# Submodular Functions: from Discrete to Continuous Domains

## Francis Bach

## INRIA - Ecole Normale Supérieure





ETH Zürich - April 2016

# Submodular functions From discrete to continuous domains Summary

- Which functions can be minimized in polynomial time?
  - Beyond convex functions
- Submodular functions
  - Not convex, ... but "equivalent" to convex functions
  - Usually defined on  $\{0,1\}^n$
  - Extension to continuous domains
- Preprint available on ArXiv, second version (Bach, 2015)

# Submodularity (almost) everywhere Clustering

• Semi-supervised clustering





• Submodular function minimization

# **Submodularity (almost) everywhere Graph cuts and image segmentation**



• Submodular function minimization

# Submodularity (almost) everywhere Sensor placement

- Each sensor covers a certain area (Krause and Guestrin, 2005)
  - Goal: maximize coverage



- Submodular function maximization
- Extension to experimental design (Seeger, 2009)

# Submodularity (almost) everywhere Image denoising

• Total variation denoising (Chambolle, 2005)



• Submodular convex optimization problem

# Submodularity (almost) everywhere Combinatorial optimization problems

- Set  $V = \{1, \ldots, n\}$
- Power set  $2^V = \text{set of all subsets}$ , of cardinality  $2^n$
- Minimization/maximization of a set-function  $F: 2^V \to \mathbb{R}$ .

$$\min_{A \subset V} F(A) = \min_{A \in 2^V} F(A)$$

# Submodularity (almost) everywhere Combinatorial optimization problems

- Set  $V = \{1, \ldots, n\}$
- Power set  $2^V = \text{set of all subsets}$ , of cardinality  $2^n$
- Minimization/maximization of a set-function  $F: 2^V \to \mathbb{R}$ .

 $\min_{A \subset V} F(A) = \min_{A \in 2^V} F(A)$ 

• Reformulation as (pseudo) Boolean function



# Outline

#### 1. Submodular set-functions

- Definitions, examples
- Links with convexity through Lovász extension
- Minimization by convex optimization

#### 2. From discrete to continuous domains

- Nonpositive second-order derivatives
- Invariances and examples
- Extensions on product measures through optimal transport

#### 3. Minimization of continuous submodular functions

- Subgradient descent
- Frank-Wolfe optimization

## **Submodular functions - References**

- Reference book based on combinatorial optimization
  - Submodular Functions and Optimization (Fujishige, 2005)

- Tutorial monograph based on convex optimization (Bach, 2013)
  - Learning with submodular functions: a convex optimization perspective



Foundations and Trends® in Machine Learning

## Submodular functions Definitions

• **Definition**:  $H : \{0, 1\}^n \to \mathbb{R}$  is **submodular** if and only if

 $\forall x, y \in \{0, 1\}^n, \quad H(x) + H(y) \ge H(\max\{x, y\}) + H(\min\{x, y\})$ 

- NB: equality for *modular* functions (linear functions of x) - Always assume H(0) = 0

## Submodular functions Definitions

• **Definition**:  $H: \{0,1\}^n \to \mathbb{R}$  is **submodular** if and only if

 $\forall x, y \in \{0, 1\}^n, \quad H(x) + H(y) \ge H(\max\{x, y\}) + H(\min\{x, y\})$ 

- NB: equality for *modular* functions (linear functions of x) - Always assume H(0) = 0
- Equivalent definition: (with  $e_i \in \mathbb{R}^n$  *i*-th canonical basis vector)

 $\forall i \in \{1, \dots, n\}, \quad x \mapsto H(x + e_i) - H(x) \text{ is non-increasing}$ 

- "Concave property": Diminishing returns

# Submodular functions - Examples (see, e.g., Fujishige, 2005; Bach, 2013)

- Concave functions of the cardinality
- Cuts
- Entropies
  - Joint entropy of  $(X_k)_{x_k=1}$ , from n random variables  $X_1, \ldots, X_n$
- Functions of eigenvalues of sub-matrices
- Network flows
- Rank functions of matroids

## **Examples of submodular functions Cardinality-based functions**

• Modular function:  $H(x) = w^{\top}x$  for  $w \in \mathbb{R}^n$ 

- Cardinality example: If  $w = 1_n$ , then  $H(x) = 1_n^{\top} x$ 

- If g is a concave function, then  $H: x \mapsto g(1_n^{\top} x)$  is submodular
  - Diminishing return property



## Examples of submodular functions Covers



- Let W be any "base" set, and for each  $k \in V$ , a set  $S_k \subset W$
- Set cover defined as  $H(x) = \left| \bigcup_{x_k=1} S_k \right|$

# Examples of submodular functions Cuts

- Given a (un)directed graph, with vertex set  $V = \{1, \ldots, n\}$  and edge set  $E \subset V \times V$ 
  - H(x) is the total number of edges going from  $\{x = 1\}$  to  $\{x = 0\}$ .



• Generalization with  $d: \{1, \ldots, n\} \times \{1, \ldots, n\} \rightarrow \mathbb{R}_+$ 

$$H(x) = \sum_{j,k} d(k,j)(x_k - x_j)_+$$

- Subsets may be identified with elements of  $\{0,1\}^n$
- Given any function H and  $\mu \in \mathbb{R}^n$  such that  $\mu_{j_1} \ge \cdots \ge \mu_{j_n}$



- Subsets may be identified with elements of  $\{0,1\}^n$
- Given any function H and  $\mu \in \mathbb{R}^n$  such that  $\mu_{j_1} \ge \cdots \ge \mu_{j_n}$ , define:

$$h(\mu) = \sum_{k=1}^{n} \mu_{j_k} [H(e_{j_1} + \dots + e_{j_k}) - H(e_{j_1} + \dots + e_{j_{k-1}})]$$



- Subsets may be identified with elements of  $\{0,1\}^n$
- Given any function H and  $\mu \in \mathbb{R}^n$  such that  $\mu_{j_1} \ge \cdots \ge \mu_{j_n}$ , define:

$$h(\mu) = \sum_{k=1}^{n} \mu_{j_k} [H(e_{j_1} + \dots + e_{j_k}) - H(e_{j_1} + \dots + e_{j_{k-1}})]$$

- For  $H(x) = w^{\top}x$ , then  $h(\mu) = w^{\top}\mu$
- For cuts,  $h(\mu) = \sum_{k,j \in V} d(k,j) |\mu_k \mu_j|$  is the *total variation*

- Subsets may be identified with elements of  $\{0,1\}^n$
- Given any function H and  $\mu \in \mathbb{R}^n$  such that  $\mu_{j_1} \ge \cdots \ge \mu_{j_n}$ , define:

$$h(\mu) = \sum_{k=1}^{n} \mu_{j_k} [H(e_{j_1} + \dots + e_{j_k}) - H(e_{j_1} + \dots + e_{j_{k-1}})]$$

- For  $H(x) = w^{\top}x$ , then  $h(\mu) = w^{\top}\mu$
- For cuts,  $h(\mu) = \sum_{k,j \in V} d(k,j) |\mu_k \mu_j|$  is the *total variation*
- For any set-function H (even not submodular)
  - -h is piecewise-linear and positively homogeneous
  - If  $x \in \{0,1\}^n$ ,  $h(x) = H(x) \Rightarrow$  extension from  $\{0,1\}^n$  to  $[0,1]^n$

## Submodular set-functions Links with convexity (Lovász, 1982)

- 1. H is submodular if and only if h is convex
- 2. If H is submodular, then

$$\min_{x \in \{0,1\}^n} H(x) = \min_{\mu \in \{0,1\}^n} h(\mu) = \min_{\mu \in [0,1]^n} h(\mu)$$

- 3. If H is submodular, then a subgradient of h at any  $\mu$  may be computed by the "greedy algorithm"
  - Order the components of  $\mu \in \mathbb{R}^n$  as  $\mu_{j_1} \geqslant \cdots \geqslant \mu_{j_n}$
  - Define  $w_{j_k} = H(e_{j_1} + \dots + e_{j_k}) H(e_{j_1} + \dots + e_{j_{k-1}})$  for all k
  - Moreover  $h(\mu) = w^\top \mu$

# Submodular set-functions Links with convexity (Lovász, 1982)

- 1. H is submodular if and only if h is convex
- 2. If H is submodular, then

$$\min_{x \in \{0,1\}^n} H(x) = \min_{\mu \in \{0,1\}^n} h(\mu) = \min_{\mu \in [0,1]^n} h(\mu)$$

- 3. If H is submodular, then a subgradient of h at any  $\mu$  may be computed by the "greedy algorithm"
- Consequences
  - Submodular function minimization may be done in polynomial time
  - Ellipsoid algorithm in  $O(n^5)$  (Grötschel et al., 1981)

# Exact submodular function minimization Combinatorial algorithms

- $\bullet$  Algorithms based on  $\min_{\mu\in[0,1]^n}h(\mu)$  and its dual problem
- $\bullet$  Output the subset A and a dual certificate of optimality
- Best algorithms have polynomial complexity (Schrijver, 2000; Iwata et al., 2001; Orlin, 2009)
  - Typically  $O(n^6)$  or more
- Not practical for large problems...

# Submodular function minimization Through convex optimization

• Convex non-smooth optimization problem

$$\min_{x \in \{0,1\}^n} H(x) = \min_{\mu \in \{0,1\}^n} h(\mu) = \min_{\mu \in [0,1]^n} h(\mu)$$

- $\bullet$  Important properties of h for convex optimization
  - Polyhedral function
  - Known subgradients obtained from greedy algorithm
- Generic algorithms (blind to submodular structure)
  - Some with complexity bounds, some without
  - Subgradient, Frank-Wolfe, simplex, cutting-plane (ACCPM)
  - See Bach (2013) for details

## Outline

#### 1. Submodular set-functions

- Definitions, examples
- Links with convexity through Lovász extension
- Minimization by convex optimization

#### **2. From discrete to continuous domains**

- Nonpositive second-order derivatives
- Invariances and examples
- Extensions on product measures through optimal transport

#### 3. Minimization of continuous submodular functions

- Subgradient descent
- Frank-Wolfe optimization

• Main insight:  $\{0,1\}$  is totally ordered!

- Main insight:  $\{0,1\}$  is totally ordered!
- Extension to  $\{0, \dots, k-1\}$ :  $H : \{0, \dots, k-1\}^n \to \mathbb{R}$

 $\forall x, y, \quad H(x) + H(y) \ge H(\min\{x, y\}) + H(\max\{x, y\})$ 

- Equivalent definition: with  $(e_i)_{i \in \{1,...,n\}}$  canonical basis of  $\mathbb{R}^n$ 

 $\forall x, i \neq j, \quad H(x + e_i) + H(x + e_j) \ge H(x) + H(x + e_i + e_j)$ 

- See Lorentz (1953); Topkis (1978)

- Main insight:  $\{0,1\}$  is totally ordered!
- Extension to  $\{0, \dots, k-1\}$ :  $H : \{0, \dots, k-1\}^n \to \mathbb{R}$

 $\forall x, y, \quad H(x) + H(y) \ge H(\min\{x, y\}) + H(\max\{x, y\})$ 

- Equivalent definition: with  $(e_i)_{i \in \{1,...,n\}}$  canonical basis of  $\mathbb{R}^n$ 

$$\forall x, i \neq j, \quad H(x + e_i) + H(x + e_j) \ge H(x) + H(x + e_i + e_j)$$

- See Lorentz (1953); Topkis (1978)
- Taylor expansion:

$$-H(x+e_i) + H(x+e_j) \approx 2H(x) + \frac{\partial H}{\partial x_i} + \frac{\partial H}{\partial x_j} + \frac{1}{2} \frac{\partial^2 H}{\partial x_i^2} + \frac{1}{2} \frac{\partial^2 H}{\partial x_j^2} \\ -H(x) + H(x+e_i+e_j) = 2H(x) + \frac{\partial H}{\partial x_i} + \frac{\partial H}{\partial x_j} + \frac{1}{2} \frac{\partial^2 H}{\partial x_i^2} + \frac{1}{2} \frac{\partial^2 H}{\partial x_i^2} + \frac{\partial^2 H}{\partial x_i \partial x_j}$$

- Main insight:  $\{0,1\}$  is totally ordered!
- Extension to  $\{0, \dots, k-1\}$ :  $H : \{0, \dots, k-1\}^n \to \mathbb{R}$

 $\forall x, y, \quad H(x) + H(y) \ge H(\min\{x, y\}) + H(\max\{x, y\})$ 

- Equivalent definition: with  $(e_i)_{i \in \{1,...,n\}}$  canonical basis of  $\mathbb{R}^n$ 

$$\forall x, i \neq j, \quad H(x + e_i) + H(x + e_j) \ge H(x) + H(x + e_i + e_j)$$

- See Lorentz (1953); Topkis (1978)
- Generalization to all totally ordered sets:  $\mathfrak{X}_i \subset \mathbb{R}$

intervals + H twice differentiable: 
$$\forall x \in \prod_{i=1}^{n} \mathfrak{X}_{i}, \quad \frac{\partial^{2} H}{\partial x_{i} \partial x_{j}}(x) \leq 0$$

## A "new" class of continuous functions

• Assume each  $\mathcal{X}_i \subset \mathbb{R}$  is a compact interval, and (for simplicity) H twice differentiable:

**Submodularity** : 
$$\forall x \in \prod_{i=1}^{n} \mathfrak{X}_{i}, \quad \frac{\partial^{2} H}{\partial x_{i} \partial x_{j}}(x) \leq 0$$

- Invariance by
  - individual increasing smooth change of variables  $H(\varphi_1(x_1), \ldots, \varphi_n(x_n))$
  - adding arbitrary (smooth) separable functions  $\sum_{i=1}^{n} v_i(x_i)$

## A "new" class of continuous functions

• Assume each  $\mathfrak{X}_i \subset \mathbb{R}$  is a compact interval, and (for simplicity) H twice differentiable:

**Submodularity** : 
$$\forall x \in \prod_{i=1}^{n} \mathfrak{X}_{i}, \quad \frac{\partial^{2} H}{\partial x_{i} \partial x_{j}}(x) \leq 0$$

- Invariance by
  - individual increasing smooth change of variables  $H(\varphi_1(x_1), \ldots, \varphi_n(x_n))$
  - adding arbitrary (smooth) separable functions  $\sum_{i=1}^{n} v_i(x_i)$

#### • Examples

- Quadratic functions with Hessians with non-negative off-diagonal entries (Kim and Kojima, 2003)
- $\varphi(x_i x_j)$ ,  $\varphi$  convex;  $\varphi(x_1 + \cdots + x_n)$ ,  $\varphi$  concave;  $\log \det$ , etc...
- Monotone of order two (Carlier, 2003), Spence-Mirrlees condition (Milgrom and Shannon, 1994)

#### A "new" class of continuous functions



• Level sets of the submodular function  $(x_1, x_2) \mapsto \frac{7}{20}(x_1 - x_2)^2 - e^{-4(x_1 - \frac{2}{3})^2} - \frac{3}{5}e^{-4(x_1 + \frac{2}{3})^2} - e^{-4(x_2 - \frac{2}{3})^2} - e^{-4(x_2 + \frac{2}{3})^2}$ , with several local minima, local maxima and saddle points

#### **Extensions to the space of product measures**

• Set-function:  $\mathfrak{X}_i = \{0, 1\}$ 

-  $[0,1] \approx$  set of probability distributions on  $\{0,1\}$ :  $\mu_i = \mathbb{P}(X_i = 1)$ - Lovász extension: for  $\mu \in [0,1]^n$  such that  $\mu_{j_1} \ge \cdots \ge \mu_{j_n}$ 

$$\begin{split} h(\mu) &= \sum_{k=1}^{n} \mu_{j_{k}} [H(e_{j_{1}} + \dots + e_{j_{k}}) - H(e_{j_{1}} + \dots + e_{j_{k-1}}\})] \\ &= (1 - \mu_{j_{1}}) H(0) + \sum_{k=1}^{n-1} (\mu_{j_{k}} - \mu_{j_{k+1}}) H(e_{j_{1}} + \dots + e_{j_{k}}) + \mu_{j_{n}} H(1_{n}) \\ &= \mathbb{E} \Big[ H \Big( 1_{\mu_{1} \geqslant t}, \dots, 1_{\mu_{n} \geqslant t} \Big) \Big] \text{ for } t \text{ uniform in } [0, 1] \\ \Big[ \text{ If } t \in (\mu_{j_{k+1}}, \mu_{j_{k}}), \text{ then } \mu_{j_{1}} \geqslant \dots \geqslant \mu_{j_{k}} > t > \mu_{j_{k+1}} \geqslant \dots \geqslant \mu_{j_{n}} \Big] \end{split}$$

#### Extensions to the space of product measures

• Set-function:  $\mathfrak{X}_i = \{0, 1\}$ 

-  $[0,1] \approx$  set of probability distributions on  $\{0,1\}$ :  $\mu_i = \mathbb{P}(X_i = 1)$ - Lovász extension: for  $\mu \in [0,1]^n$  such that  $\mu_{j_1} \ge \cdots \ge \mu_{j_n}$ 

$$h(\mu) = \sum_{k=1}^{n} \mu_{j_k} [H(e_{j_1} + \dots + e_{j_k}) - H(e_{j_1} + \dots + e_{j_{k-1}}])]$$
  
=  $(1 - \mu_{j_1}) H(0) + \sum_{k=1}^{n-1} (\mu_{j_k} - \mu_{j_{k+1}}) H(e_{j_1} + \dots + e_{j_k}) + \mu_{j_n} H(1_n)$   
=  $\mathbb{E} [H(1_{\mu_1 \ge t}, \dots, 1_{\mu_n \ge t})]$  for  $t$  uniform in  $[0, 1]$ 

- Lovász extension = relaxation on product measures
  - Continuous variable  $\mu = (\mu_1, \dots, \mu_n) \in \prod_{i=1}^n [0, 1]$
  - $t \mapsto 1_{\mu_i \geqslant t}$  is the inverse cumulative distribution function of  $\mu_i$

## **Extensions to the space of product measures View 1: thresholding cumulative distrib. functions**

- Given a probability distribution  $\mu_i \in \mathcal{P}(\mathfrak{X}_i)$ 
  - (reversed) cumulative distribution function  $F_{\mu_i}: \mathfrak{X}_i \to [0, 1]$  as

$$F_{\mu_i}(x_i) = \mu_i \big( \{ y_i \in \mathfrak{X}_i, y_i \ge x_i \} \big) = \mu_i \big( [x_i, +\infty) \big) \in [0, 1]$$

- and its "inverse":  $F_{\mu_i}^{-1}(t) = \sup\{x_i \in \mathfrak{X}_i, F_{\mu_i}(x_i) \ge t\} \in \mathfrak{X}_i$ 



## **Extensions to the space of product measures View 1: thresholding cumulative distrib. functions**

- Given a probability distribution  $\mu_i \in \mathcal{P}(\mathfrak{X}_i)$ 
  - (reversed) cumulative distribution function  $F_{\mu_i}: \mathfrak{X}_i \to [0,1]$  as

$$F_{\mu_i}(x_i) = \mu_i \big( \{ y_i \in \mathfrak{X}_i, y_i \ge x_i \} \big) = \mu_i \big( [x_i, +\infty) \big) \in [0, 1]$$

- and its "inverse":  $F_{\mu_i}^{-1}(t) = \sup\{x_i \in \mathfrak{X}_i, F_{\mu_i}(x_i) \ge t\} \in \mathfrak{X}_i$
- "Continuous" extension

$$\forall \mu \in \prod_{i=1}^{n} \mathcal{P}(\mathcal{X}_{i}), \quad h(\mu_{1}, \dots, \mu_{n}) = \int_{0}^{1} H\left[F_{\mu_{1}}^{-1}(t), \dots, F_{\mu_{n}}^{-1}(t)\right] dt$$

- For finite sets, can be computed by sorting all values of  $F_{\mu_i}(x_i)$
- Equal to the Lovász extension for set-functions

## **Extensions to the space of product measures View 1: thresholding cumulative distrib. functions**



• "Continuous" extension

$$\forall \mu \in \prod_{i=1}^{n} \mathcal{P}(\mathcal{X}_{i}), \quad h(\mu_{1}, \dots, \mu_{n}) = \int_{0}^{1} H\left[F_{\mu_{1}}^{-1}(t), \dots, F_{\mu_{n}}^{-1}(t)\right] dt$$

- For finite sets, can be computed by sorting all values of  $F_{\mu_i}(x_i)$
- Equal to the Lovász extension for set-functions



"Continuous" extension

$$\forall \mu \in \prod_{i=1}^{n} \mathcal{P}(\mathcal{X}_{i}), \quad h(\mu_{1}, \dots, \mu_{n}) = \int_{0}^{1} H\left[F_{\mu_{1}}^{-1}(t), \dots, F_{\mu_{n}}^{-1}(t)\right] dt$$

- For finite sets, can be computed by sorting all values of  $F_{\mu_i}(x_i)$
- Equal to  $H(x_1, \ldots, x_n)$  when  $\mu_i = \delta_{x_i}$  for all i

## Extensions to the space of product measures View 2: convex closure

- Given any function H on  $\mathfrak{X} = \prod_{i=1}^{n} \mathfrak{X}_{i}$ 
  - Known value H(x) for any "extreme points" of product measures (i.e., all Diracs  $\delta_x$  at any  $x \in \mathfrak{X}$ )
  - Convex closure h =largest convex lower bound
  - Minimizing H and its convex closure  $\tilde{h}$  is equivalent



## Extensions to the space of product measures View 2: convex closure

- Given any function H on  $\mathfrak{X} = \prod_{i=1}^{n} \mathfrak{X}_{i}$ 
  - Known value H(x) for any "extreme points" of product measures (i.e., all Diracs  $\delta_x$  at any  $x \in \mathfrak{X}$ )
  - Convex closure  $\tilde{h}=$  largest convex lower bound
  - Minimizing H and its convex closure  $\tilde{h}$  is equivalent
- Need to compute the bi-conjugate of

 $a: \mu \mapsto H(x)$  if  $\mu = \delta_x$  for some  $x \in \mathfrak{X}$ , and  $+\infty$  otherwise

#### **Computation of the convex envelope**

• Need to compute the bi-conjugate of

 $a: \mu \mapsto H(x)$  if  $\mu = \delta_x$  for some  $x \in \mathfrak{X}$ , and  $+\infty$  otherwise

• Step 1: compute  $a^*(w) = \sup_{\mu} \langle \mu, w \rangle - a(\mu)$  for  $w \in \prod_{i=1}^n \mathbb{R}^{\chi_i}$ 

$$a^{*}(w) = \sup_{x \in \mathcal{X}} \sum_{i=1}^{n} w_{i}(x_{i}) - H(x) = \sup_{\gamma \in \mathcal{P}(\mathcal{X})} \sum_{x \in \mathcal{X}} \gamma(x) \left\{ \sum_{i=1}^{n} w_{i}(x_{i}) - H(x) \right\}$$
$$= \sup_{\gamma \in \mathcal{P}(\mathcal{X})} \left\{ \sum_{i=1}^{n} \sum_{x_{i} \in \mathcal{X}_{i}} w_{i}(x_{i}) \gamma_{i}(x_{i}) - \sum_{x \in \mathcal{X}} \gamma(x) H(x) \right\}$$

- with 
$$\gamma_i(x_i) = \sum_{x_j, j \neq i} \gamma(x_1, \dots, x_n)$$
 the *i*-th marginal of  $\gamma$ 

#### **Computation of the convex envelope**

• Step 1: 
$$a^*(w) = \sup_{\gamma \in \mathcal{P}(\mathcal{X})} \left\{ \sum_{i=1}^n \sum_{x_i \in \mathcal{X}_i} w_i(x_i)\gamma_i(x_i) - \sum_{x \in \mathcal{X}} \gamma(x)H(x) \right\}$$

• Step 2: compute  $a^{**}(\mu) = \sup_{w} \langle w, \mu \rangle - a^{*}(w)$  for  $\mu \in \prod_{i=1}^{n} \mathcal{P}(\mathfrak{X}_{i})$ 

$$a^{**}(\mu) = \sup_{w} \langle w, \mu \rangle - \sup_{\gamma \in \mathcal{P}(\mathcal{X})} \left\{ \sum_{i=1}^{n} \sum_{x_i \in \mathcal{X}_i} w_i(x_i) \gamma_i(x_i) - \sum_{x \in \mathcal{X}} \gamma(x) H(x) \right\}$$
$$= \inf_{\gamma \in \mathcal{P}(\mathcal{X})} \sup_{w} \sum_{i=1}^{n} \sum_{x_i \in \mathcal{X}_i} w_i(x_i) \left( \mu_i(x_i) - \gamma_i(x_i) \right) + \sum_{x \in \mathcal{X}} \gamma(x) H(x)$$

• Thus 
$$a^{**}(\mu) = \inf_{\gamma \in \mathcal{P}(\mathcal{X})} \int_{\mathcal{X}} H(x) d\gamma(x)$$
 such that  $\forall i, \gamma_i(x_i) = \mu_i(x_i)$ 

## Extensions to the space of product measures View 2: convex closure

- Given any function H on  $\mathfrak{X} = \prod_{i=1}^{n} \mathfrak{X}_{i}$ 
  - Known value H(x) for any "extreme points" of product measures (i.e., all Diracs  $\delta_x$  at any  $x \in \mathfrak{X}$ )
  - Convex closure  $\tilde{h}=$  largest convex lower bound
  - Minimizing H and its convex closure  $\tilde{h}$  is equivalent

• "Closed-form" formulation: 
$$\tilde{h}(\mu_1, \dots, \mu_n) = \inf_{\gamma \in \mathcal{P}(\mathfrak{X})} \int_{\mathfrak{X}} H(x) d\gamma(x),$$

- with respect to all prob. measures  $\gamma$  on  $\mathcal{X}$  such that  $\gamma_i(x_i) = \mu_i(x_i)$ - Multi-marginal optimal transport

## **Optimal transport: from Monge to Kantorovich**

- Monge formulation ("La théorie des déblais et des remblais", 1781)
  - Transforming a measure  $\mu_1$  to  $\mu_2$  that (a) preserves local mass and (b) minimize transportation cost  $\int_{\chi_1} c(x_1, T(x_1)) d\mu_1(x_1)$



- Optimal transport map T may not always exists
- Discrete case: earth's mover distance

## **Optimal transport: from Monge to Kantorovich**

- Monge formulation ("La théorie des déblais et des remblais", 1781)
  - Transforming a measure  $\mu_1$  to  $\mu_2$  that (a) preserves local mass and (b) minimize transportation cost  $\int_{\chi_1} c(x_1, T(x_1)) d\mu_1(x_1)$



- Optimal transport map T may not always exists
- Discrete case: earth's mover distance
- Kantorovich formulation (1942)
  - Convex relaxation on space of probability measures  $\gamma \in \mathcal{P}(\mathfrak{X}_1 \times \mathfrak{X}_2)$
  - Prescribed marginals  $\gamma_1 = \mu_1$  and  $\gamma_2 = \mu_2$
  - Minimum cost  $\int_{\chi_1 \times \chi_2} c(x_1, x_2) d\gamma(x_1, x_2)$

## **Optimal transport: from two to multiple marginals**

- Kantorovich formulation (1942)
  - Convex relaxation on space of probability measures  $\gamma \in \mathcal{P}(\mathfrak{X}_1 \times \mathfrak{X}_2)$
  - Prescribed marginals  $\gamma_1 = \mu_1$  and  $\gamma_2 = \mu_2$
  - Minimum cost  $\int_{\mathfrak{X}_1 \times \mathfrak{X}_2} c(x_1, x_2) d\gamma(x_1, x_2)$

## • Properties

- Monge formulation with distribution of  $(x_1, T(x_1))$
- Wasserstein distance between measures with  $c(x_1, x_2) = |x_1 x_2|^p$
- Relationship with copulas
- See Villani (2008); Santambrogio (2015)

## **Optimal transport: from two to multiple marginals**

- Kantorovich formulation (1942)
  - Convex relaxation on space of probability measures  $\gamma \in \mathcal{P}(\mathfrak{X}_1 \times \mathfrak{X}_2)$
  - Prescribed marginals  $\gamma_1 = \mu_1$  and  $\gamma_2 = \mu_2$
  - Minimum cost  $\int_{\mathfrak{X}_1 \times \mathfrak{X}_2} c(x_1, x_2) d\gamma(x_1, x_2)$

## • Properties

- Monge formulation with distribution of  $(x_1, T(x_1))$
- Wasserstein distance between measures with  $c(x_1, x_2) = |x_1 x_2|^p$
- Relationship with copulas
- See Villani (2008); Santambrogio (2015)

#### • Extension to multiple marginals

- Minimize  $\int_{\mathcal{X}} H(x) d\gamma(x)$  with respect to all prob. measures  $\gamma$  on  $\mathcal{X}$  such that  $\gamma_i(x_i) = \mu_i(x_i)$  for all  $i \in \{1, \dots, n\}$ 

# **Extensions to the space of product measures Combining the two views**

- View 1: thresholding cumulative distribution functions
  - + closed form computation for any H, always an extension not convex
- View 2: convex closure
  - + convex for any  ${\cal H},$  allows minimization of  ${\cal H}$
  - not computable, may not be an extension

# **Extensions to the space of product measures Combining the two views**

- View 1: thresholding cumulative distribution functions
  - + closed form computation for any H, always an extension not convex
- View 2: convex closure
  - + convex for any  ${\cal H},$  allows minimization of  ${\cal H}$
  - not computable, may not be an extension

#### • Submodularity

- The two views are equivalent
- Direct proof through optimal transport
- All results from submodular set-functions go through

#### Kantorovich optimal transport in one dimension

• **Theorem** (Carlier, 2003): If H is submodular, then

$$\inf_{\gamma \in \mathcal{P}(\mathcal{X})} \int_{\mathcal{X}} H(x) d\gamma(x) \text{ such that } \forall i, \gamma_i = \mu_i$$
  
is equal to 
$$\int_0^1 H\big[F_{\mu_1}^{-1}(t), \dots, F_{\mu_n}^{-1}(t)\big] dt$$

## Kantorovich optimal transport in one dimension

• Theorem (Carlier, 2003): If H is submodular, then

$$\inf_{\gamma \in \mathcal{P}(\mathcal{X})} \int_{\mathcal{X}} H(x) d\gamma(x) \text{ such that } \forall i, \gamma_i = \mu_i$$

is equal to 
$$\int_0^1 H[F_{\mu_1}^{-1}(t), \dots, F_{\mu_n}^{-1}(t)]dt$$

- Proof/intuition for n = 2 for the Monge problem
- (a) Assume for simplicity atomless measures
- (b) The following increasing map is natural  $F_{\mu_2}^{-1} \circ F_{\mu_1} : \mathfrak{X}_1 \to \mathfrak{X}_2$
- (c) This is the only increasing map
- (d) Transport maps always increasing when H submodular
  - If  $x_1 < x'_1$  mapped to  $x_2 > x'_2$ , then exchanging  $x_2$  and  $x'_2$  would increase cost by  $H(x_1, x'_2) + H(x'_1, x_2) H(x_1, x_2) H(x'_1, x'_2) \leq 0$

## **Duality - Subgradients of extension**

• General duality

$$h(\mu) = \sup_{w} \sum_{i=1}^{n} \sum_{x_i \in \mathcal{X}_i} w_i(x_i) \mu_i(x_i) - \sup_{x \in \mathcal{X}} \left\{ \sum_{i=1}^{n} w_i(x_i) - H(x) \right\}$$

- Subgradients from "greedy algorithm"
  - Sort all values of  $F_{\mu_i}(x_i)$  for  $i \in \{1, \ldots, n\}$  and  $x_i \in \mathfrak{X}_i$
  - Get a subgradient  $\boldsymbol{w}$  by taking differences of values of  $\boldsymbol{H}$
  - See Bach (2015) for more details
- Extensions of various submodular polytopes

# Submodular functions Links with convexity (Bach, 2015)

- 1. H is submodular if and only if h is convex
- 2. If H is submodular, then

$$\min_{x \in \prod_{i=1}^{n} \mathcal{X}_{i}} H(x) = \min_{\mu \in \prod_{i=1}^{n} \mathcal{P}(\mathcal{X}_{i})} h(\mu)$$

3. If H is submodular, then a subgradient of h at any  $\mu$  may be computed by a "greedy algorithm"

# Submodular functions Links with convexity (Bach, 2015)

- 1. H is submodular if and only if h is convex
- 2. If H is submodular, then

$$\min_{x \in \prod_{i=1}^{n} \mathfrak{X}_{i}} H(x) = \min_{\mu \in \prod_{i=1}^{n} \mathfrak{P}(\mathfrak{X}_{i})} h(\mu)$$

- 3. If H is submodular, then a subgradient of h at any  $\mu$  may be computed by a "greedy algorithm"
  - Submodular functions may be minimized in polynomial time with similar algorithms than for the binary case
  - NB: existing reduction to submodular set-functions defined on a ring family (Schrijver, 2000)

## Outline

#### 1. Submodular set-functions

- Definitions, examples
- Links with convexity through Lovász extension
- Minimization by convex optimization

#### 2. From discrete to continuous domains

- Nonpositive second-order derivatives
- Invariances and examples
- Extensions on product measures through optimal transport

#### **3. Minimization of continuous submodular functions**

- Subgradient descent
- Frank-Wolfe optimization

# Minimization of submodular functions Projected subgradient descent

- For simplicity: discretizing all sets  $\mathfrak{X}_i$ ,  $i = 1, \ldots, n$  to k elements
- Assume Lispschitz-continuity:  $\forall x, e_i, |H(x + e_i) H(x)| \leq B$ 
  - Fact: subgradients of h bounded by B in  $\ell_\infty\text{-norm}$
- Projected subgradient descent
  - Convergence rate of  $O(nkB/\sqrt{t})$  after t iterations
  - Cost of each iteration  $O(nk \log(nk))$
  - Reasonable scaling with respect to discretization

$$\widetilde{O}\!\left(\!\frac{n^3}{\varepsilon^3}\!\right)$$
 for continuous domains

# Minimization of submodular functions Frank-Wolfe / conditional gradient

- Submodular set-functions:  $\mathfrak{X}_i = \{0, 1\}$ 
  - (C) :  $\min_{\mu \in [0,1]^n} h(\mu)$  non-smooth convex
  - Solve instead (S) :  $\min_{\mu \in \mathbb{R}^n} h(\mu) + \frac{1}{2} \|\mu\|^2$  (strongly convex)
  - Fact: level sets of (S) obtained from minimizers of  $H(x) + \lambda x^{\top} \mathbf{1}_n$

# Minimization of submodular functions Frank-Wolfe / conditional gradient

- Submodular set-functions:  $\mathfrak{X}_i = \{0, 1\}$ 
  - (C) :  $\min_{\mu \in [0,1]^n} h(\mu)$  non-smooth convex
  - Solve instead (S) :  $\min_{\mu \in \mathbb{R}^n} h(\mu) + \frac{1}{2} \|\mu\|^2$  (strongly convex)
  - Fact: level sets of (S) obtained from minimizers of  $H(x) + \lambda x^{\top} \mathbf{1}_n$
- Extension to all submodular functions
  - $-(\mathsf{C}): \min_{\mu \in \prod_{i=1}^{n} \mathcal{P}(\mathfrak{X}_i)} h(\mu)$
  - Solve instead (S) :  $\min_{\mu \in \prod_{i=1}^{n} \mathcal{P}(\mathfrak{X}_i)} h(\mu) + \sum_{i=1}^{n} \varphi_i(\mu_i)$
  - $\varphi(\mu_i)$  defined through optimal transport with a submodular cost  $c_i(x_i, t)$  between  $\mu_i$  and the uniform distribution on [0, 1]
  - $\varphi(\mu_i)$  can be strongly convex
  - Level sets of (S) obtained from minimizers of  $H(x) + \sum_{i=1}^{n} c_i(x_i, t)$

#### **Empirical simulations (online code)**

• Signal processing example:  $H:[-1,1]^n \to \mathbb{R}$  with  $\alpha < 1$ 



## **Empirical simulations (online code)**

• Signal processing example:  $H:[-1,1]^n \to \mathbb{R}$  with  $\alpha < 1$ 



• Pair-wise Frank-Wolfe (Lacoste-Julien and Jaggi, 2015)

## **Empirical simulations (online code)**

• Signal processing example:  $H:[-1,1]^n \to \mathbb{R}$  with  $\alpha < 1$ 



• Pair-wise Frank-Wolfe (Lacoste-Julien and Jaggi, 2015)

## Conclusion

- Submodular function and convex optimization
  - From discrete to continuous domains
  - Extensions to product measures
  - Direct link with one-dimensional multi-marginal optimal transport

## Conclusion

#### • Submodular function and convex optimization

- From discrete to continuous domains
- Extensions to product measures
- Direct link with one-dimensional multi-marginal optimal transport

#### • On-going work and extensions

- Optimal transport beyond submodular functions
- Beyond discretization
- Beyond minimization
- Sums of submodular functions and convex functions
- Sums of simple submodular functions (Jegelka et al., 2013)
- Mean-field inference in log-supermodular models (Djolonga and Krause, 2015)

### References

- F. Bach. Learning with Submodular Functions: A Convex Optimization Perspective. Technical Report 00645271, HAL, 2013.
- F. Bach. Submodular functions: from discrete to continous domains. Technical Report 1511.00394-v2, HAL, 2015.
- G. Carlier. On a class of multidimensional optimal transportation problems. *Journal of Convex Analysis*, 10(2):517–530, 2003.
- A. Chambolle. Total variation minimization and a class of binary MRF models. In *Energy Minimization Methods in Computer Vision and Pattern Recognition*, pages 136–152. Springer, 2005.
- G. Choquet. Theory of capacities. Ann. Inst. Fourier, 5:131-295, 1954.
- J. Djolonga and A. Krause. Scalable variational inference in log-supermodular models. In *International Conference on Machine Learning (ICML)*, 2015.
- S. Fujishige. Submodular Functions and Optimization. Elsevier, 2005.
- M. Grötschel, L. Lovász, and A. Schrijver. The ellipsoid method and its consequences in combinatorial optimization. *Combinatorica*, 1(2):169–197, 1981.
- S. Iwata, L. Fleischer, and S. Fujishige. A combinatorial strongly polynomial algorithm for minimizing submodular functions. *Journal of the ACM*, 48(4):761–777, 2001.
- S. Jegelka, F. Bach, and S. Sra. Reflection methods for user-friendly submodular optimization. In *Advances in Neural Information Processing Systems (NIPS)*, 2013.

- Sunyoung Kim and Masakazu Kojima. Exact solutions of some nonconvex quadratic optimization problems via sdp and socp relaxations. *Computational Optimization and Applications*, 26(2): 143–154, 2003.
- A. Krause and C. Guestrin. Near-optimal nonmyopic value of information in graphical models. In *Proc.* UAI, 2005.
- S. Lacoste-Julien and M. Jaggi. On the global linear convergence of frank-wolfe optimization variants. In Advances in Neural Information Processing Systems (NIPS), 2015.
- G. G. Lorentz. An inequality for rearrangements. *American Mathematical Monthly*, 60(3):176–179, 1953.
- L. Lovász. Submodular functions and convexity. *Mathematical programming: The state of the art, Bonn*, pages 235–257, 1982.
- P. Milgrom and C. Shannon. Monotone comparative statics. *Econometrica: Journal of the Econometric Society*, pages 157–180, 1994.
- J.B. Orlin. A faster strongly polynomial time algorithm for submodular function minimization. *Mathematical Programming*, 118(2):237–251, 2009.
- F. Santambrogio. Optimal Transport for Applied Mathematicians. Springer, 2015.
- A. Schrijver. A combinatorial algorithm minimizing submodular functions in strongly polynomial time. *Journal of Combinatorial Theory, Series B*, 80(2):346–355, 2000.
- M. Seeger. On the submodularity of linear experimental design, 2009. http://lapmal.epfl.ch/ papers/subm\_lindesign.pdf.
- D. M. Topkis. Minimizing a submodular function on a lattice. Operations research, 26(2):305-321,

1978.

- C. Villani. Optimal transport: old and new, volume 338. Springer Science & Business Media, 2008.
- A. Weller. Bethe and related pairwise entropy approximations. In *Uncertainty in Artificial Intelligence* (UAI), 2015.