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Abstract

We present an extension of sparse PCA, or sparse

dictionary learning, where the sparsity patterns

of all dictionary elements are structured and con-

strained to belong to a prespecified set of shapes.

This structured sparse PCA is based on a struc-

tured regularization recently introduced by Jenat-

ton et al. (2009). While classical sparse priors

only deal with cardinality, the regularization we

use encodes higher-order information about the

data. We propose an efficient and simple opti-

mization procedure to solve this problem. Ex-

periments with two practical tasks, the denoising

of sparse structured signals and face recognition,

demonstrate the benefits of the proposed struc-

tured approach over unstructured approaches.

1 Introduction

Principal component analysis (PCA) is an essential tool for

data analysis and unsupervised dimensionality reduction.

Its goal is to find, among linear combinations of the data

variables, a sequence of orthogonal factors that most effi-

ciently explain the variance of the observations.

One of PCA’s main shortcomings is that, even if it finds a

small number of important factors, the factor themselves

typically involve all original variables. In the last decade,

several alternatives to PCA which find sparse and poten-

tially interpretable factors have been proposed, notably

non-negative matrix factorization (NMF) (Lee and Seung,

1999) and sparse PCA (SPCA) (Jolliffe et al., 2003; Zou

et al., 2006; Zass and Shashua, 2007; Witten et al., 2009).

However, in many applications, only constraining the size

of the factors does not seem appropriate because the con-

sidered factors are not only expected to be sparse but also
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to have a certain structure. In fact, the popularity of NMF

for face image analysis owes essentially to the fact that the

method happens to retrieve sets of variables that are partly

localized on the face and capture some features or parts

of the face which seem intuitively meaningful given our a

priori. We might therefore gain in the quality of the fac-

tors induced by enforcing directly this a priori in the matrix

factorization constraints. More generally, it would be desir-

able to encode higher-order information about the supports

that reflects the structure of the data. For example, in com-

puter vision, features associated to the pixels of an image

are naturally organized on a grid and the supports of factors

explaining the variability of images could be expected to

be localized, connected or have some other regularity with

respect to that grid. Similarly, in genomics, factors explain-

ing the gene expression patterns observed on a microarray

could be expected to involve groups of genes correspond-

ing to biological pathways or set of genes that are neighbors

in a protein-protein interaction network.

Recent research on structured sparsity has highlighted the

benefit of exploiting such structure in the context of regres-

sion and classification (Jenatton et al., 2009; Jacob et al.,

2009; Huang et al., 2009), compressed sensing (Baraniuk

et al., 2008), as well as within Bayesian frameworks (He

and Carin, 2009). In particular, Jenatton et al. (2009) show

that, given any intersection-closed family of patterns P of

variables, such as all the rectangles on a 2-dimensional grid

of variables, it is possible to build an ad hoc regularization

norm Ω that enforces that the support of the solution of

a least-squares regression regularized by Ω belongs to the

family P .
Capitalizing on these results, we aim in this paper to go

beyond sparse PCA and propose structured sparse PCA

(SSPCA), which explains the variance of the data by fac-

tors that are not only sparse but also respect some a priori

structural constraints deemed relevant to model the data at

hand. We show how slight variants of the regularization

term from Jenatton et al. (2009) can be used successfully to

yield a structured and sparse formulation of principal com-

ponent analysis for which we propose a simple and efficient

optimization scheme.
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The rest of the paper is organized as follows: Section 2

casts the SSPCA problem in the dictionary learning frame-

work, summarizes the regularization considered by Jenat-

ton et al. (2009) and its essential properties, and presents

some simple variants which are more effective in the con-

text of PCA. Section 3 is dedicated to our optimization

scheme for solving SSPCA. Our experiments in Section 4

illustrate the benefits of our approach through the denoising

of sparse structured synthetic signals and an application to

face recognition.

Notations. For any vector y in R
p and any α > 0, we

denote by ‖y‖α = (
∑p

j=1 |yj |α)1/α the (quasi-)norm ℓα
of y. Similarly, for any rectangular matrix Y ∈ R

n×p,

we denote by ‖Y ‖F = (
∑n

i=1

∑p
j=1 Y

2
ij)

1/2 its Frobenius

norm, where Yij is the (i, j)-th element of Y . We write

Y j ∈ R
n for the j-th column of Y . Given w in R

p and a

subset J of {1, . . . , p},wJ denotes the vector inR
p that has

the same entries wj as w for j ∈ J , and null entries outside
of J . In addition, the set {j ∈ {1, . . . , p} ; wj 6= 0} is
referred to as the support, or nonzero pattern of the vector

w ∈ R
p. For any finite set A with cardinality |A|, we also

define the |A|-tuple (ya)a∈A ∈ R
p×|A| as the collection

of p-dimensional vectors ya indexed by the elements of A.
Furthermore, for two vectors x and y in R

p, we denote by

x ◦ y = (x1y1, . . . , xpyp)
⊤ ∈ R

p the elementwise product

of x and y. Finally, we extend b 7→ a
b by continuity in zero

with a
0 =∞ if a 6= 0 and 0 otherwise.

2 Problem Statement

It is useful to distinguish two conceptually different inter-

pretations of PCA. In terms of analysis, PCA sequentially

projects the data on subspaces that explain the largest frac-

tion of the variance of the data. In terms of synthesis, PCA

finds a basis, or orthogonal dictionary, such that all sig-

nals observed admit decompositions with low reconstruc-

tion error. These two interpretations recover the same ba-

sis of principal components for PCA but lead to different

formulations for sparse PCA. The analysis interpretation

leads to sequential formulations (d’Aspremont et al., 2008;

Moghaddam et al., 2006; Jolliffe et al., 2003) that consider

components one at a time and perform a deflation of the

covariance matrix at each step (see Mackey, 2009). The

synthesis interpretation leads to non-convex global formu-

lations (Zou et al., 2006; Mairal et al., 2009; Moghaddam

et al., 2006; Lee et al., 2007) which estimate simultane-

ously all principal components, often drop the orthogonal-

ity constraints, and are referred to as matrix factorization

problems (Singh and Gordon, 2008) in machine learning,

and dictionary learning in signal processing.

The approach we propose fits more naturally in the frame-

work of dictionnary learning, whose terminology we now

introduce.

2.1 Matrix Factorization and Dictionary Learning

Given a matrix X ∈ R
n×p of n rows corresponding to

n observations in R
p, the dictionary learning problem is

to find a matrix V ∈ R
p×r, called the dictionary, such

that each observation can be well approximated by a linear

combination of the r columns (V k)k∈{1,...,r} of V called

the dictionary elements. If U ∈ R
n×r is the matrix of

the linear combination coefficients or decomposition coef-

ficients, the matrix product UV ⊤ is called a decomposition

of X .

Learning simultaneously the dictionary V and the decom-

position U corresponds to a matrix factorization problem

(see Witten et al., 2009, and reference therein). As for-

mulated by Bach et al. (2008) or Witten et al. (2009), it

is natural, when learning a decomposition, to penalize or

constrain some norms or quasi-norms of U and V , say Ωu

and Ωv respectively, to encode prior information — typi-

cally sparsity — about the decomposition of X . This can

be written generally as















min
U∈R

n×r,
V ∈R

p×r

1

2np

∥

∥X−UV ⊤
∥

∥

2

F
+ λ

r
∑

k=1

Ωv(V k)

s.t. ∀k, Ωu(Uk) ≤ 1,

(1)

where the regularization parameter λ ≥ 0 controls to which
extent the dictionary is regularized1. If we assume that both

regularizations Ωu and Ωv are convex, problem (1) is con-

vex w.r.t. U for fixed V and vice versa. It is however not

jointly convex in the pair (U, V ).

The formulation of sparse PCA considered by Lee et al.

(2007) corresponds to a particular instance of this problem,

where the dictionary elements are required to be sparse

(without the orthogonality constraint V ⊤V = I). This can
be achieved by penalizing the columns of V by a sparsity-

inducing norm, such as the ℓ1 norm: Ωv(V k) =
∥

∥V k
∥

∥

1
.

In the next section we consider a regularization Ωv which

controls not only the sparsity but also the structure of the

supports of dictionary elements.

2.2 Structured Sparsity-Inducing Norms

The work of Jenatton et al. (2009) considered a norm which

induces structured sparsity in the following sense: the so-

lutions to a learning problem regularized by this norm have

a sparse support which moreover belongs to a certain set

of groups of variables. Interesting sets of possible supports

include sets of variables forming rectangles when arranged

on a grid and more generally convex subsets2.

1From Bach et al. (2008), we know that our formulation
is also equivalent to two other ones, penalized respectively by
λ

2

P

r

k=1
[Ωv(V k)]2+[Ωu(Uk)]2 and λ

P

r

k=1
Ωv(V k)Ωu(Uk).

2Although we use the term convex informally here, it can how-
ever be made precise with the notion of convex subgraphs (Chung,
1997).



R. Jenatton, G. Obozinski and F. Bach

The framework of Jenatton et al. (2009) can be summarized

as follows: if we denote by G a subset of the power set of

{1, . . . , p}, such that
⋃

G∈G G = {1, . . . , p}, we define the
mixed ℓ1/ℓ2 norm Ω on a vector y ∈ R

p as

Ω(y) =
∑

G∈G

{

∑

j∈G

(dG

j )2|yj |2
}

1
2

=
∑

G∈G

‖dG ◦ y‖2 ,

where (dG)G∈G ∈ R
p×|G| is a |G|-tuple of p-dimensional

vectors such that dG

j > 0 if j ∈ G and dG

j = 0 other-

wise. This normΩ linearly combines the ℓ2 norms of possi-

bly overlapping groups of variables, with variables in each

group being weighted by (dG)G∈G . Note that a same vari-

able yj belonging to two different groups G1, G2 ∈ G is

allowed to be weighted differently in G1 and G2 (by re-

spectively dG1

j and dG2

j ).

For specific choices of G, Ω leads to standard sparsity-

inducing norms. For example, when G is the set of all

singletons, Ω is the usual ℓ1 norm (assuming that all the

weights are equal to 1).

We focus on the case of a 2-dimensional grid where the set

of groups G is the set of all horizontal and vertical half-

spaces (see Fig. 1 taken from Jenatton et al., 2009). As

proved by Jenatton et al. (2009, Theorem 3.1), the ℓ1/ℓ2
norm Ω sets to zero some groups of variables ‖dG ◦ y‖2,
i.e., some entire horizontal and vertical half-spaces of the

grid, and therefore induces rectangular nonzero patterns.

Note that a larger set of convex patterns can be obtained by

adding in G half-planes with other orientations. In practice,
we use planes with angles that are multiples of π

4 , which

enables the nonzero patterns to have polygonal shapes with

up to 8 faces.

Figure 1: (Left) The set of blue and green groups with their

(not displayed) complements to penalize to select rectan-

gles. (Right) In red, an example of recovered pattern in this

setting.

Among sparsity inducing regularizations, the ℓ1 norm is

often privileged since it is convex. However, so-called con-

cave penalizations, such as penalization by an ℓα quasi-

norm, which are closer to the ℓ0 quasi-norm and penalize

more aggressively small coefficients can be preferred, es-

pecially in a context where the unregularized problem, here

dictionary learning is itself non convex. In light of recent

work showing the advantages of addressing sparse prob-

lems through concave penalization (e.g., see Zou and Li,

2008), we therefore generalize Ω to a family of non-convex

regularizers as follows: for α∈ (0, 1), we define the quasi-
norm Ωα for all vectors y∈R

p as

Ωα(y) =

{

∑

G∈G

‖dG ◦ y‖α2
}

1
α

= ‖ (‖dG ◦ y‖2)G∈G ‖α ,

where we denote by (‖dG ◦ y‖2)G∈G ∈ R
1×|G| the |G|-

tuple composed of the different blocks ‖dG ◦ y‖2. We thus

replace the (convex) ℓ1/ℓ2 norm Ω by the (neither convex,

nor concave) ℓα/ℓ2 quasi-norm Ωα. While leading to the

same set of (non)zero patterns, the ℓα quasi-norm yields

sparsity at the group level more aggressively.

3 Optimization

We consider the optimization of Eq. (1) where we use

Ωv = Ωα to regularize the dictionary V . We discuss in

Section 3.3 which norms Ωu we can handle in this opti-

mization framework.

3.1 Formulation as a Sequence of Convex Problems

We now consider Eq. (1) where we take Ωv to be Ωα, α ∈
(0, 1), that is,















min
U∈R

n×r,
V ∈R

p×r

1

2np

∥

∥X−UV ⊤
∥

∥

2

F
+ λ

r
∑

k=1

Ωα(V k)

s.t. ∀k, Ωu(Uk) ≤ 1,

(2)

Although the minimization problem in Eq. (2) is still con-

vex in U for V fixed, the converse is not true anymore

because of Ωα. Indeed, the formulation in V is non-

differentiable and non-convex. To address this problem, we

use the variational equality based on the following lemma

that is related3 to ideas from Micchelli and Pontil (2006):

Lemma 3.1. Let α ∈ (0, 2) and β = α
2−α . For any vector

y ∈ R
p, we have the following equality

‖y‖α = min
z∈R

p
+

1

2

p
∑

j=1

y2
j

zj
+

1

2
‖z‖β ,

and the minimum is uniquely attained for zj =

|yj |2−α ‖y‖α−1
α , ∀j ∈ {1, . . . , p}.

Proof. Let ψ : z 7→ ∑p
j=1 y

2
j z

−1
j + ‖z‖β be the contin-

uously differentiable function defined on (0,+∞). We

have lim‖z‖β→∞ ψ(z) = +∞ and limzj→0 ψ(z) = +∞
if yj 6= 0 (for yj = 0, note that minz∈R

p
+
ψ(z) =

minz∈R
p
+

,zj=0 ψ(z)). Thus, the infimum exists and it is at-

tained. Taking the derivative w.r.t. zj (for zj > 0) leads to
the expression of the unique minimum, expression that is

still correct for zj = 0.

3Note that we depart from Micchelli and Pontil (2006) who
consider a quadratic upperbound on the squared norm. We prefer
to remain in the standard dictionary learning framework where the
penalization is not squared.
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To reformulate problem (2), let us consider the |G|-tuple
(ηG)G∈G ∈ R

r×|G| of r-dimensional vectors ηG that satisfy

for all k ∈ {1, . . . , r} and G ∈ G, ηG

k ≥ 0. It follows from
Lemma (3.1) that 2

∑r
k=1 Ωα(V k) is equal to

min
(ηG)G∈G∈R

r×|G|
+

r
∑

k=1

[

‖(ηG

k )G∈G‖β +
∑

G∈G

∥

∥V k◦ dG
∥

∥

2

2
(ηG

k )−1

]

,

that can be rewritten in turn as

min
(ηG)G∈G∈R

r×|G|
+

r
∑

k=1

(V k)⊤Diag
(

ζk
)−1

V k + ‖(ηG

k )G∈G‖β ,

with ζ∈R
p×r defined by4 ζjk=

{
∑

G∈G,
G∋j

(dG

j )2(ηG

k )−1
}−1

.

This leads to the following formulation

min
U, V, Ωu(Uk)≤1

(ηG)G∈G∈R
r×|G|
+

1

2np

∥

∥X−UV ⊤
∥

∥

2

F
+

λ

2

r
∑

k=1

[

(V k)⊤Diag
(

ζk
)−1

V k + ‖(ηG

k )G∈G‖β
]

, (3)

that is equivalent to Eq. (2) and quadratic with respect to V .

3.2 Sharing Structure among Dictionary Elements

So far, the regularization quasi-norm Ωα has been used to

induce a structure inside each dictionary element taken sep-

arately. Nonetheless, some applications may also benefit

from a control of the structure across dictionary elements.

For instance it can be desirable to impose the constraint that

several dictionary elements share the exact same nonzero

patterns. In the context of face recognition, this could be

relevant to model the variability of faces as the combined

variability of several parts, with each part having a small

support (such as eyes), and having its variance itself ex-

plained by several dictionary elements (corresponding for

example to the color and the shape of the eyes).

To this end, we consider M, a partition of {1, . . . , r}.
Imposing that two dictionary elements V k and V k′

share

the same sparsity pattern is equivalent to imposing that

V k
i and V k′

i are simultaneously zero or non-zero. Follow-

ing the approach used for joint feature selection (Obozin-

ski et al., 2009) where the ℓ1 norm is composed with an

ℓ2 norm, we compose the norm Ωα with the ℓ2 norm

V M
i = ‖(V k

i )k∈M‖2, of all ith entries of each dictionary

element of a class M of the partition M, leading to the

regularization:

∑

M∈M

Ωα(V M
i ) =

∑

M∈M

[

∑

G∈G

∥

∥(V k
i d

G

i )i∈G, k∈M

∥

∥

α

2

]
1
α

. (4)

4For the sake of clarity, we do not specify the dependence of
ζ on (ηG)G∈G .

In fact, not surprisingly given that similar results hold for

the group Lasso (Bach, 2008), it can be shown that the

above extension is equivalent to the variational formulation

min
U, V, Ωu(Uk)≤1

(ηG)G∈G∈R
|M|×|G|
+

1

2np

∥

∥X−UV ⊤
∥

∥

2

F
+

λ

2

∑

M∈M

[

∑

k∈M

(V k)⊤Diag
(

ζM
)−1

V k + ‖(ηG

M )G∈G‖β
]

,

with class specific variables ηM , ζM ,M ∈M, defined in a

similar way to ηk and ζk, k∈{1, . . . , r}.

3.3 Algorithm

The main optimization procedure described in Algorithm 1

is based on a cyclic optimization over the three variables

involved, namely (ηG)G∈G , U and V . We use Lemma (3.1)

to solve (2) through a sequence of problems that are convex

in U for fixed V (and conversely, convex in V for fixed U ).

For this sequence of problems, we then present efficient

optimization procedures based on block coordinate descent

(BCD) (Bertsekas, 1995, Section 2.7). We describe these

in detail in Algorithm 1. Note that we depart from the ap-

proach of Jenatton et al. (2009) who use an active set algo-

rithm. Their approach does not indeed allow warm restarts,

which is crucial in our alternating optimization scheme.

Update of (ηG)G∈G . The update of (ηG)G∈G is straight-

forward (even if the underlying minimization problem is

non-convex), since the minimizer (ηG)∗ in Lemma (3.1) is

given in closed-form. In practice, following Micchelli and

Pontil (2006), we avoid numerical instability near zero with

the smoothed update ηG

k ← max{(ηG

k )∗, ε}, with ε≪ 1.

Update of U . The update of U follows the technique sug-

gested by Mairal et al. (2009). Each column Uk of U is

constrained separately through Ωu(Uk). Furthermore, if

we assume that V and {U j}j 6=k are fixed, some basic alge-

bra leads to

arg min
Ωu(Uk)≤1

1

2np

∥

∥X−UV ⊤
∥

∥

2

F

= arg min
Ωu(Uk)≤1

∥

∥Uk−
∥

∥V k
∥

∥

−2

2

(

X−
∑

j 6=k

[U j ]⊤V j
)

V k
∥

∥

2

2

= arg min
Ωu(Uk)≤1

∥

∥Uk− w
∥

∥

2

2
, (5)

which is simply the Euclidean projection ΠΩu
(w) of w

onto the unit ball of Ωu. Consequently, the cost of the BCD

update of U depends on how fast we can perform this pro-

jection; the ℓ1 and ℓ2 norms are typical cases where the

projection can be computed efficiently. In the experiments,

we take Ωu to be the ℓ2 norm.

In addition, since the function Uk 7→ 1
2np

∥

∥X−UV ⊤
∥

∥

2

F
is

continuously differentiable on the (closed convex) unit ball

ofΩu, the convergence of the BCD procedure is guaranteed
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since the minimum in Eq. (5) is unique (Bertsekas, 1995,

Proposition 2.7.1). The complete update of U is given in

Algorithm 1.

Update of V . A fairly natural way to update V would

be to compute the closed form solutions available for each

row of V . Indeed, both the loss 1
2np

∥

∥X−UV ⊤
∥

∥

2

F
and the

penalization on V are separable in the rows of V , leading to

p independent ridge-regression problems, implying in turn

p matrix inversions.

However, in light of the update of U , we consider again

a BCD scheme on the columns of V that turns out to be

much more efficient, without requiring any non-diagonal

matrix inversion. The detailed procedure is given in Al-

gorithm 1. The convergence follows along the same argu-

ments as those used for U .

Algorithm 1 Main procedure for solving Eq. (3).

Input: Dictionary size r, data matrix X .

Initialization: Initialization of U, V (possibly random).

while ( stopping criterion not reached )

Update (ηG)G∈G : closed-form solution.

Update U by BCD:

for t = 1 to Tu, for k = 1 to r:

Uk ← ΠΩu
(Uk+

∥

∥V k
∥

∥

−2

2
(XV k−UV ⊤V k)).

Update V by BCD:

for t = 1 to Tv , for k = 1 to r:

V k←Diag
(

ζk
)

Diag
(

∥

∥Uk
∥

∥

2

2
ζk+npλ1

)−1

(X⊤Uk

−V U⊤Uk+
∥

∥Uk
∥

∥

2

2
V k).

Output: Decomposition U, V .

Our problem is not jointly convex in (ηG)G∈G , U and V ,

which raises the question of the sensitivity of the optimiza-

tion to its initialization. This point will be discussed in

Section 4. In practice, the stopping criterion relies on the

relative decrease (typically 10−3) in the cost function in

Eq. (2).

Algorithmic complexity. The complexity of Algo-

rithm 1 can be decomposed into 3 terms, corresponding to

the update procedures of (ηG)G∈G , U and V . We denote by

Tu (respectively Tv) the number of updates of U (respec-

tively V ) in Algorithm 1. First, computing (ηG)G∈G and ζ
costs O(r|G|+(|G| + r)

∑

G∈G |G|) = O(pr|G| + p|G|2).
The update of U requiresO((p+Tun)r2 +(np+CΠTu)r)
operations, where CΠ is the cost of projecting onto the

unit ball of Ωu. Similarly, we get for the update of V a

complexity of O((n + Tvp)r
2 + npr). In practice, we

notice that the BCD updates for both U and V require

only few steps, so that we choose Tu = Tv = 5. In

our experiments, the algorithmic complexity simplifies to

O(p2 + r2 max{n, p}+ rpmax{p1/2, n}) times the num-

ber of iterations in Algorithm 1. Note that the complexity

is linear in n and is quadratic in r, which is empirically the

computational bottleneck.

Extension to NMF. Our formalism does not cover the

positivity constraints of non-negative matrix factorization,

but it is straightforward to extend it at the cost of an addi-

tional cheap threshold operation (to project onto the posi-

tive orthant) in the BCD updates of U and V .

4 Experiments

We first consider the denoising of synthetic signals to illus-

trate the effect of our regularization. We then focus on the

application of SSPCA to a face recognition problem and

we show that, by adding a sparse structured prior instead of

a simple sparse prior, we gain in robustness to occlusions.

In preliminary experiments, we considered the exact reg-

ularization from Jenatton et al. (2009), i.e., with α = 1,
but found that the obtained patterns were not sufficiently

sparse and salient. We therefore turned to the setting where

the parameter α is in (0, 1). We chose α = 0.5, since much

smaller or larger values yield either not sparse enough so-

lutions or numerical instability.

By definition, dictionary learning belongs to unsupervised

learning; in that sense, our method may appear first as a

tool for exploratory data analysis, which leads us naturally

to qualitatively analyze the results of our decompositions

(e.g., by visualizing the learned dictionaries). This is obvi-

ously a difficult and subjective exercise, beyond the assess-

ment of the consistency of the method in artificial examples

where the “true” dictionnary is known. For that reason, we

endeavor in the experiments to compare our method ob-

jectively and quantitatively with other techniques. Specif-

ically, we apply our method within either a denoising or

a classification setting, and assess its performance respec-

tively by the obtained increase in explained variance or

classification accuracy.

A Matlab toolbox implementing our method can be down-

loaded from http://www.di.ens.fr/~jenatton/ .

4.1 Denoising of Synthetic Signals

In this first experiment, we consider signals generated by

the following noisy linear model

u1V
1 + u2V

2 + u3V
3 + ε ∈ R

400, (6)

where V = [V1,V2,V3] ∈ R
400×3 are sparse and

structured dictionary elements organized on a 20 × 20-
dimensional grid (V is represented on the top row of

Fig. 2). The components of the noise vector ε are in-

dependent and identically distributed according to a cen-

tered Gaussian distribution with its variance set to ob-

tain a signal-to-noise ratio (SNR) of 0.5. The coefficients

[u1, u2, u3] that linearly combine the dictionary elements

of V are generated according to a centered Gaussian distri-

bution, with the following covariance matrix
2
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From 250 of such signals, we learn a decomposition Û V̂ ⊤

with r = 3 dictionary elements, which seems a reason-

able choice of r in an attempt to recover the underlying (in

this case, known) structure of V. For SPCA and SSPCA,

the regularization parameter λ is selected by 5-fold cross-

validation on the reconstruction error. Based on the learned

dictionary V̂ , we denoise 1000 new signals generated in the

same way. We report in Table 1 the results of the denoising,

for PCA, SPCA and SSPCA.

Figure 2: Top row: dictionary V=[V1,V2,V3]∈R
400×3

used to generate the signals Eq. (6). From the second to

the bottom row: dictionary elements recovered from 250

signals by PCA, SPCA and SSPCA (best seen in color).

The difficulty of this task is essentially twofold and lies in

(1) the high level of noise and in (2) the small number of

signals (i.e., 250 signals against 400 variables) available to

learn the decomposition.

As displayed on Fig. 2, PCA and SPCA learn very scattered

and uninterpretable dictionary elements. On the other hand,

the sparse structured prior we put through Ωα helps to re-

cover the initial structure of V, which, in turn, improves

upon the denoising performance of SSPCA (see Table 1).

Note that in order to assess the statistical significance of the

differences between the average denoising performances of

Table 1, one has to consider the sample standard devia-

tion divided by
√

1000 (Lehmann and Romano, 2005), i.e.,

roughly ≈ 0.007.

The setting we consider here raises the interesting question

of model identifiability, i.e., whether we can recover the

true dictionary elements that generated the signals, which

we defer to future work.

PCA SPCA SSPCA

Estimation error: 0.41±0.22 0.40±0.22 0.34±0.21

Table 1: Average and standard deviation of the normal-

ized estimation error, computed over 1000 signals for PCA,

SPCA and SSPCA.

4.2 Face Recognition

We apply SSPCA on the cropped AR Face Database (Mar-

tinez and Kak, 2001) that consists of 2600 face images,

corresponding to 100 individuals (50 women and 50 men).

For each subject, there are 14 non-occluded poses and

12 occluded ones (the occlusions are due to sunglasses

and scarfs). We reduce the resolution of the images from

165×120 pixels to 38×27 pixels for computational reasons.

Fig. 3 shows examples of learned dictionaries (for r = 36
elements), for NMF, SSPCA and SSPCAwith shared struc-

ture (see Section 3.2). While NMF finds sparse but spa-

tially unconstrained patterns, SSPCA select sparse convex

areas that correspond to a more natural segment of faces.

For instance, meaningful parts such as the mouth and the

eyes are recovered by the dictionary.

We now quantitatively compare SSPCA, SPCA, PCA and

NMF on a face recognition problem. We first split the data

into 2 parts, the occluded faces and non-occluded ones. For

different sizes of the dictionary, we apply each of the afore-

mentioned dimensionality reduction techniques to the non-

occluded faces. Keeping the learned dictionary V , we de-

compose both non-occluded and occluded faces on V . We

then classify the occluded faces with a k-nearest-neighbors

classifier (k-NN), based on the obtained low-dimensional

representations U . Given the size of the dictionary, we

choose the number of neighbor(s) and the amount of regu-

larization λ by cross-validation5 on the non-occluded faces.

The formulations of NMF, SPCA and SSPCA are non-

convex and as a consequence, the local minima reached by

those methods might a priori be sensitive to the initializa-

tion. To evaluate this sensitivity, we repeat the protocol

described above 10 times and display in Fig. 4 the median,

first and third quartile of the classification scores obtained

in this way. In practice we found the performance on the

test set to be pretty stable as a function of the initializa-

tion. We denote by shared-SSPCA (resp. shared-SPCA)

the models where we impose, on top of the structure of

Ωα, to have only 10 different nonzero patterns among the

learned dictionaries (see Section 3.2).

5We perform 5-fold cross-validation and the number of near-
est neighbor(s) is searched in {1, 3, 5} while log

10
(λ) is in

{−11,−10.5, . . . ,−7}. For the dictionary, we consider the sizes
r ∈ {10, 20, . . . , 150}.
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Figure 3: Three learned dictionaries of faces with r = 36:
NMF (top), SSPCA (middle) and shared-SSPCA (bottom)

(i.e., SSPCA with |M| = 12 different patterns of size 3).
The dictionary elements are sorted in decreasing order of

explained variance. While NMF gives sparse spatially un-

constrained patterns, SSPCA finds convex areas that cor-

respond to more natural face segments. SSPCA captures

the left/right illuminations and retrieves pairs of symmetric

patterns. Some displayed patterns do not seem to be con-

vex, e.g., nonzero patterns located at two opposite corners

of the grid. However, a closer look at these dictionary el-

ements shows that convex shapes are indeed selected, and

that small numerical values (just as regularizing by ℓ2 norm
may lead to) give the visual impression of having zeroes in

convex nonzero patterns. This also shows that if a noncon-

vex pattern has to be selected, it will be, by considering its

convex hull.

We performed a Wilcoxon signed-rank (Lehmann and Ro-

mano, 2005) between the classification scores of NMF

and SSPCA, and for dictionary sizes greater than 100 (up

to 150), our approach performs better than NMF at the

5% significance level. For smaller dictionaries, NMF and

SSPCA perform similarly. The other methods, including

PCA and SPCA, obtained overall lower scores than NMF

and can also be shown to perform significantly worse than

SSPCA.

As a baseline, we also plot the classification score that we

obtain when we directly apply k-NN on the raw data, with-

out preprocessing. Because of its local dictionary, SSPCA

proves to be more robust to occlusions and therefore out-

performs the other methods on this classification task. On

the other hand, SPCA, that yields sparsity without a struc-

tured prior, performs poorly. Sharing structure across the

dictionary elements (see Section 3.2) seems to help SPCA

for which no structure information is otherwise available.

The goal of our paper is not to compete with state-of-the-art

techniques of face recognition, but to demonstrate the im-

provement obtained between the ℓ1 norm and more struc-

tured norms. We could still improve upon our results using

non-linear classification (e.g., with a SVM) or by refining

our features (e.g., with a Laplacian filter).
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Figure 4: Classification accuracy versus dictionary size:

each dimensionality reduction technique is used with k-NN

to classify occluded faces. SSPCA shows better robustness

to occlusions. The points, lower and upper error bars on

the curves respectively represent the median, first and third

quartile, based on 10 runs.
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5 Conclusions

We proposed to apply a non-convex variant of the regular-

ization introduced by Jenatton et al. (2009) to the problem

of structured sparse dictionary learning. We present an effi-

cient block-coordinate descent algorithm with closed-form

updates. In a denoising task of sparse structured signals,

our approach led to better performance and to a more inter-

pretable decomposition of the data. For face recognition,

the dictionaries learned have increased robustness to occlu-

sions compared to NMF.

In future work, we would like to investigate Bayesian

frameworks that would define similar structured priors and

allow the principled choice of the regularization parameter

and the number of dictionary elements (Zhou et al., 2009).

Moreover, although we focus in this work on controlling

the structure of the dictionary V , we could instead impose

structure on the decompostion coefficients U and study the

induced effect on the dictionary V (Kavukcuoglu et al.,

2009). This could be straightforward ti do with the same

formulation, by transposing the data matrix X . Finally, we

intend to apply this structured sparsity-inducing regulariza-

tion for multi-task learning, in order to take advantage of

the structure between tasks.
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