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Abstract
Given a sample covariance matrix, we examine the problem of maximizing the variance explained
by a linear combination of the input variables while constraining the number of nonzero coefficients
in this combination. This is known as sparse principal component analysis and has a wide array
of applications in machine learning and engineering. We formulate a new semidefinite relaxation
to this problem and derive a greedy algorithm that computes a full set of good solutions for all
target numbers of non zero coefficients, with total complexity O(n3), where n is the number of
variables. We then use the same relaxation to derive sufficient conditions for global optimality of a
solution, which can be tested in O(n3) per pattern. We discuss applications in subset selection and
sparse recovery and show on artificial examples and biological data that our algorithm does provide
globally optimal solutions in many cases.
Keywords: PCA, subset selection, sparse eigenvalues, sparse recovery, lasso

1. Introduction

Principal component analysis (PCA) is a classic tool for data analysis, visualization or compres-
sion and has a wide range of applications throughout science and engineering. Starting from a
multivariate data set, PCA finds linear combinations of the variables called principal components,
corresponding to orthogonal directions maximizing variance in the data. Numerically, a full PCA
involves a singular value decomposition of the data matrix.

One of the key shortcomings of PCA is that the factors are linear combinations of all original
variables; that is, most of factor coefficients (or loadings) are non-zero. This means that while PCA
facilitates model interpretation and visualization by concentrating the information in a few factors,
the factors themselves are still constructed using all variables, hence are often hard to interpret.

In many applications, the coordinate axes involved in the factors have a direct physical inter-
pretation. In financial or biological applications, each axis might correspond to a specific asset or
gene. In problems such as these, it is natural to seek a trade-off between the two goals of statisti-
cal fidelity (explaining most of the variance in the data) and interpretability (making sure that the
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factors involve only a few coordinate axes). Solutions that have only a few nonzero coefficients in
the principal components are usually easier to interpret. Moreover, in some applications, nonzero
coefficients have a direct cost (e.g., transaction costs in finance) hence there may be a direct trade-
off between statistical fidelity and practicality. Our aim here is to efficiently derive sparse principal
components, that is, a set of sparse vectors that explain a maximum amount of variance. Our belief
is that in many applications, the decrease in statistical fidelity required to obtain sparse factors is
small and relatively benign.

In what follows, we will focus on the problem of finding sparse factors which explain a maxi-
mum amount of variance, which can be written:

max
‖z‖≤1

zT Σz−ρCard(z) (1)

in the variable z ∈ Rn, where Σ ∈ Sn is the (symmetric positive semi-definite) sample covariance
matrix, ρ is a parameter controlling sparsity, and Card(z) denotes the cardinal (or `0 norm) of z,
that is, the number of non zero coefficients of z.

While PCA is numerically easy, each factor requires computing a leading eigenvector, which can
be done in O(n2), sparse PCA is a hard combinatorial problem. In fact, Moghaddam et al. (2006b)
show that the subset selection problem for ordinary least squares, which is NP-hard (Natarajan,
1995), can be reduced to a sparse generalized eigenvalue problem, of which sparse PCA is a par-
ticular intance. Sometimes factor rotation techniques are used to post-process the results from PCA
and improve interpretability (see QUARTIMAX by Neuhaus and Wrigley 1954, VARIMAX by
Kaiser 1958 or Jolliffe 1995 for a discussion). Another simple solution is to threshold the load-
ings with small absolute value to zero (Cadima and Jolliffe, 1995). A more systematic approach to
the problem arose in recent years, with various researchers proposing nonconvex algorithms (e.g.,
SCoTLASS by Jolliffe et al. 2003, SLRA by Zhang et al. 2002 or D.C. based methods such as
(Sriperumbudur et al., 2007) which find modified principal components with zero loadings). The
SPCA algorithm, which is based on the representation of PCA as a regression-type optimization
problem (Zou et al., 2006), allows the application of the LASSO (Tibshirani, 1996), a penaliza-
tion technique based on the `1 norm. With the exception of simple thresholding, all the algorithms
above require solving non convex problems. Recently also, d’Aspremont et al. (2007b) derived an
`1 based semidefinite relaxation for the sparse PCA problem (1) with a complexity of O(n4√logn)
for a given ρ. Finally, Moghaddam et al. (2006a) used greedy search and branch-and-bound meth-
ods to solve small instances of problem (1) exactly and get good solutions for larger ones. Each step
of this greedy algorithm has complexity O(n3), leading to a total complexity of O(n4) for a full set
of solutions. Moghaddam et al. (2007) improve this bound in the regression/discrimination case.

Our contribution here is twofold. We first derive a greedy algorithm for computing a full set of
good solutions (one for each target sparsity between 1 and n) at a total numerical cost of O(n3) based
on the convexity of the of the largest eigenvalue of a symmetric matrix. We then derive tractable
sufficient conditions for a vector z to be a global optimum of (1). This means in practice that, given
a vector z with support I, we can test if z is a globally optimal solution to problem (1) by performing
a few binary search iterations to solve a one dimensional convex minimization problem. In fact, we
can take any sparsity pattern candidate from any algorithm and test its optimality. This paper builds
on the earlier conference version (d’Aspremont et al., 2007a), providing new and simpler conditions
for optimality and describing applications to subset selection and sparse recovery.

While there is certainly a case to be made for `1 penalized maximum eigenvalues (à la d’Aspremont
et al., 2007b), we strictly focus here on the `0 formulation. However, it was shown recently (see
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Candès and Tao 2005, Donoho and Tanner 2005 or Meinshausen and Yu 2006 among others) that
there is in fact a deep connection between `0 constrained extremal eigenvalues and LASSO type
variable selection algorithms. Sufficient conditions based on sparse eigenvalues (also called re-
stricted isometry constants in Candès and Tao 2005) guarantee consistent variable selection (in the
LASSO case) or sparse recovery (in the decoding problem). The results we derive here produce
upper bounds on sparse extremal eigenvalues and can thus be used to prove consistency in LASSO
estimation, prove perfect recovery in sparse recovery problems, or prove that a particular solution of
the subset selection problem is optimal. Of course, our conditions are only sufficient, not necessary
and the duality bounds we produce on sparse extremal eigenvalues cannot always be tight, but we
observe that the duality gap is often small.

The paper is organized as follows. We begin by formulating the sparse PCA problem in Section
2. In Section 3, we write an efficient algorithm for computing a full set of candidate solutions
to problem (1) with total complexity O(n3). In Section 4 we then formulate a convex relaxation
for the sparse PCA problem, which we use in Section 5 to derive tractable sufficient conditions
for the global optimality of a particular sparsity pattern. In Section 6 we detail applications to
subset selection, sparse recovery and variable selection. Finally, in Section 7, we test the numerical
performance of these results.

1.1 Notation

For a vector z ∈ R, we let ‖z‖1 = ∑n
i=1 |zi| and ‖z‖ =

(

∑n
i=1 z2

i

)1/2
, Card(z) is the cardinality of z,

that is, the number of nonzero coefficients of z, while the support I of z is the set {i : zi 6= 0} and
we use Ic to denote its complement. For β ∈ R, we write β+ = max{β,0} and for X ∈ Sn (the set of
symmetric matrix of size n× n) with eigenvalues λi, Tr(X)+ = ∑n

i=1 max{λi,0}. The vector of all
ones is written 1, while the identity matrix is written I. The diagonal matrix with the vector u on the
diagonal is written diag(u).

2. Sparse PCA

Let Σ ∈ Sn be a symmetric matrix. We consider the following sparse PCA problem:

φ(ρ) ≡ max
‖z‖≤1

zT Σz−ρCard(z) (2)

in the variable z ∈ Rn where ρ > 0 is a parameter controlling sparsity. We assume without loss of
generality that Σ ∈ Sn is positive semidefinite and that the n variables are ordered by decreasing
marginal variances, that is, that Σ11 ≥ . . . ≥ Σnn. We also assume that we are given a square root A
of the matrix Σ with Σ = AT A, where A ∈ Rn×n and we denote by a1, . . . ,an ∈ Rn the columns of A.
Note that the problem and our algorithms are invariant by permutations of Σ and by the choice of
square root A. In practice, we are very often given the data matrix A instead of the covariance Σ.

A problem that is directly related to (2) is that of computing a cardinality constrained maximum
eigenvalue, by solving:

maximize zT Σz
subject to Card(z) ≤ k

‖z‖ = 1,
(3)
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in the variable z ∈ Rn. Of course, this problem and (2) are related. By duality, an upper bound on
the optimal value of (3) is given by:

inf
ρ∈P

φ(ρ)+ρk.

where P is the set of penalty values for which φ(ρ) has been computed. This means in particular
that if a point z is provably optimal for (2), it is also globally optimum for (3) with k = Card(z).

We now begin by reformulating (2) as a relatively simple convex maximization problem. Sup-
pose that ρ ≥ Σ11. Since zT Σz ≤ Σ11(∑n

i=1 |zi|)2 and (∑n
i=1 |zi|)2 ≤ ‖z‖2 Card(z) for all z ∈ Rn, we

have:
φ(ρ) = max‖z‖≤1 zT Σz−ρCard(z)

≤ (Σ11 −ρ)Card(z)
≤ 0,

hence the optimal solution to (2) when ρ ≥ Σ11 is z = 0. From now on, we assume ρ ≤ Σ11 in which
case the inequality ‖z‖ ≤ 1 is tight. We can represent the sparsity pattern of a vector z by a vector
u ∈ {0,1}n and rewrite (2) in the equivalent form:

φ(ρ) = max
u∈{0,1}n

λmax(diag(u)Σdiag(u))−ρ1T u

= max
u∈{0,1}n

λmax(diag(u)AT Adiag(u))−ρ1T u

= max
u∈{0,1}n

λmax(Adiag(u)AT )−ρ1T u,

using the fact that diag(u)2 = diag(u) for all variables u ∈ {0,1}n and that for any matrix B,
λmax(BT B) = λmax(BBT ). We then have:

φ(ρ) = max
u∈{0,1}n

λmax(Adiag(u)AT )−ρ1T u

= max
‖x‖=1

max
u∈{0,1}n

xT Adiag(u)AT x−ρ1T u

= max
‖x‖=1

max
u∈{0,1}n

n

∑
i=1

ui((a
T
i x)2 −ρ).

Hence we finally get, after maximizing in u (and using maxv∈{0,1} βv = β+):

φ(ρ) = max
‖x‖=1

n

∑
i=1

((aT
i x)2 −ρ)+, (4)

which is a nonconvex problem in the variable x ∈ Rn. We then select variables i such that (aT
i x)2 −

ρ > 0. Note that if Σii = aT
i ai < ρ, we must have (aT

i x)2 ≤ ‖ai‖2‖x‖2 < ρ hence variable i will never
be part of the optimal subset and we can remove it.

3. Greedy Solutions

In this section, we focus on finding a good solution to problem (2) using greedy methods. We first
present very simple preprocessing solutions with complexity O(n logn) and O(n2). We then recall
a simple greedy algorithm with complexity O(n4). Finally, our first contribution in this section is
to derive an approximate greedy algorithm that computes a full set of (approximate) solutions for
problem (2), with total complexity O(n3).
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3.1 Sorting and Thresholding

The simplest ranking algorithm is to sort the diagonal of the matrix Σ and rank the variables by
variance. This works intuitively because the diagonal is a rough proxy for the eigenvalues: the
Schur-Horn theorem states that the diagonal of a matrix majorizes its eigenvalues (Horn and John-
son, 1985); sorting costs O(n logn). Another quick solution is to compute the leading eigenvector
of Σ and form a sparse vector by thresholding to zero the coefficients whose magnitude is smaller
than a certain level. This can be done with cost O(n2).

3.2 Full Greedy Solution

Following Moghaddam et al. (2006a), starting from an initial solution of cardinality one at ρ = Σ11,
we can update an increasing sequence of index sets Ik ⊆ [1,n], scanning all the remaining variables
to find the index with maximum variance contribution.

Greedy Search Algorithm.

• Input: Σ ∈ Rn×n

• Algorithm:

1. Preprocessing: sort variables by decreasing diagonal elements and permute elements of
Σ accordingly. Compute the Cholesky decomposition Σ = AT A.

2. Initialization: I1 = {1}, x1 = a1/‖a1‖.

3. Compute ik = argmaxi/∈Ik
λmax

(

∑ j∈Ik∪{i} a jaT
j

)

.

4. Set Ik+1 = Ik ∪{ik} and compute xk+1 as the leading eigenvector of ∑ j∈Ik+1
a jaT

j .

5. Set k = k +1. If k < n go back to step 3.

• Output: sparsity patterns Ik.

At every step, Ik represents the set of nonzero elements (or sparsity pattern) of the current point
and we can define zk as the solution to problem (2) given Ik, which is:

zk = argmax
{zIc

k
=0, ‖z‖=1}

zT Σz−ρk,

which means that zk is formed by padding zeros to the leading eigenvector of the submatrix ΣIk,Ik .
Note that the entire algorithm can be written in terms of a factorization Σ = AT A of the matrix Σ,
which means significant computational savings when Σ is given as a Gram matrix. The matrices
ΣIk,Ik and ∑i∈Ik

aiaT
i have the same eigenvalues and their eigenvectors are transformed of each other

through the matrix A, that is, if z is an eigenvector of ΣIk,Ik , then AIk z/‖AIk z‖ is an eigenvector of
AIk A

T
Ik

.

3.3 Approximate Greedy Solution

Computing n−k eigenvalues at each iteration is costly and we can use the fact that uuT is a subgra-
dient of λmax at X if u is a leading eigenvector of X (Boyd and Vandenberghe, 2004), to get:

λmax

(

∑
j∈Ik∪{i}

a ja
T
j

)

≥ λmax

(

∑
j∈Ik

a ja
T
j

)

+(xT
k ai)

2,
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which means that the variance is increasing by at least (xT
k ai)

2 when variable i is added to Ik. This
provides a lower bound on the objective which does not require finding n− k eigenvalues at each
iteration. We then derive the following algorithm:

Approximate Greedy Search Algorithm.

• Input: Σ ∈ Rn×n

• Algorithm:

1. Preprocessing. Sort variables by decreasing diagonal elements and permute elements of
Σ accordingly. Compute the Cholesky decomposition Σ = AT A.

2. Initialization: I1 = {1}, x1 = a1/‖a1‖.

3. Compute ik = argmaxi/∈Ik
(xT

k ai)
2

4. Set Ik+1 = Ik ∪{ik} and compute xk+1 as the leading eigenvector of ∑ j∈Ik+1
a jaT

j .

5. Set k = k +1. If k < n go back to step 3.

• Output: sparsity patterns Ik.

Again, at every step, Ik represents the set of nonzero elements (or sparsity pattern) of the current
point and we can define zk as the solution to problem (2) given Ik, which is:

zk = argmax
{zIc

k
=0, ‖z‖=1}

zT Σz−ρk,

which means that zk is formed by padding zeros to the leading eigenvector of the submatrix ΣIk,Ik .
Better points can be found by testing the variables corresponding to the p largest values of (xT

k ai)
2

instead of picking only the best one.

3.4 Computational Complexity

The complexity of computing a greedy regularization path using the classic greedy algorithm in
Section 3.2 is O(n4): at each step k, it computes (n− k) maximum eigenvalue of matrices with
size k. The approximate algorithm in Section 3.3 computes a full path in O(n3): the first Cholesky
decomposition is O(n3), while the complexity of the k-th iteration is O(k2) for the maximum eigen-
value problem and O(n2) for computing all products (xT a j). Also, when the matrix Σ is directly
given as a Gram matrix AT A with A ∈ Rq×n with q < n, it is advantageous to use A directly as the
square root of Σ and the total complexity of getting the path up to cardinality p is then reduced
to O(p3 + p2n) (which is O(p3) for the eigenvalue problems and O(p2n) for computing the vector
products).

4. Convex Relaxation

In Section 2, we showed that the original sparse PCA problem (2) could also be written as in (4):

φ(ρ) = max
‖x‖=1

n

∑
i=1

((aT
i x)2 −ρ)+.
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Because the variable x appears solely through X = xxT , we can reformulate the problem in terms of
X only, using the fact that when ‖x‖= 1, X = xxT is equivalent to Tr(X) = 1, X � 0 and Rank(X) =
1. We thus rewrite (4) as:

φ(ρ) = max. ∑n
i=1(a

T
i Xai −ρ)+

s.t. Tr(X) = 1, Rank(X) = 1
X � 0.

Note that because we are maximizing a convex function over the convex set (spectahedron) ∆n =
{X ∈ Sn : Tr(X) = 1, X � 0}, the solution must be an extreme point of ∆n (i.e., a rank one matrix),
hence we can drop the rank constraint here. Unfortunately, X 7→ (aT

i Xai − ρ)+, the function we
are maximizing, is convex in X and not concave, which means that the above problem is still hard.
However, we show below that on rank one elements of ∆n, it is also equal to a concave function of
X , and we use this to produce a semidefinite relaxation of problem (2).

Proposition 1 Let A ∈ Rn×n, ρ ≥ 0 and denote by a1, . . . ,an ∈ Rn the columns of A, an upper bound
on:

φ(ρ) = max. ∑n
i=1(a

T
i Xai −ρ)+

s.t. Tr(X) = 1, X � 0, Rank(X) = 1

can be computed by solving

ψ(ρ) = max. ∑n
i=1 Tr(X1/2BiX1/2)+

s.t. Tr(X) = 1, X � 0.
(5)

in the variables X ∈ Sn, where Bi = aiaT
i −ρI, or also:

ψ(ρ) = max. ∑n
i=1 Tr(PiBi)

s.t. Tr(X) = 1, X � 0, X � Pi � 0,
(6)

which is a semidefinite program in the variables X ∈ Sn, Pi ∈ Sn.

Proof We let X1/2 denote the positive square root (i.e., with nonnegative eigenvalues) of a symmetric
positive semi-definite matrix X . In particular, if X = xxT with ‖x‖= 1, then X1/2 = X = xxT , and for
all β ∈ R, βxxT has one eigenvalue equal to β and n−1 equal to 0, which implies Tr(βxxT )+ = β+.
We thus get:

(aT
i Xai −ρ)+ = Tr((aT

i xxT ai −ρ)xxT )+

= Tr(x(xT aia
T
i x−ρ)xT )+

= Tr(X1/2aia
T
i X1/2 −ρX)+ = Tr(X1/2(aia

T
i −ρI)X1/2)+.

For any symmetric matrix B, the function X 7→ Tr(X 1/2BX1/2)+ is concave on the set of symmetric
positive semidefinite matrices, because we can write it as:

Tr(X1/2BX1/2)+ = max
{0�P�X}

Tr(PB)

= min
{Y�B, Y�0}

Tr(Y X),
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where this last expression is a concave function of X as a pointwise minimum of affine functions.
We can now relax the original problem into a convex optimization problem by simply dropping the
rank constraint, to get:

ψ(ρ) ≡ max. ∑n
i=1 Tr(X1/2aiaT

i X1/2 −ρX)+

s.t. Tr(X) = 1, X � 0,

which is a convex program in X ∈ Sn. Note that because Bi has at most one nonnegative eigen-
value, we can replace Tr(X 1/2aiaT

i X1/2 − ρX)+ by λmax(X1/2aiaT
i X1/2 − ρX)+ in the above pro-

gram. Using the representation of Tr(X 1/2BX1/2)+ detailed above, problem (5) can be written as a
semidefinite program:

ψ(ρ) = max. ∑n
i=1 Tr(PiBi)

s.t. Tr(X) = 1, X � 0, X � Pi � 0,

in the variables X ∈ Sn, Pi ∈ Sn, which is the desired result.

Note that we always have ψ(ρ)≥ φ(ρ) and when the solution to the above semidefinite program
has rank one, ψ(ρ) = φ(ρ) and the semidefinite relaxation (6) is tight. This simple fact allows us to
derive sufficient global optimality conditions for the original sparse PCA problem.

5. Optimality Conditions

In this section, we derive necessary and sufficient conditions to test the optimality of solutions to the
relaxations obtained in Sections 3, as well as sufficient condition for the tightness of the semidefinite
relaxation in (6).

5.1 Dual Problem and Optimality Conditions

We first derive the dual problem to (6) as well as the Karush-Kuhn-Tucker (KKT) optimality con-
ditions:

Lemma 2 Let A∈Rn×n, ρ≥ 0 and denote by a1, . . . ,an ∈Rn the columns of A. The dual of problem
(6):

ψ(ρ) = max. ∑n
i=1 Tr(PiBi)

s.t. Tr(X) = 1, X � 0, X � Pi � 0,

in the variables X ∈ Sn, Pi ∈ Sn, is given by:

min. λmax (∑n
i=1Yi)

s.t. Yi � Bi, Yi � 0, i = 1, . . . ,n.
(7)

in the variables Yi ∈ Sn. Furthermore, the KKT optimality conditions for this pair of semidefinite
programs are given by:







(∑n
i=1Yi)X = λmax (∑n

i=1Yi)X
(X −Pi)Yi = 0, PiBi = PiYi

Yi � Bi, Yi,X ,Pi � 0, X � Pi, TrX = 1.
(8)
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Proof Starting from:
max. ∑n

i=1 Tr(PiBi)
s.t. 0 � Pi � X

Tr(X) = 1, X � 0,

we can form the Lagrangian as:

L(X ,Pi,Yi) =
n

∑
i=1

Tr(PiBi)+Tr(Yi(X −Pi))

in the variables X ,Pi,Yi ∈ Sn, with X ,Pi,Yi � 0 and Tr(X) = 1. Maximizing L(X ,Pi,Yi) in the primal
variables X and Pi leads to problem (7). The KKT conditions for this primal-dual pair of SDP can
be derived from Boyd and Vandenberghe (2004, p.267).

5.2 Optimality Conditions for Rank One Solutions

We now derive the KKT conditions for problem (6) for the particular case where we are given a
rank one candidate solution X = xxT and need to test its optimality. These necessary and sufficient
conditions for the optimality of X = xxT for the convex relaxation then provide sufficient conditions
for global optimality for the non-convex problem (2).

Lemma 3 Let A∈Rn×n, ρ≥ 0 and denote by a1, . . . ,an ∈Rn the columns of A. The rank one matrix
X = xxT is an optimal solution of (6) if and only if there are matrices Yi ∈ Sn, i = 1, . . . ,n such that:















λmax (∑n
i=1Yi) = ∑i∈I((a

T
i x)2 −ρ)

xTYix =

{

(aT
i x)2 −ρ if i ∈ I

0 if i ∈ Ic

Yi � Bi, Yi � 0.

where Bi = aiaT
i −ρI, i = 1, . . . ,n and Ic is the complement of the set I defined by:

max
i/∈I

(aT
i x)2 ≤ ρ ≤ min

i∈I
(aT

i x)2.

Furthermore, x must be a leading eigenvector of both ∑i∈I aiaT
i and ∑n

i=1Yi.

Proof We apply Lemma 2 given X = xxT . The condition 0 � Pi � xxT is equivalent to Pi = αixxT

and αi ∈ [0,1]. The equation PiBi = XYi is then equivalent to αi(xT Bix− xTYix) = 0, with xT Bix =
(aT

i x)2 −ρ and the condition (X −Pi)Yi = 0 becomes xTYix(1−αi) = 0. This means that xTYix =
((aT

i x)2 −ρ)+ and the first-order condition in (8) becomes λmax (∑n
i=1Yi) = xT (∑n

i=1Yi)x. Finally,
we recall from Section 2 that:

∑i∈I((a
T
i x)2 −ρ) = max

‖x‖=1
max

u∈{0,1}n

n

∑
i=1

ui((a
T
i x)2 −ρ)

= max
u∈{0,1}n

λmax(Adiag(u)AT )−ρ1T u

hence x must also be a leading eigenvector of ∑i∈I aiaT
i .
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The previous lemma shows that given a candidate vector x, we can test the optimality of X =
xxT for the semidefinite program (5) by solving a semidefinite feasibility problem in the variables
Yi ∈ Sn. If this (rank one) solution xxT is indeed optimal for the semidefinite relaxation, then x
must also be globally optimal for the original nonconvex combinatorial problem in (2), so the above
lemma provides sufficient global optimality conditions for the combinatorial problem (2) based on
the (necessary and sufficient) optimality conditions for the convex relaxation (5) given in lemma
2. In practice, we are only given a sparsity pattern I (using the results of Section 3 for example)
rather than the vector x, but Lemma 3 also shows that given I, we can get the vector x as the leading
eigenvector of ∑i∈I aiaT

i .
The next result provides more refined conditions under which such a pair (I,x) is optimal for

some value of the penalty ρ > 0 based on a local optimality argument. In particular, they allow us
to fully specify the dual variables Yi for i ∈ I.

Proposition 4 Let A ∈ Rn×n, ρ ≥ 0 and denote by a1, . . . ,an ∈ Rn the columns of A. Let x be the
largest eigenvector of ∑i∈I aiaT

i . Let I be such that:

max
i/∈I

(aT
i x)2 < ρ < min

i∈I
(aT

i x)2, (9)

the matrix X = xxT is optimal for problem (6) if and only if there are matrices Yi ∈ Sn satisfying

λmax

(

∑
i∈I

BixxT Bi

xT Bix
+ ∑

i∈Ic

Yi

)

≤ ∑
i∈I

((aT
i x)2 −ρ),

with Yi � Bi − BixxT Bi
xT Bix

, Yi � 0, where Bi = aiaT
i −ρI, i = 1, . . . ,n.

Proof We first prove the necessary condition by computing a first order expansion of the functions
Fi : X 7→ Tr(X1/2BiX1/2)+ around X = xxT . The expansion is based on the results in Appendix A
which show how to compute derivatives of eigenvalues and projections on eigensubspaces. More
precisely, Lemma 10 states that if xT Bx > 0, then, for any Y � 0:

Fi((1− t)xxT + tY ) = Fi(xxT )+
t

xT Bix
TrBixxT Bi(Y − xxT )+O(t3/2),

while if xT Bx < 0, then, for any Y � 0,:

Fi((1− t)xxT + tY ) = t+ Tr
(

Y 1/2
(

Bi −
BixxT Bi

xT Bix

)

Y 1/2
)

+

+O(t3/2).

Thus if X = xxT is a global maximum of ∑i Fi(X), then this first order expansion must reflect the
fact that it is also local maximum, that is, for all Y ∈ Sn such that Y � 0 and TrY = 1, we must have:

lim
t→0+

1
t

n

∑
i=1

[Fi((1− t)xxT + tY )−Fi(xxT )] ≤ 0,

which is equivalent to:

−∑
i∈I

xT Bix+TrY

(

∑
i∈I

BixxT Bi

xT Bix

)

+ ∑
i∈Ic

Tr
(

Y 1/2
(

Bi −
BixxT Bi

xT Bix

)

Y 1/2
)

+

≤ 0.
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Thus if X = xxT is optimal, with σ = ∑i∈I xT Bix, we get:

max
Y�0,TrY=1

TrY

(

∑
i∈I

BixxT Bi

xT Bix
−σI

)

+ ∑
i∈Ic

Tr
(

Y 1/2 (Bi −Bix(x
T Bix)

†xT Bi
)

Y 1/2
)

+
≤ 0

which is also in dual form (using the same techniques as in the proof of Proposition 1):

min
{Yi�Bi− BixxT Bi

xT Bix
,Yi�0}

λmax

(

∑
i∈I

BixxT Bi

xT Bix
+ ∑

i∈Ic

Yi

)

≤ σ,

which leads to the necessary condition. In order to prove sufficiency, the only non trivial condition
to check in Lemma 3 is that xTYix = 0 for i ∈ Ic, which is a consequence of the inequality:

xT

(

∑
i∈I

BixxT Bi

xT Bix
+ ∑

i∈Ic

Yi

)

x ≤ λmax

(

∑
i∈I

BixxT Bi

xT Bix
+ ∑

i∈Ic

Yi

)

≤ xT

(

∑
i∈I

BixxT Bi

xT Bix

)

x.

This concludes the proof.

The original optimality conditions in (3) are highly degenerate in Yi and this result refines these
optimality conditions by invoking the local structure. The local optimality analysis in proposition 4
gives more specific constraints on the dual variables Yi. For i ∈ I, Yi must be equal to BixxT Bi/xT Bix,
while if i ∈ Ic, we must have Yi � Bi −BixxT Bi/xT Bix, which is a stricter condition than Yi � Bi

(because xT Bix < 0).

5.3 Efficient Optimality Conditions

The condition presented in Proposition 4 still requires solving a large semidefinite program. In
practice, good candidates for Yi, i ∈ Ic can be found by solving for minimum trace matrices satis-
fying the feasibility conditions of proposition 4. As we will see below, this can be formulated as a
semidefinite program which can be solved explicitly.

Lemma 5 Let A ∈ Rn×n, ρ ≥ 0, x ∈ Rn and Bi = aiaT
i −ρI with a1, . . . ,an ∈ Rn the columns of A.

If (aT
i x)2 < ρ and ‖x‖ = 1, an optimal solution of the semidefinite program:

minimize TrYi

subject to Yi � Bi − BixxT Bi
xT Bix

, xTYix = 0, Yi � 0,

is given by:

Yi = max

{

0,ρ
(aT

i ai −ρ)

(ρ− (aT
i x)2)

}

(I− xxT )aiaT
i (I− xxT )

‖(I− xxT )ai‖2 . (10)

Proof Let us write Mi = Bi − BixxT Bi
xT Bix

, we first compute:

aT
i Miai = (aT

i ai −ρ)aT
i ai −

(aT
i aiaT

i x−ρaT
i x)2

(aT
i x)2 −ρ

=
(aT

i ai −ρ)

ρ− (aT
i x)2

ρ(aT
i ai − (aT

i x)2).
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When aT
i ai ≤ ρ, the matrix Mi is negative semidefinite, because ‖x‖ = 1 means aT

i Mai ≤ 0 and
xT Mx = aT

i Mx = 0. The solution of the minimum trace problem is then simply Yi = 0. We now
assume that aT

i ai > ρ and first check feasibility of the candidate solution Yi in (10). By construction,
we have Yi � 0 and Yix = 0, and a short calculation shows that:

aT
i Yiai = ρ

(aT
i ai −ρ)

(ρ− (aT
i x)2)

(aT
i ai − (aT

i x)2)

= aT
i Miai.

We only need to check that Yi � Mi on the subspace spanned by ai and x, for which there is equality.
This means that Yi in (10) is feasible and we now check its optimality. The dual of the original
semidefinite program can be written:

maximize TrPiMi

subject to I−Pi +νxxT � 0
Pi � 0,

and the KKT optimality conditions for this problem are written:






Yi(I−Pi +νxxT ) = 0, Pi(Yi −Mi) = 0,
I−Pi +νxxT � 0,
Pi � 0, Yi � 0, Yi � Mi, YixxT = 0, i ∈ Ic.

Setting Pi = YiTrYi/TrY 2
i and ν sufficiently large makes these variables dual feasible. Because all

contributions of x are zero, TrYi(Yi −Mi) is proportional to TraiaT
i (Yi −Mi) which is equal to zero

and Yi in (10) satisifies the KKT optimality conditions.

We summarize the results of this section in the theorem below, which provides sufficient opti-
mality conditions on a sparsity pattern I.

Theorem 6 Let A ∈ Rn×n, ρ ≥ 0, Σ = AT A with a1, . . . ,an ∈ Rn the columns of A. Given a sparsity
pattern I, setting x to be the largest eigenvector of ∑i∈I aiaT

i , if there is a ρ∗ ≥ 0 such that the
following conditions hold:

max
i∈Ic

(aT
i x)2 < ρ∗ < min

i∈I
(aT

i x)2 and λmax

(

n

∑
i=1

Yi

)

≤ ∑
i∈I

((aT
i x)2 −ρ∗),

with the dual variables Yi for i ∈ Ic defined as in (10) and:

Yi =
BixxT Bi

xT Bix
, when i ∈ I,

then the sparsity pattern I is globally optimal for the sparse PCA problem (2) with ρ = ρ∗ and we
can form an optimal solution z by solving the maximum eigenvalue problem:

z = argmax
{zIc=0, ‖z‖=1}

zT Σz.
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Proof Following proposition 4 and lemma 5, the matrices Yi are dual optimal solutions correspond-
ing to the primal optimal solution X = xxT in (5). Because the primal solution has rank one, the
semidefinite relaxation (6) is tight so the pattern I is optimal for (2) and Section 2 shows that z is a
globally optimal solution to (2) with ρ = ρ∗.

5.4 Gap Minimization: Finding the Optimal ρ

All we need now is an efficient algorithm to find ρ∗ in theorem 6. As we will show below, when
the dual variables Y c

i are defined as in (10), the duality gap in (2) is a convex function of ρ hence,
given a sparsity pattern I, we can efficiently search for the best possible ρ (which must belong to an
interval) by performing a few binary search iterations.

Lemma 7 Let A ∈ Rn×n, ρ ≥ 0, Σ = AT A with a1, . . . ,an ∈ Rn the columns of A. Given a sparsity
pattern I, setting x to be the largest eigenvector of ∑i∈I aiaT

i , with the dual variables Yi for i ∈ Ic

defined as in (10) and:

Yi =
BixxT Bi

xT Bix
, when i ∈ I.

The duality gap in (2) which is given by:

gap(ρ) ≡ λmax

(

n

∑
i=1

Yi

)

−∑
i∈I

((aT
i x)2 −ρ),

is a convex function of ρ when

max
i/∈I

(aT
i x)2 < ρ < min

i∈I
(aT

i x)2.

Proof For i ∈ I and u ∈ Rn, we have

uTYiu =
(uT aiaT

i x−ρuT x)2

(aT
i x)2 −ρ

,

which is a convex function of ρ (Boyd and Vandenberghe, 2004, p.73). For i ∈ I c, we can write:

ρ(aT
i ai −ρ)

ρ− (aT
i x)2

= −ρ+(aT
i ai − (aT

i x)2)

(

1+
(aT

i x)2

ρ− (aT
i x)2

)

,

hence max{0,ρ(aT
i ai −ρ)/(ρ− (aT

i x)2)} is also a convex function of ρ. This means that:

uTYiu = max

{

0,ρ
(aT

i ai −ρ)

(ρ− (aT
i x)2)

}

(uT ai − (xT u)(xT ai))
2

‖(I− xxT )ai‖2

is convex in ρ when i ∈ Ic. We conclude that ∑n
i=1 uTYiu is convex, hence:

gap(ρ) = max
‖u‖=1

n

∑
i=1

uTYiu−∑
i∈I

((aT
i x)2 −ρ)

is also convex in ρ as a pointwise maximum of convex functions of ρ.
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This result shows that the set of ρ for which the pattern I is optimal must be an interval. It also
suggests an efficient procedure for testing the optimality of a given pattern I. We first compute x
as a leading eigenvector ∑i∈I aiaT

i . We then compute an interval in ρ for which x satisfies the basic
consistency condition:

max
i/∈I

(aT
i x)2 ≡ ρmin ≤ ρ ≤ ρmax ≡ min

i∈I
(aT

i x)2.

Note that this interval could be empty, in which case I cannot be optimal. We then minimize gap(ρ)
over the interval [ρmin,ρmax]. If the minimum is zero for some ρ = ρ∗, then the pattern I is optimal
for the sparse PCA problem in (2) with ρ = ρ∗.

Minimizing the convex function gap(ρ) can be done very efficiently using binary search. The
initial cost of forming the matrix ∑n

i=1Yi, which is a simple outer matrix product, is O(n3). At each
iteration of the binary search, a subgradient of gap(ρ) can then be computed by solving a maximum
eigenvalue problem, at a cost of O(n2). This means that the complexity of finding the optimal ρ over
a given interval [ρmin,ρmax] is O(n2 log2((ρmax −ρmin)/ε)), where ε is the target precision. Overall
then, the total cost of testing the optimality of a pattern I is O(n3 +n2 log2((ρmax −ρmin)/ε)).

Note that an additional benefit of deriving explicit dual feasible points Yi is that plugging these
solutions into the objective of problem (7):

min. λmax (∑n
i=1Yi)

s.t. Yi � Bi, Yi � 0, i = 1, . . . ,n.

produces an upper bound on the optimum value of the original sparse PCA problem (2) even when
the pattern I is not optimal (all we need is a ρ satisfying the consistency condition).

5.5 Solution Improvements and Randomization

When these conditions are not satisfied, the relaxation (6) has an optimal solution with rank strictly
larger than one, hence is not tight. At such a point, we can use a different relaxation such as DSPCA
by d’Aspremont et al. (2007b) to try to get a better solution. We can also apply randomization
techniques to improve the quality of the solution of problem (6) (Ben-Tal and Nemirovski, 2002).

6. Applications

In this section, we discuss some applications of sparse PCA to subset selection and compressed
sensing.

6.1 Subset Selection

We consider p data points in Rn, in a data matrix X ∈ Rp×n. We assume that we are given real
numbers y ∈ Rp to predict from X using linear regression, estimated by least squares. We are thus
looking for w∈Rn such that ‖y−Xw‖2 is minimum. In the subset selection problem, we are looking
for sparse coefficients w, that is, a vector w with many zeros. We thus consider the problem:

s(k) = min
w∈Rn

, Cardw≤k
‖y−Xw‖2.
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Using the sparsity pattern u ∈ {0,1}n, and optimizing with respect to w, we have

s(ρ) = min
u∈{0,1}n, 1T u≤k

‖y‖2 − yT X(u)(X(u)T X(u))−1X(u)T y,

where X(u) = X diag(u). We can rewrite yT X(u)(X(u)T X(u))−1X(u)T y as the largest generalized
eigenvalue of the pair (X(u)T yyT X(u),X(u)T X(u)), that is, as

yT X(u)(X(u)T X(u))−1X(u)T y = max
w∈Rn

wT X(u)T yyT X(u)w
wT X(u)T X(u)w

.

We thus have:

s(k) = ‖y‖2 − max
u∈{0,1}n,1T u≤k

max
w∈Rn

wT diag(u)XT yyT X diag(u)w
wT diag(u)XT X diag(u))w

.

Given a pattern u ∈ {0,1}n, let

s0 = yT X(u)(X(u)T X(u))−1X(u)T y

be the largest generalized eigenvalue corresponding to the pattern u. The pattern is optimal if and
only if the largest generalized eigenvalue of the pair {X(v)T yyT X(v),X(v)T X(v)} is less than s0 for
any v ∈ {0,1}n such that vT 1 = uT 1. This is equivalent to the optimality of u for the sparse PCA
problem with matrix XT yyT X − s0XT X , which can be checked using the sparse PCA optimality
conditions derived in the previous sections.

Note that unlike in the sparse PCA case, this convex relaxation does not immediately give a
simple bound on the optimal value of the subset selection problem. However, we get a bound of the
following form: when v ∈ {0,1}n and w ∈ Rn is such that 1T v = k with:

wT (X(v)T yyT X(v)− s0X(v)T X(v)
)

w ≤ B,

where B ≥ 0 (because s0 is defined from u), we have:

‖y‖2 − s0 ≥ s(k) ≥ ‖y‖2 − s0 −B

(

min
v∈{0,1}n,1T v=k

λmin(X(v)T X(v))

)−1

≥ ‖y‖2 − s0 −B
(

λmin(X
T X)

)−1
.

This bound gives a sufficient condition for optimality in subset selection, for any problem instance
and any given subset. This is to be contrasted with the sufficient conditions derived for particu-
lar algorithms, such as the LASSO (Yuan and Lin, 2007; Zhao and Yu, 2006) or backward greedy
selection (Couvreur and Bresler, 2000). Note that some of these optimality conditions are often
based on sparse eigenvalue problems (see Meinshausen and Yu, 2006, §2), hence our convex relax-
ations helps both in checking sufficient conditions for optimality (before the algorithm is run) and
in testing a posteriori the optimality of a particular solution.
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6.2 Sparse Recovery

Following Candès and Tao (2005) (see also Donoho and Tanner, 2005), we seek to recover a signal
f ∈ Rn from corrupted measurements y = A f + e, where A ∈ Rm×n is a coding matrix and e ∈ Rm

is an unknown vector of errors with low cardinality. This can be reformulated as the problem of
finding the sparsest solution to an underdetermined linear system:

minimize ‖x‖0

subject to Fx = Fy
(11)

where ‖x‖0 = Card(x) and F ∈ Rp×m is a matrix such that FA = 0. A classic trick to get good
approximate solutions to problem (11) is to substitute the (convex) `1 norm to the (combinatorial)
`0 objective above, and solve instead:

minimize ‖x‖1

subject to Fx = Fy,

which is equivalent to a linear program in x ∈ Rm. Following Candès and Tao (2005), given a matrix
F ∈ Rp×m and an integer S such that 0 < S ≤ m, we define its restricted isometry constant δS as the
smallest number such that for any subset I ⊂ [1,m] of cardinality at most S we have:

(1−δS)‖c‖2 ≤ ‖FIc‖2 ≤ (1+δS)‖c‖2, (12)

for all c ∈ R|I|, where FI is the submatrix of F formed by keeping only the columns of F in the set
I. The following result then holds.

Proposition 8 Candès and Tao (2005). Suppose that the restricted isometry constants of a matrix
F ∈ Rp×m satisfy

δS +δ2S +δ3S < 1 (13)

for some integer S such that 0 < S ≤ m, then if x is an optimal solution of the convex program:

minimize ‖x‖1

subject to Fx = Fy

such that Cardx ≤ S then x is also an optimal solution of the combinatorial problem:

minimize ‖x‖0

subject to Fx = Fy.

In other words, if condition (13) holds for some matrix F such that FA = 0, then perfect recovery of
the signal f given y = A f + e provided the error vector satisfies Card(e) ≤ S. Our key observation
here is that the restricted isometry constant δS in condition (13) can be computed by solving the
following sparse maximum eigenvalue problem:

(1+δS) ≤ max. xT (FT F)x
s. t. Card(x) ≤ S

‖x‖ = 1,
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in the variable x ∈ Rm and another sparse maximum eigenvalue problem on αI−FF T with α suffi-
ciently large, with δS computed from the tightest one. In fact, (12) means that:

(1+δS) ≤ max
{I⊂[1,m]: |I|≤S}

max
‖c‖=1

cT FT
I FIc

= max
{u∈{0,1}n: 1T u≤S}

max
‖x‖=1

xT diag(u)FT F diag(u)x

= max
{‖x‖=1, Card(x)≤S}

xT FT Fx,

hence we can compute an upper bound on δS by duality, with:

(1+δS) ≤ inf
ρ≥0

φ(ρ)+ρS

where φ(ρ) is defined in (2). This means that while Candès and Tao (2005) obtained an asymptotic
proof that some random matrices satisfied the restricted isometry condition (13) with overwhelm-
ing probability (i.e., exponentially small probability of failure), whenever they are satisfied, the
tractable optimality conditions and upper bounds we obtain in Section 5 for sparse PCA problems
allow us to prove, deterministically, that a finite dimensional matrix satisfies the restricted isometry
condition in (13). Note that Candès and Tao (2005) provide a slightly weaker condition than (13)
based on restricted orthogonality conditions and extending the results on sparse PCA to these condi-
tions would increase the maximum S for which perfect recovery holds. In practice however, we will
see in Section 7.3 that the relaxations in (7) and d’Aspremont et al. (2007b) do provide very tight
upper bounds on sparse eigenvalues of random matrices but solving these semidefinite programs for
very large scale instances remains a significant challenge.

7. Numerical Results

In this section, we first compare the various methods detailed here on artificial examples, then test
their performance on a biological data set. PathSPCA, a MATLAB code reproducing these results
may be downloaded from the authors’ web pages.

7.1 Artificial Data

We generate a matrix U of size 150 with uniformly distributed coefficients in [0,1]. We let v ∈ R150

be a sparse vector with:

vi =







1 if i ≤ 50
1/(i−50) if 50 < i ≤ 100
0 otherwise.

We form a test matrix Σ = UTU + σvvT , where σ is the signal-to-noise ratio. We first compare the
relative performance of the algorithms in Section 3 at identifying the correct sparsity pattern in v
given the matrix Σ. The resulting ROC curves are plotted in Figure 1 for σ = 2. On this example,
the computing time for the approximate greedy algorithm in Section 3.3 was 3 seconds versus
37 seconds for the full greedy solution in Section 3.2. Both algorithms produce almost identical
answers. We can also see that both sorting and thresholding ROC curves are dominated by the
greedy algorithms.
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Figure 1: ROC curves for sorting, thresholding, fully greedy solutions (Section 3.2) and approxi-
mate greedy solutions (Section 3.3) for σ = 2.

We then plot the variance versus cardinality tradeoff curves for various values of the signal-to-
noise ratio. In Figure 2, We notice that the magnitude of the error (duality gap) decreases with the
signal-to-noise ratio. Also, because of the structure of our problem, there is a kink in the variance
at the (exact) cardinality 50 in each of these curves. Note that for each of these examples, the error
(duality gap) is minimal precisely at the kink.

Next, we use the DSPCA algorithm of d’Aspremont et al. (2007b) to find better solutions where
the greedy codes have failed to obtain globally optimal solutions. In d’Aspremont et al. (2007b), it
was shown that an upper bound on (2) can be computed as:

φ(ρ) ≤ min
|Ui j|≤ρ

λmax(Σ+U).

which is a convex problem in the matrix U ∈ Sn. Note however that the cost of solving this relaxation
for a single ρ is O(n4√logn) versus O(n3) for a full path of approximate solutions. Also, the
results in d’Aspremont et al. (2007b) do not provide any hint on the value of ρ, but we can use the
breakpoints coming from suboptimal points in the greedy search algorithms in Section 3.3 and the
consistency intervals in Eq. (9). In Figure 2 we plot the variance versus cardinality tradeoff curve
for σ = 10. We plot greedy variances (solid line), dual upper bounds from Section 5.3 (dotted line)
and upper bounds computed using DSPCA (dashed line).

7.2 Subset Selection

We now present simulation experiments on synthetic data sets for the subset selection problem.
We consider data sets generated from a sparse linear regression problem and study optimality for
the subset selection problem, given the exact cardinality of the generating vector. In this setting,
it is known that regularization by the `1-norm, a procedure also known as the Lasso (Tibshirani,
1996), will asymptotically lead to the correct solution if and only if a certain consistency condition
is satisfied (Yuan and Lin, 2007; Zhao and Yu, 2006). Our results provide here a tractable test
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Figure 2: Left: variance versus cardinality tradeoff curves for σ = 10 (bottom), σ = 50 and σ = 100
(top). We plot the variance (solid line) and the dual upper bounds from Section 5.3 (dotted
line) for each target cardinality. Right: variance versus cardinality tradeoff curve for
σ = 10. We plot greedy variances (solid line), dual upper bounds from Section 5.3 (dotted
line) and upper bounds computed using DSPCA (dashed line). Optimal points (for which
the relative duality gap is less than 10−4) are in bold.

the optimality of solutions obtained from various algorithms such as the Lasso, forward greedy or
backward greedy algorithms.

In Figure 3, we consider two pairs of randomly generated examples in dimension 16, one for
which the lasso is provably consistent, one for which it isn’t. We perform 50 simulations with 1000
samples and varying noise and compute the average frequency of optimal subset selection for Lasso
and greedy backward algorithm together with the frequency of provable optimality (i.e., where our
method did ensure a posteriori that the point was optimal). We can see that the backward greedy
algorithm exhibits good performance (even in the Lasso-inconsistent case) and that our sufficient
optimality condition is satisfied as long as there is not too much noise. In Figure 4, we plot the
average mean squared error versus cardinality, over 100 replications, using forward (dotted line)
and backward (circles) selection, the Lasso (large dots) and exhaustive search (solid line). The plot
on the left shows the results when the Lasso consistency condition is satisfied, while the plot on the
right shows the mean squared errors when the consistency condition is not satisfied. The two sets of
figures do show that the LASSO is consistent only when the consistency condition is satisfied, while
the backward greedy algorithm finds the correct pattern if the noise is small enough (Couvreur and
Bresler, 2000) even in the LASSO inconsistent case.

7.3 Sparse Recovery

Following the results of Section 6.2, we compute the upper and lower bounds on sparse eigenvalues
produced using various algorithms. We study the following problem:

maximize xT Σx
subject to Card(x) ≤ S

‖x‖ = 1,
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Figure 3: Backward greedy algorithm and Lasso. We plot the probability of achieved (dotted line)
and provable (solid line) optimality versus noise for greedy selection against Lasso (large
dots), for the subset selection problem on a noisy sparse vector. Left: Lasso consistency
condition satisfied. Right: consistency condition not satisfied.
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Figure 4: Greedy algorithm and Lasso. We plot the average mean squared error versus cardinality,
over 100 replications, using forward (dotted line) and backward (circles) selection, the
Lasso (large dots) and exhaustive search (solid line). Left: Lasso consistency condition
satisfied. Right: consistency condition not satisfied.
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Figure 5: Upper and lower bound on sparse maximum eigenvalues. We plot the maximum sparse
eigenvalue versus cardinality, obtained using exhaustive search (solid line), the approx-
imate greedy (dotted line) and fully greedy (dashed line) algorithms. We also plot the
upper bounds obtained by minimizing the gap of a rank one solution (squares), by solving
the semidefinite relaxation explicitly (stars) and by solving the DSPCA dual (diamonds).
Left: On a matrix FT F with F Gaussian. Right: On a sparse rank one plus noise matrix.

where we pick F to be normally distributed and small enough so that computing sparse eigenvalues
by exhaustive search is numerically feasible. We plot the maximum sparse eigenvalue versus cardi-
nality, obtained using exhaustive search (solid line), the approximate greedy (dotted line) and fully
greedy (dashed line) algorithms. We also plot the upper bounds obtained by minimizing the gap of
a rank one solution (squares), by solving the semidefinite relaxation explicitly (stars) and by solving
the DSPCA dual (diamonds). On the left, we use a matrix Σ = F T F with F Gaussian. On the right,
Σ = uuT /‖u‖2 + 2V , where ui = 1/i, i = 1, . . . ,n and V is matrix with coefficients uniformly dis-
tributed in [0,1]. Almost all algorithms are provably optimal in the noisy rank one case (as well as
in many of the biological examples that follow), while Gaussian random matrices are harder. Note
however, that the duality gap between the semidefinite relaxations and the optimal solution is very
small in both cases, while our bounds based on greedy solutions are not as good. This means that
solving the relaxations in (7) and d’Aspremont et al. (2007b) could provide very tight upper bounds
on sparse eigenvalues of random matrices. However, solving these semidefinite programs for very
large values of n remains a significant challenge.

7.4 Biological Data

We run the algorithm of Section 3.3 on two gene expression data sets, one on Colon cancer from
Alon et al. (1999), the other on Lymphoma from Alizadeh et al. (2000). We plot the variance versus
cardinality tradeoff curve in Figure 6, together with the dual upper bounds from Section 5.3. In
both cases, we consider the 500 genes with largest variance. Note that for many cardinalities, we
have optimal or very close to optimal solutions. In Table 1, we also compare the 20 most important
genes selected by the second sparse PCA factor on the colon cancer data set, with the top 10 genes
selected by the RankGene software by Su et al. (2003). We observe that 6 genes (out of an original
4027 genes) were both in the top 20 sparse PCA genes and in the top 10 Rankgene genes.
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Rank Rankgene GAN Description
3 8.6 J02854 Myosin regul.

6 18.9 T92451 Tropomyosin

7 31.5 T60155 Actin

8 25.1 H43887 Complement fact. D prec.

10 2.1 M63391 Human desmin

12 32.3 T47377 S-100P Prot.

Table 1: 6 genes (out of 4027) that were both in the top 20 sparse PCA genes and in the top 10
Rankgene genes.
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Figure 6: Variance (solid lines) versus cardinality tradeoff curve for two gene expression data sets,
lymphoma (top) and colon cancer (bottom), together with dual upper bounds from Sec-
tion 5.3 (dotted lines). Optimal points (for which the relative duality gap is less than
10−4) are in bold.

8. Conclusion

We have presented a new convex relaxation of sparse principal component analysis, and derived
tractable sufficient conditions for optimality. These conditions go together with efficient greedy
algorithms that provide candidate solutions, many of which turn out to be optimal in practice. The
resulting upper bounds also have direct applications to problems such as sparse recovery, subset
selection or LASSO variable selection. Note that we extensively use this convex relaxation to test
optimality and provide bounds on sparse extremal eigenvalues, but we almost never attempt to
solve it numerically (except in some of the numerical experiments), which would provide optimal
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bounds. Having n matrix variables of dimension n, the problem is of course extremely large and
finding numerical algorithms to directly optimize these relaxation bounds would be an important
extension of this work.
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Appendix A. Expansion of Eigenvalues

In this appendix, we consider various results on expansions of eigenvalues we use in order to derive
sufficient conditions. The following proposition derives a second order expansion of the set of
eigenvectors corresponding to a single eigenvalue.

Proposition 9 Let N ∈ Sn. Let λ0 be an eigenvalue of N, with multiplicity r and eigenvectors
U ∈ Rn×r (such that UTU = I). Let ∆ be a matrix in Sn. If ‖∆‖F is small enough, the matrix N +∆
has exactly r (possibly equal) eigenvalues around λ0 and if we denote by (N + ∆)λ0 the projection
of the matrix N +∆ onto that eigensubspace, we have:

(N +∆)λ0 = λ0UUT +UUT ∆UUT +λ0UUT ∆(λ0I−N)† +λ0(λ0I−N)†∆UUT

+UUT ∆UUT ∆(λ0I−N)† +(λ0I−N)†∆UUT ∆UUT +UUT ∆(λ0I−N)†UUT

+λ0UUT ∆(λ0I−N)†∆(λ0I−N)† +λ0(λ0I−N)†∆(λ0I−N)†∆UUT

+λ0(λ0I−M)†∆UUT ∆(λ0I−M)† +O(‖∆‖3
F)

which implies the following expansion for the sum of the r eigenvalues in the neigborhood of λ0:

Tr(N +∆)λ0 = rλ0 +TrUT ∆U +TrUT ∆(λ0I−N)†∆U

+λ0 Tr(λ0I−N)†∆UUT ∆(λ0I−N)† +O(‖∆‖3
F).

Proof We use the Cauchy residue formulation of projections on principal subspaces (Kato, 1966):
given a symmetric matrix N, and a simple closed curve C in the complex plane that does not go
through any of the eigenvalues of N, then

ΠC (N) =
1

2iπ

I

C

dλ
λI−N

is equal to the orthogonal projection onto the orthogonal sum of all eigensubspaces of N associated
with eigenvalues in the interior of C (Kato, 1966). This is easily seen by writing down the eigenvalue
decomposition N = ∑n

i=1 λiuiuT
i , and the Cauchy residue formula ( 1

2iπ
H

C
dλ

λ−λi
= 1 if λi is in the

interior int(C ) of C and 0 otherwise), and:

1
2iπ

I

C

dλ
λI−N

=
n

∑
i=1

uiu
T
i × 1

2iπ

I

C

dλ
λ−λi

= ∑
i, λi∈int(C )

uiu
T
i .
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See Rudin (1987) for an introduction to complex analysis and Cauchy residue formula. Moreover,
we can obtain the restriction of N onto a specific sum of eigensubspaces as:

NΠC (N) =
1

2iπ

I

C

Ndλ
λI−N

=
1

2iπ

I

C

λdλ
λI−N

.

From there we can easily compute expansions around a given N by using expansions of (λI−N)−1.
The proposition follows by considering a circle around λ0 that is small enough to exclude other
eigenvalues of N, and applying several times the Cauchy residue formula.

We can now apply the previous proposition to our particular case:

Lemma 10 For any a ∈ Rn, ρ > 0 and B = aaT − ρI, we consider the function
F : X 7→ Tr(X1/2BX1/2)+ from Sn

+ to R. let x ∈ Rn such that ‖x‖ = 1. Let Y � 0. If xT Bx > 0,
then

F((1− t)xxT + tY ) = xT Bx+
t

xT Bx
TrBxxT B(Y − xxT )+O(t3/2),

while if xT Bx < 0, then

F((1− t)xxT + tY ) = Tr
(

Y 1/2
(

B− BxxT B
xT Bx

)

Y 1/2
)

+

+O(t3/2).

Proof We consider X(t) = (1−t)xxT +tY . We have X(t) =U(t)U(t)T with U(t) =

(

(1− t)1/2x
t1/2Y 1/2

)

,

which implies that the non zero eigenvalues of X(t)1/2BX(t)1/2 are the same as the non zero eigen-
values of U(t)T BU(t). We thus have

F(X(t)) = Tr(M(t))+,

with

M(t) =

(

(1− t)xT Bx t1/2(1− t)1/2xT BY 1/2

t1/2(1− t)1/2yT Bx tY 1/2BY 1/2

)

=

(

xT Bx 0
0 0

)

+ t1/2
(

0 xT BY 1/2

Y 1/2Bx 0

)

+ t

(

−xT Bx 0
0 Y 1/2BY 1/2

)

+O(t3/2)

= M(0)+ t1/2∆1 + t∆2 +O(t3/2).

The matrix M(0) has a single (and simple) non zero eigenvalue which is equal to λ0 = xT Bx with
eigenvector U = (1,0)T . The only other eigenvalue of M(0) is zero, with multiplicity n. Proposi-
tion 9 can be applied to the two eigenvalues of M(0): there is one eigenvalue of M(t) around xT Bx,
while the n remaining ones are around zero. The eigenvalue close to λ0 is equal to:

Tr(M(t))λ0 = t TrU>∆2U +λ0 + t TrUT ∆1(λ0I−M(0))†∆1U

+λ0 Tr(λ0I−M(0))†∆1UUT ∆1(λ0I−M(0))† +O(t3/2)

= xT Bx+
t

xT Bx
TrBxxT B(Y − xxT )+O(t3/2).
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For the remaining eigenvalues, we get that the projected matrix on the eigensubspace of M(t)
associated with eigenvalues around zero is equal to

(M(t))0 = t(I−UUT )∆2(I−UUT )+ t(I−UUT )∆1(−M(0))†(I−UUT )+O(t3/2)

=

(

0 0
0 tY 1/2(B− BxxT B

xT Bx )Y 1/2

)

,

which leads to a positive part equal to t+ Tr
[

Y 1/2(B− BxxT B
xT Bx )Y 1/2

]

+
. When xT Bx > 0, then the ma-

trix is negative definite (because B = aaT −ρI), and thus the positive part is zero. By summing the
two contributions, we obtain the desired result.
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