

+ 1
2
∂2H

∂x2
j

– H(x)+H(x+ei+ej) = 2H(x)+ ∂H
∂xi

+ ∂H
∂xj

+ 1
2
∂2H

∂x2
i

+ 1
2
∂2H

∂x2
j

+ ∂2H
∂xi∂xj



From discrete to continuous domains

• Main insight: {0, 1} is totally ordered!

• Extension to {0, . . . , k − 1}: H : {0, . . . , k − 1}n → R

∀x, y, H(x) +H(y) > H(min{x, y}) +H(max{x, y})

– Equivalent definition: with (ei)i∈{1,...,n} canonical basis of Rn

∀x, i 6= j, H(x+ ei) +H(x+ ej) > H(x) +H(x+ ei + ej)

– See Lorentz (1953); Topkis (1978)

• Generalization to all totally ordered sets: Xi ⊂ R

intervals+H twice differentiable: ∀x ∈
n∏

i=1

Xi,
∂2H

∂xi∂xj

(x) 6 0



A “new” class of continuous functions

• Assume each Xi ⊂ R is a compact interval, and (for simplicity) H

twice differentiable:

Submodularity : ∀x ∈
n∏

i=1

Xi,
∂2H

∂xi∂xj

(x) 6 0

• Invariance by

– individual increasing smooth change of variablesH(ϕ1(x1), . . . , ϕn(xn))

– adding arbitrary (smooth) separable functions
∑n

i=1 vi(xi)



A “new” class of continuous functions

• Assume each Xi ⊂ R is a compact interval, and (for simplicity) H

twice differentiable:

Submodularity : ∀x ∈
n∏

i=1

Xi,
∂2H

∂xi∂xj

(x) 6 0

• Invariance by

– individual increasing smooth change of variablesH(ϕ1(x1), . . . , ϕn(xn))

– adding arbitrary (smooth) separable functions
∑n

i=1 vi(xi)

• Examples

– Quadratic functions with Hessians with non-negative off-diagonal

entries (Kim and Kojima, 2003)

– ϕ(xi − xj), ϕ convex; ϕ(x1 + · · ·+ xn), ϕ concave; log det, etc...

– Monotone of order two (Carlier, 2003), Spence-Mirrlees

condition (Milgrom and Shannon, 1994)



A “new” class of continuous functions

x
1

x 2
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• Level sets of the submodular function (x1, x2) 7→ 7
20(x1 − x2)

2 −
e−4(x1−

2
3)

2− 3
5e

−4(x1+
2
3)

2−e−4(x2−
2
3)

2−e−4(x2+
2
3)

2
, with several local

minima, local maxima and saddle points



Extensions to the space of product measures

• Set-function: Xi = {0, 1}
– [0, 1] ≈ set of probability distributions on {0, 1}: µi = P(Xi = 1)

– Lovász extension: for µ ∈ [0, 1]n such that µj1 > · · · > µjn

h(µ) =

n∑

k=1

µjk[H(ej1 + · · ·+ ejk)−H(ej1 + · · ·+ ejk−1
})]

= (1− µj1)H(0) +
n−1∑

k=1

(µjk − µjk+1
)H(ej1 + · · ·+ ejk) + µjnH(1n)

= E
[
H
(
1µ1>t, . . . , 1µn>t

)]
for t uniform in [0, 1]

[
If t ∈ (µjk+1

, µjk), then µj1 > · · · > µjk > t > µjk+1
> · · · > µjn

]



Extensions to the space of product measures

• Set-function: Xi = {0, 1}
– [0, 1] ≈ set of probability distributions on {0, 1}: µi = P(Xi = 1)

– Lovász extension: for µ ∈ [0, 1]n such that µj1 > · · · > µjn

h(µ) =

n∑

k=1

µjk[H(ej1 + · · ·+ ejk)−H(ej1 + · · ·+ ejk−1
})]

= (1− µj1)H(0) +
n−1∑

k=1

(µjk − µjk+1
)H(ej1 + · · ·+ ejk) + µjnH(1n)

= E
[
H
(
1µ1>t, . . . , 1µn>t

)]
for t uniform in [0, 1]

• Lovász extension = relaxation on product measures

– Continuous variable µ = (µ1, . . . , µn) ∈
∏n

i=1[0, 1]

– t 7→ 1µi>t is the inverse cumulative distribution function of µi



Extensions to the space of product measures

View 1: thresholding cumulative distrib. functions

• Given a probability distribution µi ∈ P(Xi)

– (reversed) cumulative distribution function Fµi
: Xi → [0, 1] as

Fµi
(xi) = µi

(
{yi ∈ Xi, yi > xi}

)
= µi

(
[xi,+∞)

)
∈ [0, 1]

– and its “inverse”: F−1
µi

(t) = sup{xi ∈ Xi, Fµi
(xi) > t} ∈ Xi

xi

Fµi(xi)
1

0



Extensions to the space of product measures

View 1: thresholding cumulative distrib. functions

• Given a probability distribution µi ∈ P(Xi)

– (reversed) cumulative distribution function Fµi
: Xi → [0, 1] as

Fµi
(xi) = µi

(
{yi ∈ Xi, yi > xi}

)
= µi

(
[xi,+∞)

)
∈ [0, 1]

– and its “inverse”: F−1
µi

(t) = sup{xi ∈ Xi, Fµi
(xi) > t} ∈ Xi

• “Continuous” extension

∀µ ∈
n∏

i=1

P(Xi), h(µ1, . . . , µn) =

∫ 1

0

H
[
F−1
µ1

(t), . . . , F−1
µn

(t)
]
dt

– For finite sets, can be computed by sorting all values of Fµi
(xi)

– Equal to the Lovász extension for set-functions



Extensions to the space of product measures

View 1: thresholding cumulative distrib. functions

x1

Fµ1(x1)
1

0 x2

Fµ2(x2)
1

0 x3

Fµ3(x3)
1

0

t

F−1

µ1
(t) F−1

µ2
(t) F−1

µ3
(t)

• “Continuous” extension

∀µ ∈
n∏

i=1

P(Xi), h(µ1, . . . , µn) =

∫ 1

0

H
[
F−1
µ1

(t), . . . , F−1
µn

(t)
]
dt

– For finite sets, can be computed by sorting all values of Fµi
(xi)

– Equal to the Lovász extension for set-functions



Extensions to the space of product measures

View 1: thresholding cumulative distrib. functions

x1

Fµ1(x1)
1

0 x2

Fµ2(x2)
1

0 x3

Fµ3(x3)
1

0

t

F−1

µ1
(t) F−1

µ2
(t) F−1

µ3
(t)

• “Continuous” extension

∀µ ∈
n∏

i=1

P(Xi), h(µ1, . . . , µn) =

∫ 1

0

H
[
F−1
µ1

(t), . . . , F−1
µn

(t)
]
dt

– For finite sets, can be computed by sorting all values of Fµi
(xi)

– Equal to H(x1, . . . , xn) when µi = δxi for all i



Extensions to the space of product measures

View 2: convex closure

• Given any function H on X =
∏n

i=1Xi

– Known value H(x) for any “extreme points” of product measures

(i.e., all Diracs δx at any x ∈ X)

– Convex closure h̃ = largest convex lower bound

– Minimizing H and its convex closure h̃ is equivalent

(1,1)

1

µ2(0,0)

(1,0)

(0,1)

µ



Extensions to the space of product measures

View 2: convex closure

• Given any function H on X =
∏n

i=1Xi

– Known value H(x) for any “extreme points” of product measures

(i.e., all Diracs δx at any x ∈ X)

– Convex closure h̃ = largest convex lower bound

– Minimizing H and its convex closure h̃ is equivalent

• Need to compute the bi-conjugate of

a : µ 7→ H(x) if µ = δx for some x ∈ X, and +∞ otherwise



Computation of the convex envelope

• Need to compute the bi-conjugate of

a : µ 7→ H(x) if µ = δx for some x ∈ X, and +∞ otherwise

• Step 1: compute a∗(w) = supµ〈µ,w〉 − a(µ) for w ∈
∏n

i=1R
Xi

a∗(w) = sup
x∈X

n∑

i=1

wi(xi)−H(x) = sup
γ∈P(X)

∑

x∈X

γ(x)
{ n∑

i=1

wi(xi)−H(x)
}

= sup
γ∈P(X)

{ n∑

i=1

∑

xi∈Xi

wi(xi)γi(xi)−
∑

x∈X

γ(x)H(x)

}

– with γi(xi) =
∑

xj,j 6=i

γ(x1, . . . , xn) the i-th marginal of γ



Computation of the convex envelope

• Step 1: a∗(w) = sup
γ∈P(X)

{ n∑

i=1

∑

xi∈Xi

wi(xi)γi(xi)−
∑

x∈X

γ(x)H(x)

}

• Step 2: compute a∗∗(µ) = supw〈w,µ〉 − a∗(w) for µ ∈
∏n

i=1P(Xi)

a∗∗(µ) = sup
w

〈w,µ〉 − sup
γ∈P(X)

{ n∑

i=1

∑

xi∈Xi

wi(xi)γi(xi)−
∑

x∈X

γ(x)H(x)

}

= inf
γ∈P(X)

sup
w

n∑

i=1

∑

xi∈Xi

wi(xi)
(
µi(xi)− γi(xi)

)
+

∑

x∈X

γ(x)H(x)

• Thus a∗∗(µ) = inf
γ∈P(X)

∫

X

H(x)dγ(x) such that ∀i, γi(xi) = µi(xi)



Extensions to the space of product measures

View 2: convex closure

• Given any function H on X =
∏n

i=1Xi

– Known value H(x) for any “extreme points” of product measures

(i.e., all Diracs δx at any x ∈ X)

– Convex closure h̃ = largest convex lower bound

– Minimizing H and its convex closure h̃ is equivalent

• “Closed-form” formulation: h̃(µ1, . . . , µn) = inf
γ∈P(X)

∫

X

H(x)dγ(x),

– with respect to all prob. measures γ on X such that γi(xi) = µi(xi)

– Multi-marginal optimal transport



Optimal transport: from Monge to Kantorovich

• Monge formulation (“La théorie des déblais et des remblais”, 1781)

– Transforming a measure µ1 to µ2 that (a) preserves local mass and

(b) minimize transportation cost
∫
X1

c(x1, T (x1))dµ1(x1)

déblais

remblaisx1

x2T

µ1

µ2
c(x1, x2) = |x1 − x2|

– Optimal transport map T may not always exists

– Discrete case: earth’s mover distance



Optimal transport: from Monge to Kantorovich

• Monge formulation (“La théorie des déblais et des remblais”, 1781)

– Transforming a measure µ1 to µ2 that (a) preserves local mass and

(b) minimize transportation cost
∫
X1

c(x1, T (x1))dµ1(x1)

déblais

remblaisx1

x2T

µ1

µ2
c(x1, x2) = |x1 − x2|

– Optimal transport map T may not always exists

– Discrete case: earth’s mover distance

• Kantorovich formulation (1942)

– Convex relaxation on space of probability measures γ ∈ P(X1×X2)

– Prescribed marginals γ1 = µ1 and γ2 = µ2

– Minimum cost
∫
X1×X2

c(x1, x2)dγ(x1, x2)



Optimal transport: from two to multiple marginals

• Kantorovich formulation (1942)

– Convex relaxation on space of probability measures γ ∈ P(X1×X2)

– Prescribed marginals γ1 = µ1 and γ2 = µ2

– Minimum cost
∫
X1×X2

c(x1, x2)dγ(x1, x2)

• Properties

– Monge formulation with distribution of (x1, T (x1))

– Wasserstein distance between measures with c(x1, x2) = |x1−x2|p
– Relationship with copulas

– See Villani (2008); Santambrogio (2015)



Optimal transport: from two to multiple marginals

• Kantorovich formulation (1942)

– Convex relaxation on space of probability measures γ ∈ P(X1×X2)

– Prescribed marginals γ1 = µ1 and γ2 = µ2

– Minimum cost
∫
X1×X2

c(x1, x2)dγ(x1, x2)

• Properties

– Monge formulation with distribution of (x1, T (x1))

– Wasserstein distance between measures with c(x1, x2) = |x1−x2|p
– Relationship with copulas

– See Villani (2008); Santambrogio (2015)

• Extension to multiple marginals

– Minimize
∫
X
H(x)dγ(x) with respect to all prob. measures γ on X

such that γi(xi) = µi(xi) for all i ∈ {1, . . . , n}



Extensions to the space of product measures

Combining the two views

• View 1: thresholding cumulative distribution functions

+ closed form computation for any H , always an extension

− not convex

• View 2: convex closure

+ convex for any H , allows minimization of H

− not computable, may not be an extension



Extensions to the space of product measures

Combining the two views

• View 1: thresholding cumulative distribution functions

+ closed form computation for any H , always an extension

− not convex

• View 2: convex closure

+ convex for any H , allows minimization of H

− not computable, may not be an extension

• Submodularity

– The two views are equivalent

– Direct proof through optimal transport

– All results from submodular set-functions go through



Kantorovich optimal transport in one dimension

• Theorem (Carlier, 2003): If H is submodular, then

inf
γ∈P(X)

∫

X

H(x)dγ(x) such that ∀i, γi = µi

is equal to

∫ 1

0

H
[
F−1
µ1

(t), . . . , F−1
µn

(t)
]
dt



Kantorovich optimal transport in one dimension

• Theorem (Carlier, 2003): If H is submodular, then

inf
γ∈P(X)

∫

X

H(x)dγ(x) such that ∀i, γi = µi

is equal to

∫ 1

0

H
[
F−1
µ1

(t), . . . , F−1
µn

(t)
]
dt

• Proof/intuition for n = 2 for the Monge problem

(a) Assume for simplicity atomless measures

(b) The following increasing map is natural F−1
µ2

◦ Fµ1 : X1 → X2

(c) This is the only increasing map

(d) Transport maps always increasing when H submodular

– If x1 < x′
1 mapped to x2 > x′

2, then exchanging x2 and x′
2 would

increase cost byH(x1, x
′
2)+H(x′

1, x2)−H(x1, x2)−H(x′
1, x

′
2)60



Duality - Subgradients of extension

• General duality

h(µ) = sup
w

n∑

i=1

∑

xi∈Xi

wi(xi)µi(xi)− sup
x∈X

{ n∑

i=1

wi(xi)−H(x)

}

• Subgradients from “greedy algorithm”

– Sort all values of Fµi
(xi) for i ∈ {1, . . . , n} and xi ∈ Xi

– Get a subgradient w by taking differences of values of H

– See Bach (2015) for more details

• Extensions of various submodular polytopes



Submodular functions

Links with convexity (Bach, 2015)

1. H is submodular if and only if h is convex

2. If H is submodular, then

min
x∈

∏n
i=1 Xi

H(x) = min
µ∈

∏n
i=1 P(Xi)

h(µ)

3. If H is submodular, then a subgradient of h at any µ may be

computed by a “greedy algorithm”



Submodular functions

Links with convexity (Bach, 2015)

1. H is submodular if and only if h is convex

2. If H is submodular, then

min
x∈

∏n
i=1 Xi

H(x) = min
µ∈

∏n
i=1 P(Xi)

h(µ)

3. If H is submodular, then a subgradient of h at any µ may be

computed by a “greedy algorithm”

– Submodular functions may be minimized in polynomial time with

similar algorithms than for the binary case

– NB: existing reduction to submodular set-functions defined on a

ring family (Schrijver, 2000)



Outline

1. Submodular set-functions

– Definitions, examples

– Links with convexity through Lovász extension

– Minimization by convex optimization

2. From discrete to continuous domains

– Nonpositive second-order derivatives

– Invariances and examples

– Extensions on product measures through optimal transport

3. Minimization of continuous submodular functions

– Subgradient descent

– Frank-Wolfe optimization



Minimization of submodular functions

Projected subgradient descent

• For simplicity: discretizing all sets Xi, i = 1, . . . , n to k elements

• Assume Lispschitz-continuity: ∀x, ei, |H(x+ ei)−H(x)| 6 B

– Fact: subgradients of h bounded by B in ℓ∞-norm

• Projected subgradient descent

– Convergence rate of O(nkB/
√
t) after t iterations

– Cost of each iteration O(nk log(nk))

– Reasonable scaling with respect to discretization

Õ
(n3

ε3

)
for continuous domains



Minimization of submodular functions

Frank-Wolfe / conditional gradient

• Submodular set-functions: Xi = {0, 1}
– (C) : minµ∈[0,1]n h(µ) non-smooth convex

– Solve instead (S) : minµ∈Rn h(µ) + 1
2‖µ‖2 (strongly convex)

– Fact: level sets of (S) obtained from minimizers of H(x) + λx⊤1n



Minimization of submodular functions

Frank-Wolfe / conditional gradient

• Submodular set-functions: Xi = {0, 1}
– (C) : minµ∈[0,1]n h(µ) non-smooth convex

– Solve instead (S) : minµ∈Rn h(µ) + 1
2‖µ‖2 (strongly convex)

– Fact: level sets of (S) obtained from minimizers of H(x) + λx⊤1n

• Extension to all submodular functions

– (C) : minµ∈
∏n

i=1 P(Xi)
h(µ)

– Solve instead (S) : minµ∈
∏n

i=1 P(Xi)
h(µ) +

∑n
i=1ϕi(µi)

– ϕ(µi) defined through optimal transport with a submodular cost

ci(xi, t) between µi and the uniform distribution on [0, 1]

– ϕ(µi) can be strongly convex

– Level sets of (S) obtained from minimizers of H(x)+
∑n

i=1 ci(xi, t)



Empirical simulations (online code)

• Signal processing example: H : [−1, 1]n → R with α < 1

H(x) =
1

2

n∑

i=1

(xi − zi)
2 + λ

n∑

i=1

|xi|α + µ
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2
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• Pair-wise Frank-Wolfe (Lacoste-Julien and Jaggi, 2015)
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Conclusion

• Submodular function and convex optimization

– From discrete to continuous domains

– Extensions to product measures

– Direct link with one-dimensional multi-marginal optimal transport



Conclusion

• Submodular function and convex optimization

– From discrete to continuous domains

– Extensions to product measures

– Direct link with one-dimensional multi-marginal optimal transport

• On-going work and extensions

– Optimal transport beyond submodular functions

– Beyond discretization

– Beyond minimization

– Sums of submodular functions and convex functions

– Sums of simple submodular functions (Jegelka et al., 2013)

– Mean-field inference in log-supermodular models (Djolonga and

Krause, 2015)
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