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Abstract
Weconsidermin–max optimization problems for polynomial functions,where amulti-
variate polynomial is maximized with respect to a subset of variables, and the resulting
maximal value is minimized with respect to the remaining variables. When the vari-
ables belong to simple sets (e.g., a hypercube, the Euclidean hypersphere, or a ball), we
derive a sum-of-squares formulation based on a primal-dual approach. In the simplest
setting, we provide a convergence proof when the degree of the relaxation tends to
infinity and observe empirically that it can be finitely convergent in several situations.
Moreover, our formulation leads to an interesting link with feasibility certificates for
polynomial inequalities based on Putinar’s Positivstellensatz.

Keywords Polynomial optimization · Sum-of-squares · Min–max problems ·
Semidefinite programming

Mathematics Subject Classification 90C22 · 11E25

1 Introduction

In this paper, we consider min–max optimization problems of the form

min
x∈X

max
y∈Y

g(x, y), (1)

where X and Y are compact sets and g is a continuous function. Throughout the
paper, like [1], we will assume that g is a multivariate polynomial. Among partic-
ular cases, a finite set Y leads to the minimization of the maximum of multivariate
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polynomials, which is typically not a polynomial function. Thus min–max problems
extend the reach of polynomial optimization and have applications in several areas,
such as robust optimization [2]. Note that we do not consider saddle-point problems
where polynomial optimization has already been studied [3].

We will consider algorithms based on the sum-of-squares principle [4, 5]. This
problem has been looked at by [1], which models the function x �→ maxy∈Y g(x, y)
by a polynomial, as an upper-bound that is tightly converging as the degree of the
approximant increases, but slowly and in most interesting cases non finitely. This
bound is then minimized in a two-stage approach, which can deal with a set Y which
can be defined through polynomial inequalities. In this paper, we will need to assume
that both sets X and Y are “simple”, in a sense to be defined in Sect. 3. This includes
the regular hypercube, the Boolean hypercube, the unit Euclidean sphere or ball, and
all Cartesian products of such sets.1 However, we will consider a one-stage primal-
dual approach that is often finitely convergent (although we currently do not have any
provable sufficient conditions).

Paper outline We review SOS relaxations over simple sets in Sect. 3 and present
our SOS formulation for the min–max problem in Sect. 4, together with algorithms
based on kernels and a convergence proof, while in Sect. 5, we perform illustrative
experiments. We start by presenting in Sect. 2 the duality principles that underlie our
formulations, which apply beyond polynomials.

2 Primal-dual formulations

We first consider the classical primal-dual formulation of minimization problems,
before extending it to min–max problems. In this section, we consider continuous
functions (not necessarily polynomials).

2.1 Minimization problems

Given a continuous function f defined on a compact setX, minimizing f can be cast as
the minimization of

∫
X f (x)dμ(x) overμ ∈ P(X), the set of probability distributions

on X, that is,

min
x∈X

f (x) = min
μ∈P(X)

∫

X
f (x)dμ(x), (2)

where the minimizer is any measure supported on the minimizers of f . Introducing
the notationM(X, Q) for the set of finite measures with values in the cone Q, we can
see probability distributions as the elements of M(X, R+) such that

∫
X dμ(x) = 1.

Introducing a Lagrange multiplier c ∈ R for this linear constraint, we get by convex
duality:

1 This assumption is mostly made to make the developments as simple as possible, but most of our devel-
opments would go through for any basic semi-algebraic sets X and Y through the use of adapted positivity
certificates.
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min
μ∈P(X)

∫

X
f (x)dμ(x) = max

c∈R inf
μ∈M(X,R+)

∫

X
f (x)dμ(x) + c

( ∫

X
dμ(x) − 1

)

= max
c∈R c such that ∀x ∈ X, f (x) − c ≥ 0, (3)

which is equivalent to finding the largest minorant of f (and thus provides a direct
proof of strong duality). As shown in Sect. 3, these two equivalent formulations
lead to equivalent SOS relaxations, by replacing non-negative functions by sums-
of-squares in Eq. (3), and representing probability measures by their moments and
“pseudo”-moments in Eq. (2). We now extend these equivalent formulations to min–
max problems.

2.2 Min–max problems

We now consider primal-dual interpretations for the original problem in Eq. (1), akin
to Eq. (2) and Eq. (3) in Sect. 2.1 above, for a continuous function g : X × Y → R.

For the outer minimization problem in x ∈ X, we consider the probabilistic formu-
lation from Eq. (2), and we thus have the equivalent formulation:

min
x∈X

max
y∈Y

g(x, y) = min
μ∈P(X)

∫

X

(
max
y∈Y

g(x, y)
)
dμ(x).

For the inner maximization problem in y ∈ Y, which is different for every x ∈ X, we
consider probability measures ν(·|x) ∈ P(Y) (the set of probability measures on Y),
and apply the same reformulation, to obtain

min
x∈X

max
y∈Y

g(x, y) = min
μ∈P(X)

max
ν:X→P(Y)

∫

X

∫

Y
g(x, y)dν(y|x)dμ(x). (4)

This is now a convex-concave min–max problem in infinite dimensions (while the
original one in Eq. (1) is typically not), with a bilinear objective and two convex
domains, for which min and max can be swapped as the set P(X) is compact for the
weak topology on measures on a compact set X [6, Corollary 3.3]. We can now use
convex duality to obtain either a minimization problem or a maximization problem.

We have, from Eq. (4), by adding the Lagrange multiplier c ∈ R for the constraint∫
X dμ(x) = 1:

min
x∈X

max
y∈Y

g(x, y) = min
μ∈P(X)

max
ν:X→P(Y), c∈R

∫

X

∫

Y
g(x, y)dν(y|x)dμ(x) + c

(
1 −

∫

X
dμ(x)

)

= max
ν:X→P(Y), c∈R

c such that ∀x ∈ X,

∫

Y
g(x, y)dν(y|x) ≥ c,

(5)

which is a maximization problem.
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Alternatively, by convex duality, this equal to, introducing in Eq. (4) a Lagrange
multiplier λ ∈ M(X, R) (set of finite signed measures) for the constraint that ∀x ∈ X,∫
Y dν(y|x) = 1 [7]:

min
μ∈P(X), λ∈M(X,R)

max
ν:X→M(Y,R+)

∫

X

( ∫

Y
g(x, y)dν(y|x)

)
dμ(x)

+
∫

X

(

1 −
∫

Y
dν(y|x)

)

dλ(x),

which is equal to

min
μ∈P(X), λ∈M(X,R)

∫

X
dλ(x) such that ∀y ∈ Y, λ ≥ g(·, y)μ, (6)

which is another convex formulation as a minimization problem.
Overall we get three formulations which are all equivalent to the original problem

(in Sect. 4, our SOS formulation will also have these three equivalent formulations):

• Minimization, corresponding to Eqs. (23) and (27) in Sect. 4:

min
μ∈P(X), λ∈M(X,R)

∫

X
dλ(x) such that ∀y ∈ Y, λ ≥ g(·, y)μ. (7)

• Maximization, corresponding to Eqs. (24) and (28) in Sect. 4:

max
ν:X→P(Y), c∈R

c such that ∀x ∈ X,

∫

Y
g(x, y)dν(y|x) ≥ c. (8)

• Saddle-point, corresponding to Eqs. (22) and (26) in Sect. 4:

min
μ∈P(X)

max
ν:X→P(Y)

∫

X

∫

Y
g(x, y)dν(y|x)dμ(x). (9)

Non-convex formulation By writing dλ(x) = a(x)dμ(x) for a certain function a :
X → R, which is only possible for a dense subset of M(X, R), we get an equivalent
reformulation

min
μ∈P(X), a:X→R

∫

X
a(x)dμ(x) such that ∀(x, y) ∈ X × Y, a(x) ≥ g(x, y),

(10)

which is a non-convex formulation because the objective is non-convex. An alternating
minimization algorithm starting from ameasureμwith full support leads to the global
optimumafter oneminimizationwith respect to a (leading to a(x) = maxy∈Y g(x, y)),
and then one minimization with respect toμ (leading to the minimizer of this function
a). When using SOS formulations for these two operations, we exactly obtain the
formulation of [1] (see Eq. (17) in Sect. 4.1).
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Optimal solutions With c∗ being the optimal value of Eq. (1), the optimal measure
μ ∈ P(X) is any measure supported on the minimizers of x �→ maxy∈Y g(x, y). The
optimal ν : X → P(Y) is such that for all x ∈ X,

∫
Y g(x, y)dν(y|x) ≥ c∗ with

equality at any minimizer x∗ ∈ X. Therefore, at all minimizers x∗ ∈ X, we need
ν(·|x∗) to put mass only at maximizers of y �→ g(x∗, y), but this is not required at
other positions. The optimal λ is equal to an optimal μ times maxy∈Y g(x, y).

Relationship to zero-sum polynomial games There is an interesting parallel between
Eq. (4) and zero-sum games of the form

min
μ∈P(X)

max
ν∈P(Y)

∫

X

∫

Y
g(x, y)dν(y)dμ(x),

where now the measure ν does not depend on x . This lack of dependence makes it
easier to solve as shown by [8, Section 5].

3 SOS relaxations for polynomials over simple sets

In this section, we review existing work on minimizing polynomial functions over
simple sets, which we cast as minimizing a quadratic form f (x) = ϕ(x)�Fϕ(x)
for a feature map ϕ : X → R

m , where X is a compact set. While we use specific
notations that will make further developments easier to describe, this section follows
the classical SOS formulations (see [9, 10] for a thorough review).

We use the denomination “simple set” to refer to a set X coming with its feature
map ϕ : X → R

m with unit norm, that is, ‖ϕ(x)‖2 = 1 for all x ∈ X (for the
Euclidean norm), and, which can be represented (potentially after transformation) as
a multivariate polynomial (this thus imposes that X is a subset of R

d for a specific d).
We will always assume that the constant mapping and the identity mapping x �→

x can be obtained as a linear function of ϕ(x) (this will be useful in recovering
maximizers in Sect. 3.4). Moreover, we will only need to access the positive-definite
kernel function k : X × X → R defined as k(x, y) = ϕ(x)�ϕ(y) (and not access
to the vector ϕ). Our unit norm normalization on ϕ translates to k(x, x) = 1 for all
x ∈ X.

We assume that the dimension of the span of all ϕ(x), x ∈ X is m, while the
dimension of the spanVϕ of all ϕ(x)ϕ(x)� ∈ R

m×m , x ∈ X, ism′ ∈ [m,m(m+1)/2].
Finally, we assume we can generate (typically, randomly) m′ points x1, . . . , xm′ , such
that ϕ(xi )ϕ(xi )�, i = 1, . . . ,m′, is a basis of Vϕ .

The optimization problem and our solution will be invariant by invertible linear
transformations, and we can choose the feature map so that the kernel is as simple
as possible (note, however, that in terms of conditioning of the associated numerical
linear algebra, some kernels are better than others).

All of our examples will be (subsets of) Euclidean unit spheres or products of
Euclidean spheres.
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3.1 Examples

We will consider the following sets, feature maps, and kernel functions. Since our
relaxations are based on approximating non-negative polynomials as sums-of-squares,
that is, positive semi-definite quadratic forms in ϕ, we describe these SOS polynomials
for some instances.

• Discrete data: X = {1, . . . ,m} with orthonormal features ϕ : X → R
m , defined

as ϕ(x)i = 1x=i . The corresponding kernel is k(x, x ′) = 1x=x ′ , with m′ = m.
• Trigonometric polynomials on [0, 1]: X ∈ [0, 1] with ϕ(x)ω = 1

(2r+1)1/2
e2iπωx

for ω ∈ {−r , . . . ,+r}.2 The kernel is k(x, x ′) = sin[(2r+1)π(x−x ′)]
(2r+1) sin π(x−x ′) . This can be

equivalently represented in the unit Euclidean sphere in R
2 with the bijection

θ �→ (cos 2πθ, sin 2πθ), where the corresponding feature map spans all bivariate
polynomials of degree r , with a kernel that can be taken to be equal to k(y, y′) =
1
2r (1+y�y′)r for y, y′ ∈ R

2 of unit norm (we could construct onewith Chebyshev
polynomials to get the exact equivalence with the kernel above). We then have
m = 2r + 1 and m′ = 4r + 1.

• Polynomials on [−1, 1]: this is simply the projection of the case above by consid-
ering y ∈ R

2 such that y21 + y22 = 1, and only considering functions of y1. As
shown in [11], a polynomial in y1 which is equal to an SOS polynomial on y1, y2
can be written as the sum u(y1)+ (1− y21 )v(y1) where u and v are univariate SOS
polynomials.

• Hypersphere: X = {x ∈ R
d+1, ‖x‖22 = x�x = 1}, with all functions that are

multivariate polynomials of degree r . This corresponds tom = (d+r
r

)+(d+r−1
r−1

)
and

m′ = (d+2r
2r

)+(d+2r−1
2r−1

)
. We can choose the kernels k(x, x ′) = 1

r+1

∑r
i=0

(
x�x ′)i

or k(x, x ′) = 1
2r (1+x�x ′)r . We could also use generalized Legendre polynomials

[12] to get better-conditioned kernel matrices.
• Euclidean ball: X = {x ∈ R

d , x�x ≤ 1} can be seen as the projection of the
hypersphere above to the first d dimensions. When obtaining an SOS polynomial
on the hypersphere, this translates for the Euclidean ball to a sum u(x) + (1 −
‖x‖22)v(x) where u and v are SOS polynomials.

• Products of one-dimensional spheres ⊂ R
2 ⇔ trigonometric polynomials on

[0, 1]d ⇔ regular polynomials on [−1, 1]d : this is the tensor product of the uni-
variate cases above; the kernel is then k(y, y′) = ∏d

i=1
1
2r (1 + y�

i y′
i )
r for the

polynomial representations, or alternatively k(x, x ′) = ∏d
i=1

sin[(2r+1)π(xi−x ′
i )]

(2r+1) sin π(xi−x ′
i )

for trigonometric polynomials. This then corresponds to multivariate polynomials
of maximal3 degree 2r . As shown in [11], a trigonometric SOS polynomial trans-
ferred to regular polynomials on [−1, 1]d leads to a representation of Schmudgen’s
type [13].

2 This feature is complex-valued but equivalent real-valued formulations with cosines and sines could be
used. Since we only use kernel formulations, we do not need to pursue them explicitly.
3 For a monomial Xα1

1 · · · Xαd
d , its degree is α1 + · · · + αd and its maximal degree is max{α1, . . . , αd }.
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• Boolean hypercube X = {−1, 1}d : it can be seen as a sub-case of the hypersphere
in dimension d − 1 and radius

√
d , where quadratic forms are polynomials of

degree 2r . We then have m = ∑r
i=0

(d
i

)
.

3.2 Relaxation

The SOS relaxation4 is obtained by first representing the minimization of f as the
maximization of a minorant c of f , that is, such that f (x) − c ≥ 0 for all x ∈ X, that
is, Eq. (3) in Sect. 2. We then represent non-negative functions as sums-of-squares,
that is, a positive semi-definite quadratic form in ϕ(x), thus solving:

max
c∈R, A�0

c such that ∀x ∈ X, f (x) = c + ϕ(x)�Aϕ(x). (11)

In general, the formulation above is a strengthening of the minimization problem as
f − c ≥ 0 is implied by ∀x ∈ X, f (x) = c + ϕ(x)�Aϕ(x), where A � 0, but not
equivalent, except in special cases described in Sect. 3.1.

Equation (11) can be re-written using Vϕ the span of all ϕ(x)ϕ(x)�, x ∈ X,
and its orthogonal subspace V⊥

ϕ , as, using the representation of f through f (x) =
ϕ(x)�Fϕ(x), where F ∈ R

m×m :

max
c∈R, A�0

c such that ∀x ∈ X, tr
[
ϕ(x)ϕ(x)�(F − cI − A)

] = 0

= max
c∈R, A�0, Y∈V⊥

ϕ

c such that F − cI − A + Y = 0, by definition of V⊥
ϕ .

We can then optimize out c and A, by noticing that c ∈ R is the largest c such that
F + Y � cI , leading to the following spectral formulation

max
Y∈V⊥

ϕ

λmin(F + Y ). (12)

Its dual can be written as, using standard semi-definite programming duality [14]:

max
Y∈V⊥

ϕ

λmin(F + Y ) = min
	�0

max
Y∈V⊥

ϕ

tr[	(F + Y )] such that tr(	) = 1

= min
	�0

tr(	F) such that tr(	) = 1, 	 ∈ Vϕ, (13)

which corresponds to an outer approximation of the convex hull of all ϕ(x)ϕ(x)�,
x ∈ X, by the set of positive semi-definite matrices such that tr(	) = 1 and 	 ∈ Vϕ ,
which we denote K̂ϕ and which is an outer approximation of Kϕ , the closure of
the convex hull of all ϕ(x)ϕ(x)�, x ∈ X. This dual formulation corresponds to (a)
replacing the minimization of f by the minimization with respect to a probability

4 In this paper, we use the term “relaxation” for all our formulations, but, rigorously, they are “strength-
enings” when replacing non-negative functions by sums-of-squares, and proper relaxations in their dual
formulations, when relaxing moments to pseudo-moments later in this section.
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measure onXof the expectation of f with respect to thatmeasure, as done inSect. 2.1 in
Eq. (2), and (b) characterizing these measures by their expectations of ϕϕ�. Elements
of Kϕ are moment matrices while elements of K̂ϕ are often referred to as “pseudo-
moment” matrices.

3.3 Kernelization

With an explicit description ofV, itmay be cumbersome to implement the semi-definite
program, particularly for larger input dimensions, leading to dedicated codes for each
case. This is simpler with kernels, as described below. It allows accessing the function
f using only function values, like proposed by [15], with a direct link with positive
definite kernels outlined by [16]. As we now show, this corresponds to representing
the space V by a span of finitely many elements, leading to a representation of the
moment matrices 	 as a linear combination of rank-one matrices. Note that since we
consider a finite-dimensional feature map ϕ, the kernel representation is exact with
sufficiently many points.

We considerm′ “well-positioned” points x1, . . . , xm′ ∈ X, so that Vϕ is the span of
all ϕ(xi )ϕ(xi )�, i = 1, . . . ,m′. Quasi-random sequences [17] are natural candidates,
in particular, because we will extract below the first m points and also need them to
be well-spread to avoid ill-conditioning of the kernel matrices.

For the primal formulation in Eq. (11), the constraint that ∀x ∈ X, f (x) =
c + ϕ(x)�Aϕ(x) is equivalently replaced by an equality only on x1, . . . , xm′ . This
corresponds to checking that two polynomials are equal by checking that they are
equal on sufficiently many points.

The dual formulation in Eq. (13) is then equivalent to:

inf
α∈Rm′

m′
∑

i=1

αi f (xi ) such that
m′
∑

i=1

αi = 1,
m′
∑

i=1

αiϕ(xi )ϕ(xi )
� � 0,

which is only accessing the function f through m′ function evaluations. The cru-
cial point is that the vector α ∈ R

m′
is not constrained to have non-negative values

(otherwise, the formulation above would lead to mini∈{1,...,m′} f (xi )).
If m is the dimension of ϕ, then from the kernel matrix K ∈ R

m×m asso-
ciated with the first m points, we build the “empirical feature map” as ϕ̃(x) =
K−1/2(k(xi , x))i∈{1,...,m} ∈ R

m , where K−1/2 is any inverse square root of K ∈
R
m×m . This defines an empirical feature matrix 
 = LK−1/2 ∈ R

m′×m , where
L ∈ R

m′×m′
is the full kernel matrix of all m′ points. We then solve, equivalently,

inf
α∈Rm′

m′
∑

i=1

αi f (xi ) such that
m′
∑

i=1

αi = 1, 
�diag(α)
 � 0, (14)

and obtain a solution 	 = ∑m′
i=1 αiϕ(xi )ϕ(xi )�. We will see below how to obtain a

candidate maximizer x∗ ∈ X from 	 without the need to compute ϕ.
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Going infinite-dimensional Solving Eq. (14) will lead to the SOS relaxation if f
is indeed a quadratic form in ϕ(x). In all our examples, the feature map is finite-
dimensional. Still, we can go infinite-dimensional using positive definite kernels
corresponding to infinite dimensional feature spaces, such as k(x, x ′) = exp(x�x ′),
with an additional regularizer. See [16] for more details and convergence analysis.

3.4 Practical algorithms

Solving the SDP The problem in Eq. (14) is a semi-definite program, which can
either be solved using generic toolboxes, with complexity (m′)3.5 [18]. Adding a log-
determinant barrier leads to an approximate algorithm with only matrix inversions of
size m and m′ [16], but no eigenvalue decompositions.

Obtaining rank-one solutions The obtained solution α ∈ R
m′

of Eq. (14) may not lead
to a rank-one matrix 	 = ∑m′

i=1 αiϕ(xi )ϕ(xi )� when the minimization problem has
several minimizers or the relaxation is not tight. We can obtain a lower-rank solution
(and rank-one when the relaxation is tight) by minimizing a random linear function
of α over all α that are minimizers of Eq. (14). Rank-minimization heuristics could
also be used [19].

Obtaining candidates for x∗ Once the vector α is obtained such that the matrix 	 =
∑m′

i=1 αiϕ(xi )ϕ(xi )� has rank one, we can simply obtain the corresponding x∗ ∈ X

exactly as x∗ = ∑m′
i=1 αi xi . This is only approximate when 	 does not have rank one.

See also [20].

3.5 Tightness guarantees

For a small number of cases, we have K̂ϕ = Kϕ , that is, the relaxation is tight, e.g., for
one-dimensional problems or with linear features (modeling quadratic polynomials).
Otherwise, we need “hierarchies”.

Hierarchies For most cases, the relaxation is not tight, that is, K̂ϕ � Kϕ , but we
can see a 2r -dimensional polynomial as an instance of a polynomial of degree less
than 2s, for s > r , and run the algorithm with the kernel corresponding to this larger
dimensional space (which requires access to more function values since it leads to an
increase inm′). This corresponds to using a relaxation K̃ϕ such thatKϕ ⊂ K̃ϕ ⊂ K̂ϕ ,
for which sup	∈K̃ϕ

inf	′∈Kϕ
‖	 −	′‖F is hopefully going to zero when the degree s

goes to infinity, where ‖·‖F denotes the Frobenius norm. This is the case for several of
the simple sets in the examples above, with a rate in O(1/s2), for hyperspheres [21],
polynomials on [−1, 1]d [22], and trigonometric polynomials [11]. By increasing
the degrees s until approximating the global optimum arbitrarily well, we obtain a
“hierarchy” of optimization problems.

More precisely, this corresponds to replacing ϕ(x) ∈ R
m by ϕ̃(x) = ( ϕ(x)

ϕ+(x)

) ∈ R
m̃ ,

and F by F̃ =
(
F 0
0 0

)

, with the function f defined by f (x) = ϕ(x)�Fϕ(x) =
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ϕ̃(x)� F̃ ϕ̃(x). The convergence results in [11, 21, 22] correspond to the existence of
ε(ϕ, ϕ+) > 0 such that

∀x ∈ X, f (x) ≥ ε(ϕ, ϕ+)‖F‖F ⇒ ∃ Ã � 0, ∀x ∈ X, f (x) = ϕ̃(x)� Ãϕ̃(x).

The constant ε(ϕ, ϕ+) can be chosen as O(1/s2), where s is the degree of the poly-
nomials defining ϕ̃.

Note that in practice, when using kernel formulations, using hierarchies simply
means using a different kernel and more function evaluations.

3.6 Matrix-valued SOS

In Sect. 4, we will need to consider functions from X to some subspace T of Sp (the
set of symmetric matrices of dimension p), and use characterizations of functions
f : X → T that are linear in ϕ(x)ϕ(x)� and such that for all x ∈ X, f (x) � 0. We
assume the identiy matrix I belongs to T.

This is an extension of the classical situation (where p = 1). We denote by F ∈
R
mp×mp the linear form defined with blocks Fi j of size m ×m, for i, j ∈ {1, . . . , p},

such that

f (x) = F[ϕ(x)ϕ(x)�],

which is defined as ∀x ∈ X, f (x)i j = ϕ(x)�Fi jϕ(x). The constraint that for all
x ∈ X, f (x) ∈ T is equivalent to F ∈ V⊥

ϕ ⊗ Sp + Sm ⊗ T. Following [21, 23, 24], a
sufficient condition for the matrix-non-negativity of f is F � 0.

The condition F � 0 is also necessary for some special cases. Indeed, if T is
the set of diagonal matrices, we are then simply looking at p different non-negative
polynomials, and if ϕ is such that we have a tight scalar SOS representation of non-
negative functions, the condition is indeed necessary.

For the cases where we had the tightness guarantees in Sect. 3.5, it turns out that we
have similar tightness guarantees, that is, if f is a degree 2r matrix-valued polynomials.
We consider ϕ̃ = ( ϕ

ϕ+
)
leading to polynomials of degree 2s, then if f has strictly

positive-semidefinite values (that is, all eigenvalues greater than ε times some norm
of f ), then f is a matrix-SOS polynomial of degree 2s. The constant ε can be taken
as O(1/s2).

Indeed, all the proofs for hyperspheres [21], polynomials on [−1, 1]d [22], and
trigonometric polynomials [11] are based on the same integral operator idea from [21]
who showed how to extend it to the matrix domain. See a precise instance of such a
result for trigonometric polynomials in Appendix A.

Link betweenmatrix-SOS to tensor products In themin–maxproblem inSect. 4,wewill
need to minimize quadratic forms in ϕ(x)ϕ(x)� ∈ R

m×m , rather than in ϕ(x) ∈ R
m .

Such a quadratic form is defined as f (x) = tr
[
F(ϕ(x)ϕ(x)� ⊗ ϕ(x)ϕ(x)�)

]
, and if

the matrix-valued function G : x �→ F[ϕ(x)ϕ(x)�] is such that ∀x ∈ X, G(x) � cI ,
then f (x) = ϕ(x)�G(x)ϕ(x) ≥ c for all x ∈ X. Thus the threshold for scalar-valued
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quadratic forms in ϕ(x)ϕ(x)� leads to (at least) the same threshold for matrix-valued
quadratic forms in ϕ(x).

4 SOS relaxations for min–max problems

We consider the min–max problem

min
x∈X

max
y∈Y

g(x, y), (15)

for a continuous function g : X×Y → R defined on the product of two compact setsX
and Y. We assume that we have two feature maps ϕ : X → R

m andψ : Y → R
p, such

that ‖ϕ(x)‖ = ‖ψ(y)‖ = 1 for all x ∈ X and y ∈ Y, thus within the framework of
Sect. 3. While the motivation is polynomials, this is not needed in most of this section.

We assume that the function g is a bilinear function of ϕϕ� and ψψ�, that is, of
the form

g(x, y) = tr
[
G

(
ψ(y)ψ(y)� ⊗ ϕ(x)ϕ(x)�

)]
, (16)

for a symmetrix matrix G ∈ R
mp×mp. By definition of the Kronecker product [25],

we can see G as matrix defined by blocks Gi j of size m × m, for i, j ∈ {1, . . . , p},
and Eq. (16) can be rewritten as:

g(x, y) =
p∑

i, j=1

ψ(y)iψ(y) j · ϕ(x)�Gi jϕ(x).

Because of our unit norm assumptions for the feature maps, this includes linear forms
inϕϕ� andψψ� (e.g., by considering allGi j proportional to I , we obtain a linear form
in ψψ�). For the examples in Sect. 3, such a representation exists for all multivariate
polynomials in x and y.

The goal of this paper is to design SOSmethods for this problem. Note that theywill
sometimes not be relaxations per se, as their values will not always be lower bounds
on optimal values.

Special case of finite sets Y. Throughout the paper, we will consider the special case of
finite sets Y, that is, the minimization of the maximum of finitely many polynomials,
as it makes notations easier and sometimes allows further connections.

Notations Following Sect. 3, we denote by Vϕ ⊂ R
m×m the span of all ϕ(x)ϕ(x)�,

andKϕ ⊂ R
m×m the closure of its convex hull, with similar notations forVψ ⊂ R

p×p

and Kψ ⊂ R
p×p.

The natural SOS formulation is to replace Kϕ by its outer approximation K̂ϕ =
{S ∈ Vϕ, S � 0, tr(S) = 1} ⊃ Kϕ based on the affine hull of all ϕ(x)ϕ(x)�
on top of the positivity constraint, and, similarly, Kψ by its outer approximation
K̂ψ = {T ∈ Vψ, T � 0, tr(T ) = 1} ⊃ Kψ . When using hierarchies, we may use
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tighter sets K̃ϕ and K̃ψ , which often corresponds to embedding ϕ in a bigger feature
map.

We will also need Kϕ⊗ϕ ∈ R
m2×m2

corresponding to the hull of all ϕ(x)⊗4 =
ϕ(x)ϕ(x)� ⊗ ϕ(x)ϕ(x)�, x ∈ X, as well as it outer approximation K̂ϕ⊗ϕ .

4.1 Existing SOS relaxation

The method of [1], which applies more generally (in particular to sets Y which are
not simple), corresponds to an SOS formulation for Eq. (10), for a fixed probability
measure μ ∈ P(X) with full support, that is,

min
a:X→R

∫

X
a(x)dμ(x) such that ∀(x, y) ∈ X × Y, a(x) ≥ g(x, y),

and then the minimization of the resulting function a.
It can be cast as follows with our notations. In a first stage, assuming that one can

compute 	 = E[ϕ(x)ϕ(x)�] for a distribution with full support on X (typically the
uniform distribution), we solve

min
A∈Rm×m , C∈Rmp×mp

tr(A	)

such that C � 0 and ∀(x, y) ∈ X × Y, g(x, y)

= ϕ(x)�Aϕ(x) − tr
[
C

(
ψ(y)ψ(y)� ⊗ ϕ(x)ϕ(x)�

)]
, (17)

which approximates, with an SOS approach, the polynomial in x with the smallest
expectation, which is above g(x, y) for all (x, y) ∈ X × Y. In the second stage, this
polynomial a defined by the matrix A is minimized with an SOS method. This will
converge when the degree of a is allowed to increase but requires approximating a
non-polynomial function by a polynomial function, which may require a large degree.
Moreover, it is typically not finitely convergent. Note that we could alsominimize with
respect to	 in Eq. (17), but this leads to a non-convex problem.A natural algorithm for
this non-convex problem is to perform alternating optimization, alternating between
optimizing with respect to A and 	, which improves the result but is not globally
convergent in general (see Appendix B for more details). Finally, if the polynomial
defined by A is minimized exactly, we obtain an upper-bound on the actual optimal
value of Eq. (15).

Kernelization Using notations from Sect. 3, we can formulate the problem in Eq. (17)
above as

min
A∈Rm×m , C∈Rmp×mp

tr(A	) such that C � 0 and G − I ⊗ A + C ∈ (Vϕ ⊗ Vψ)⊥

by definition of the vector spaceVϕ ⊗Vψ .We can then introduce a Lagrangemultiplier
M ∈ Vϕ ⊗ Vψ to obtain by convex duality:

max
M∈Vϕ⊗Vψ

min
A∈Rm×m , C�0

tr(A	) + tr
[
M(G − I ⊗ A + C)

]
.
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Fig. 1 Two-stage approach [1] for trigonometric polynomials in one dimension: three polynomials of
maximal degree 2 on [0, 1] (in green), with their maximum (in blue), and the upper-bounding polynomial
(in red), when using polynomials of degree r , with r = 2 (left), r = 4 (middle), and r = 8 (right)

We can then optimize with respect to C � 0, which leads to the constraint M � 0,
and with respect to A, which leads to a linear constraint, that is:

max
M∈Vϕ⊗Vψ

tr(MG) such that M � 0 and t̃r[M] = 	,

where t̃r[M] ∈ R
m×m denotes the “partial trace” defined as tr(N t̃r[M]) = tr(M(N ⊗

I )) for any matrix N ∈ R
m×m , and Sp denotes the set of symmetric matrices of size

p. In other words, (t̃r[M])i j = tr(Mi j ).
It can be kernelized like in Sect. 3.3, in particular in situations where 	 = 1

m I ,
which is the case when using a uniform distribution and ϕ obtained from orthonormal
bases. Like in Eq. (14), we can then represent 	 as 	 = ∑m′

i=1 μiϕ(xi )ϕ(xi )� for
some μ ∈ R

m′
. We thus solve

max
α∈Rm′×p′

∑

i, j

αi j g(xi , y j ) such that ∀i,
∑

j

αi j = μi and

∑

i, j

αi jϕ(xi )ϕ(xi )
� ⊗ ψ(y j )ψ(y j )

� � 0, (18)

and we recover ϕ(xi )�Aϕ(xi ) from the Lagrange multiplier for the constraint
∑p′

j=1 αi j = μi . This is sufficient to minimize a(x) = ϕ(x)�Aϕ(x) with an SOS
method like described in Sect. 3.

IllustrationWeconsiderX = [0, 1] and trigonometric polynomials,withY = {1, 2, 3}.
Thus, we aim to minimize the maximum of three trigonometric polynomials, which
we take to have a maximal degree of 2. This is illustrated in Fig. 1, where we plot
the three polynomials and the upper-bounding polynomial when using polynomials of
degree r , with r = 2, 4, 8, where we can see the slow and in general only asymptotic
convergence.

Alternative formulation for finite setsY. IfY = {1, . . . , p}, then our goal is tominimize
themaximum of pmultivariate polynomials g1, . . . , gp : X → R, and the simple one-
stage formulation from [8, Section 3] (which applies more generally to finitely many
rational functions) is based on the exact reformulation:
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min
a∈R, x∈X

a such that ∀ j ∈ {1, . . . , p}, a − g j (x) ≥ 0,

which can be turned into an SOS formulation using standard constrained formula-
tions (see [4]). This then leads to an upper-bound of the optimal value and often
achieves a global minimizer, as illustrated in Sect. 5. However, this formulation does
not extend to generic sets Y.

4.2 Primal-dual SOS relaxation

We consider the following “exact” reformulation already presented in Eq. (4):

min
x∈X

max
y∈Y

g(x, y) = min
μ∈P(X)

max
ν:X→P(Y)

∫

X

∫

Y
g(x, y)dν(y|x)dμ(x),

where the maximization problem is replaced by the maximization of an expectation.
Using the expression of g in Eq. (16), we can then use the bi-linearity of g and write
the equation above as

min
μ∈P(X)

max
ν:X→P(Y)

∫

X
tr

[

G

( ∫

Y
ψ(y)ψ(y)�dν(y|x) ⊗ ϕ(x)ϕ(x)�

)]

dμ(x),

and thus as (with no approximation yet), with V (x) =
∫

Y
ψ(y)ψ(y)�dν(y|x) ∈ Kψ

(the hull of all ψ(y)ψ(y)� for y ∈ Y):

min
x∈X

max
y∈Y

g(x, y) = min
μ∈P(X)

max
V :X→Kψ

∫

X
tr
[
G

(
V (x) ⊗ ϕ(x)ϕ(x)�

)]
dμ(x).

(19)

Introducing the conditional distribution ν(·|x) for all x ∈ X, and the resulting pseudo-
moment function V : X → Kψ is key to avoiding the two-stage approach of [1].

We will now make a sequence of three relaxations to approximate the problem in
Eq. (19) above.

Replacing Kψ by K̂ψ We first consider functions V with values in K̂ψ (which is
computationally more manageable) instead of Kψ (which may not), leading to

min
μ∈P(X)

max
V :X→K̂ψ

∫

X
tr
[
G

(
V (x) ⊗ ϕ(x)ϕ(x)�

)]
dμ(x), (20)

which is always greater or equal to the optimal value of Eq. (19).

Parameterizing V by a matrix sum-of-squares The set K̂ψ = {T � 0, tr(T ) = 1, T ∈
Vψ } has a PSD constraint. Thus, as presented in Sect. 3.6, following [21, 23, 24], we
can try to approximate it by a positive linear form in ϕ(x)ϕ(x)� as

V (x) = T [ϕ(x)ϕ(x)�],
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with T ∈ R
mp×mp such that T � 0, where, for M ∈ R

m×m , T [M] denotes
the symmetric matrix in R

p×p such that for any symmetric matrix N ∈ R
p×p,

tr
(
T [M]N) = tr

[
T (N ⊗ M)

]
. In other words, if T is defined by blocks Ti j ∈ R

m×m

for i, j ∈ {1, . . . , p}, then T [ϕ(x)ϕ(x)�]i j = ϕ(x)�Ti jϕ(x).
In order to impose that for all x ∈ X, V (x) ∈ Vψ and tr[V (x)] = 1, we add the

additional affine constraints

T ∈ V⊥
ϕ ⊗ Sp + Sm ⊗ Vψ, t̃r[T ] − I ∈ V⊥

ϕ ,

where t̃r[T ] ∈ R
m×m denotes the “partial trace” defined as tr(M t̃r[T ]) = tr(T (M⊗I ))

for any matrix M ∈ R
m×m , and Sp denotes the set of symmetric matrices of size p. In

other words, (t̃r[T ])i j = tr(Ti j ). See Sect. 4.6 for an instantiation for discrete sets Y,
where notations slightly simplify.

We then obtain a problem where the measure μ only appears through the moment
	 of ϕ(x)⊗4 = ϕ(x)ϕ(x)� ⊗ ϕ(x)ϕ(x)� ∈ R

m2×m2
, since we have, using properties

of Kronecker products:

∫

X
tr
[
G

(
V (x) ⊗ ϕ(x)ϕ(x)�

)]
dμ(x) =

p∑

i, j=1

∫

X
ϕ(x)�Gi jϕ(x)ϕ(x)�Ti jϕ(x)dμ(x)

= tr

⎛

⎝	

p∑

i, j=1

Gi j ⊗ Ti j

⎞

⎠ .

We thus get a partially relaxed formulation, which cannot be solved yet by a semi-
definite program (SDP), because of the set Kϕ⊗ϕ :

min
	∈Rm2×m2

max
T∈Rmp×mp

tr

⎛

⎝	

p∑

i, j=1

Gi j ⊗ Ti j

⎞

⎠ such that 	 ∈ Kϕ⊗ϕ

T � 0, T ∈ V⊥
ϕ ⊗ Sp + Sm ⊗ Vψ, t̃r[T ] − I ∈ V⊥

ϕ . (21)

Replacing Kϕ⊗ϕ by K̂ϕ⊗ϕ We obtain our final formulation, which can be solved as
an SDP, where Kϕ⊗ϕ is replaced by K̂ϕ⊗ϕ :

min
	∈Rm2×m2

max
T∈Rmp×mp

tr

⎛

⎝	

p∑

i, j=1

Gi j ⊗ Ti j

⎞

⎠ such that 	 � 0, 	 ∈ Vϕ⊗ϕ, tr(	) = 1

T � 0, T ∈ V⊥
ϕ ⊗ Sp + Sm ⊗ Vψ, t̃r[T ] − I ∈ V⊥

ϕ . (22)

We thus obtain a convex-concave min–max problem corresponding exactly to Eq. (9)
in Sect. 2.2.

Alternative formulationsWe can then choose to transform it into a minimization prob-
lem akin to Eq. (7) by adding a Lagrange multiplier C for the constraint T � 0, and

 ∈ Vϕ for t̃r[T ] − I ∈ V⊥

ϕ , leading to:
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min
	∈Rm2×m2

, C∈Rmp×mp, 
∈Rm×m
tr[
] such that 	 G + C − 
 ⊗ I ∈ Vϕ ⊗ V⊥

ψ

	 ∈ Vϕ⊗ϕ, 	 � 0, tr(	) = 1


 ∈ Vϕ, C � 0, (23)

where 	 G ∈ R
mp×mp is defined by block as: [	 G]i j = 	i j Gi j ∈ R

m×m . This
is the formulation used for solving the optimization problem empirically in Sect. 5.

Alternatively, we obtain a maximization problem akin to Eq. (8) from Eq. (22), by
adding a Lagrange multiplier A � 0 for the constraint 	 � 0, and c ∈ R for the
constraint tr	 = 1:

max
T∈Rmp×mp, A∈Rm2×p2 , c∈R

c such that T ◦ G − cI − A ∈ V⊥
ϕ⊗ϕ

T � 0, T ∈ V⊥
ϕ ⊗ Sp + Sm ⊗ Vψ, t̃r[T ] − I ∈ V�

ϕ

A � 0. (24)

This formulationwill be used in the convergence proof in Sect. 4.5. It is implementable
as a semidefinite program as soon as the sets Vψ , Vϕ , and Vϕ⊗ϕ can be represented
by finitely many linear constraints.

Summary Overall, the formulation is obtained through 3 approximations:

• Replacing Kψ by K̂ψ . If this approximation is exact, then the maximization in
y is exact, and we obtain lower bounds. This is, for example the case for Y =
{1, . . . , p}, and also for degree 2 polynomials. Otherwise, the equal values of
problems in Eqs. (22), (23), and (24) may be above or below the optimal value.

• Parameterizing all functions V : X → Vψ ∩ S
+
p by a matrix sum-of-squares [21,

23, 24]. This can only be exact if the function V is a polynomial, with the extra
approximation due to the potential non-tightness of matrix SOS.

• Replacing Kϕ⊗ϕ by K̂ϕ⊗ϕ . This is a typical SOS relaxation problem.

These approximations are discussed in Sect. 4.5.

4.3 Kernelization

Weassume thatwe havem points x1, . . . , xm such that the corresponding kernelmatrix
is invertible, complemented by m′ −m points xm+1, . . . , xm′ such that Vϕ is spanned
by ϕ(x1)ϕ(x1)�, . . . , ϕ(xm′)ϕ(xm′)�, and finally m′′ − m′ points such that Vϕ⊗ϕ is
spanned by ϕ(x1)⊗4, . . . , ϕ(xm′′)⊗4. We denote by K ′ ∈ R

m′×m′
the kernel matrix of

the firstm′ points. Thematrix K ′ is not invertible, but K ′ ◦K ′ (with ◦ the element-wise
product) is, because ϕ(x1)ϕ(x1)�, . . . , ϕ(xm′)ϕ(xm′)� is a basis of V. We denote by
K ′′ ∈ R

m′×m′′
the kernel matrix between the m′ first points and all m′′ points.

Wecan then express for all i ∈ {1, . . . ,m′′},ϕ(xi )ϕ(xi )� = ∑m′
j=1 N jiϕ(x j )ϕ(x j )�,

with the matrix N ∈ R
m′×m′′

equal to N = (K ′ ◦ K ′)−1K ′′.
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We can write Eq. (23) with 	 = ∑m′′
i=1 αiϕ(xi )⊗4, C = ∑m′

i=1 Di ⊗ ϕ(xi )ϕ(xi )�,
and 
 = ∑m′

i=1 λiϕ(xi )ϕ(xi )�, and get the optimization problem (which is an SDP
which we use in our experiments Sect. 5):

min
α∈Rm′′

, λ∈Rm′
, D1,...,Dm′ ∈Rp′×p′

m′
∑

i=1

λi

such that ∀i ∈ {1, . . . ,m′}, j ∈ {1, . . . , p′}, ψ(y j )
�Diψ(y j ) − λi + [NDiag(α)G]i j = 0

m′
∑

i=1

Di ⊗ ϕ(xi )ϕ(xi )
� � 0,

m′′
∑

i=1

αi = 1,
m′′
∑

i=1

αiϕ(xi )
⊗4 � 0.

From the vectorα, we can obtain a potentialminimizer using algorithms fromSect. 3.4,
with the possibility of full kernelization as in Sect. 3.3, whereG ∈ R

m′′×p′
is thematrix

of evaluations g(xi , y j ).

4.4 A posteriori guarantees

Since we have used relaxations of both maximization and minimization problems, we
do not obtain, in general, an upper or lower bound, except in some special cases that
we now describe.

If the feature mapψ is such that K̂ψ = Kψ , then from the matrix T ∈ R
mp×mp, we

get V : X → Kψ , and thus a feasible dual point for Eq. (19). Therefore the value of
the SOS formulation is always below the true one. If 	 is represented by a singleton
ϕ(x∗)ϕ(x∗)�, then if V (x∗) is such that maxy∈Y L(x∗, y) = tr[M(ϕ(x∗)ϕ(x∗)� ⊗
V (x∗))], we have a tight solution. This happens in our simulations.

If K̂ψ � Kψ , then, when 	 is represented by a singleton ϕ(x∗)ϕ(x∗)�, if V (x∗) is
such that maxy∈Y L(x∗, y) = tr[M(ϕ(x∗)ϕ(x∗)� ⊗ V (x∗))], we only know that we
have an upper-bound on the true value.

4.5 A priori guarantees

In this section, we focus primarily on the situation where K̂ψ = Kψ , so we do not
have to use hierarchies on Y. If this is not the case, we can use another relaxation K̃ψ

that would lead to an extra approximation factor that goes to zero as the degree of the
hierarchy on y goes to infinity. Still, the precise details are out of the scope of this
paper.

The main new result shows that for the polynomial examples in Sect. 3.1, the par-
tially relaxed problem in Eq. (21) can be solved through hierarchies with arbitrary
precisions. We make the following assumptions:

(A1) K̂ψ = Kψ , so that our relaxation is a lower-bound.
(A2) Given a one-dimensional Lipschitz-continuous function g : X → R, it can

be approximated by a quadratic form in
( ϕ

ϕ+
1

)
, where ϕ+

1 includes additional

monomials, and we denote by εapp(ϕ, ϕ+
1 ) the approximation constant so that
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for all g, there exists a quadratic form in ϕ̃ defined by the matrix H̃ , such that

∀x ∈ X, |g(x) − ϕ̃(x)� H̃ ϕ̃(x)| ≤ Lip(g) · εapp(ϕ, ϕ+
1 ).

It is known that, given ϕ, we can make εapp(ϕ, ϕ+
1 ) as small as desired by

increasing the degree of the polynomials, with well-studied convergence rates,
through “Jackson’s inequalities” [26].

(A3) We solve the equivalent optimization problems in Eqs. (22), (23), or (24) with ϕ

replaced by ϕ̃ = ( ϕ

ϕ+
)
, where ϕ+ = (ϕ+

1
ϕ+
2

)
includes additional mononials on top

of ϕ+
1 . We denote by εSOS(ϕ, ϕ+

1 , ϕ+
2 ) the SOS approximability ratio defined

in Sect. 3.5 as, for any H ∈ R
(m+m1)s×(m+m1)s :

∀x ∈ X, H [ϕ(x)ϕ(x)�] � εSOS(ϕ, ϕ+
1 , ϕ+

2 )‖H‖F I
⇒ ∃ Ã � 0, ∀x ∈ X, H [ϕ(x)ϕ(x)�] = Ã[ϕ̃(x)ϕ̃(x)�].

We select the threshold to have a similar result for scalar-valued quadratic forms
in ϕ(x)ϕ(x)�, as described at the end of Sect. 3.6. We know from Sect. 3.6 that,
given ϕ and ϕ+

1 , we canmake εSOS(ϕ, ϕ+
1 , ϕ+

2 ) as small as desired by increasing
the degree of the polynomials.

Note that we only need to divide ϕ+ in
(ϕ+

1
ϕ+
2

)
for the proof, as the algorithm is

oblivious to this distinction. Our main result follows.

Theorem 1 Let G be defined by a polynomial as in Eq. (16) and ε > 0. Assume (A1),
(A2), and (A3). Then there exist feature maps ϕ+

1 and ϕ+
2 such that the optimal value

of the SOS primal-dual relaxation is within ε of the optimal value.

Proof This requires obtaining SOS polynomial approximations to the matrix-valued
function V obtained in Eq. (20). To obtain a finite convergence, we would need to
represent one of themany optimal V ’s exactly. Herewewill consider a specific approx-
imation based on Von Neumann entropy regularization and start with a smoothing
lemma.

Lemma 1 Let B ∈ Sp and η > 0. Let Wη(B) be the unique maximizer of tr[BW ] −
ηtr[W logW ] such that W � 0, tr(W ) = 1, and W ∈ Vψ ⊂ R

p. Then Wη is a
(1/η)-Lipschitz-continuous function of B, and

0 ≤ max
W�0, tr(W )=1, W∈Vψ

tr[BW ] − tr[BWη(B)] ≤ η log p.

Proof Since the function W �→ tr[W logW ] is 1-strongly convex with respect to
the nuclear norm on the set {W � 0, tr(W ) = 1} [27], Wη is such that ‖Wη(B) −
Wη(B ′)‖∗ ≤ 1

η
‖B − B ′‖op [28], where ‖ · ‖∗ denotes the nuclear norm. The bound is

obtained by looking at eigenvalues of V and using classical bound on entropies [29].
��
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We can now build a feasible point for Eq. (24) which will lead to the desired bound.
Following the discussion at the end of Sect. 2, there are many optimal candidates
for x �→ V (x). In this proof, we propose a dual candidate V based on maximizing
approximately g(x, y) for all x ∈ X, and not only at the minimizer x∗. While it
allows to show asymptotic convergence, it is not sufficient to show finite convergence.
Interestingly, in our proof, we end up approximating maxy∈Y g(x, y) by a polynomial
in x with a specific form (see Eq. (25) below), like done by [1] (see Sect. 4.1 for
the precise formulation). However, this is only used in the proof, and not within the
algorithm. Finding a proof that circumvents this need for polynomial approximation
would strenghten the result.

We consider η > 0, and the function V : x �→ Wη

(
G[ϕ(x)ϕ(x)�]) obtained from

Lemma 1. By construction, ∀x ∈ X, V (x) ∈ K̂ψ , V is Lipschitz-continuous with
constant proportional to ‖G‖F/η (with constants that depends on ϕ), since

‖V (x ′) − V (x)‖∗ ≤ 1

η
‖G ′[ϕ(x)ϕ(x ′)�] − G[ϕ(x)ϕ(x)�]‖op ≤ 1

η
‖G‖FLip(ϕ).

Moreover, from Lemma 1, we have

0 ≤ max
y∈Y

g(x, y) − tr
(
V (x)G[ϕ(x)ϕ(x)�]) ≤ η log p. (25)

We can then use Assumption (A2) and approximate V by a quadratic form in
( ϕ

ϕ+
1

)
.

We thus find amatrixU ∈ R
(m+m1)p×(m+m1)p such that all affine constraints on values

of V are still satisfied, that is, U ∈ V⊥
ϕ ⊗ Sp + Sm ⊗ Vψ and t̃r[U ] − I ∈ V�

ϕ , and

∀x ∈ X, ‖V (x) −U [ϕ(x)ϕ(x)�]‖op ≤ C · 1
η
‖G‖F · ε(app)(ϕ, ϕ+

1 )

for some constant C that is independent of G and ϕ+
1 . Thus for all x ∈ X,

U [ϕ(x)ϕ(x)�] � −C · 1
η
‖G‖F · εapp(ϕ, ϕ+

1 )I , which implies from Assumption (A3)
that

U [ϕ(x)ϕ(x)�] +
[

εSOS(ϕ, ϕ+
1 , ϕ+

2 )‖U‖F + C · 1
η
‖G‖F · εapp(ϕ, ϕ+

1 )

]

I

is a sum-of-squares and satisfies all other affine constraints. We denote by T the
corresponding matrix, which is feasible for Eq. (24). Moreover, because of Eq. (25),
we have, for all x ∈ X,

tr
(
T [ϕ(x)ϕ(x)�]G[ϕ(x)ϕ(x)�]) ≥ min

x ′∈X
max
y∈Y

g(x ′, y)

−η log p −
[

εSOS(ϕ, ϕ+
1 , ϕ+

2 )‖U‖F + C

η
‖G‖F · εapp(ϕ, ϕ+

1 )

]

,

123



F. Bach

and thus, applying Assumption (A3) again, T ◦ G − minx ′∈Xmaxy∈Y g(x ′, y) −
η log p + [

εSOS(ϕ, ϕ+
1 , ϕ+

2 )(‖U‖F + ‖T ◦ G‖F) + C
η
‖G‖F · εapp(ϕ, ϕ+

1 )
]
is a sum

of squares, and thus we obtain an approximation of minx ′∈Xmaxy∈Y g(x ′, y) up to
η log p + εSOS(ϕ, ϕ+

1 , ϕ+
2 )(‖U‖F + ‖T ◦ G‖F) + C

η
‖G‖F · εapp(ϕ, ϕ+

1 ). Now, given

ε > 0, we take η = 1
3 log p , then select ϕ+

1 such that C
η
‖G‖F · εapp(ϕ, ϕ+

1 ) is smaller

than ε/3, and finally select ϕ+
2 such that εSOS(ϕ, ϕ+

1 , ϕ+
2 )(‖U‖F + ‖T ◦ G‖F) is less

than ε/3. This leads to desired approximation within ε. ��
We can make the following observations:

• Thehierarchyoften empirically converges infinitelymany iterations, butwe cannot
find provable sufficient conditions. It would be interesting to see if, assuming that
the polynomial is convex-concave, we could use tools from [30] to prove such
convergence.

• To obtain a convergence rate, we would need to be able to characterize the depen-
dence of εSOS(ϕ, ϕ+

1 , ϕ+
2 ) on ϕ+

1 , which we leave for future work.

4.6 Special case Y = {1, . . . , p}

This corresponds to having Kψ = K̂ψ the set of PSD diagonal matrices with unit
trace. We can then simplify notations and solve

min
x∈X

max
j∈{1,...,p} ϕ(x)�G jϕ(x),

with G1, . . . ,Gp ∈ Sm . We then have V diagonal, with diagonal elements v j (x) =
ϕ(x)�Tjϕ(x), with Tj � 0, and

∑p
j=1 Tj − I ∈ V⊥

ϕ . We thus obtain the min/max
formulation corresponding to Eq. (22):

min
	∈Rm2×m2

max
T1,...,Tp∈∈Rm×m

tr

⎡

⎣	 ·
p∑

j=1

G j ⊗ Tj

⎤

⎦ such that 	 � 0,

	 ∈ Vϕ⊗ϕ, tr(	) = 1T1, . . . , Tp � 0,
p∑

j=1

Tj − I ∈ V⊥
ϕ . (26)

We also get the minimization formulation, which is the one used in experiments,
corresponding to Eq. (23):

min
	∈Rm2×m2

, 
∈Rm×m
tr[
] such that ∀ j ∈ {1, . . . , p}, 	[G j ] � 


	 ∈ Vϕ⊗ϕ, 	 � 0, tr(	) = 1


 ∈ Vϕ. (27)

123



Sum-of-squares relaxations for polynomial…

We also get a maximization formulation, corresponding to Eq. (24), and leading to a
nice interpretation below:

max
T1,...,Tp∈Rm×m

c such that
p∑

j=1

G j ⊗ Tj − cI − A ∈ V⊥
ϕ⊗ϕ

T1, . . . , Tp � 0,
p∑

j=1

Tj − I ∈ V⊥
ϕ . (28)

Kernelization Empirically, we solve

min
α∈Rm′′

, λ∈Rm′

m′
∑

i=1

λi such that ∀ j ∈ {1, . . . , p},
m′′
∑

i=1

αi g j (xi )ϕ(xi )ϕ(xi )
� �

m′
∑

i=1

λiϕ(xi )ϕ(xi )
�

m′′
∑

i=1

αi = 1,
m′′
∑

i=1

αiϕ(xi )ϕ(xi )
� ⊗ ϕ(xi )ϕ(xi )

� � 0.

We obtain the matrices T1, . . . , Tp as Lagrange multipliers for the PSD constraints.

Relationship with Putinar’s Positivstellensatz An interesting parallel with Puti-
nar’s Positivstellensatz [31] can be made. We consider p multi-variate polynomials
g1, . . . , gp, with X ⊂ R

d one of the simple sets described in Sect. 3. Because of the
approximation result in Sect. 4.5, we know that if minx∈Xmax j=1,...,p g j (x) is strictly
positive, there is a level of the hierarchy of polynomials so that our relaxation also has
strictly positive values, and, in fact, the converse is also true. Thus, using the max-
imization formulation from Eq. (28), minx∈Xmax j=1,...,p g j (x) > 0, if and only if
there exists c > 0 and sum-of-square (that is, PSD quadratic forms in ϕ) polynomials
q0 (represented by A), and q1, . . . , qp, represented by T1, . . . , Tp, such that

∀x ∈ X, c =
p∑

j=1

g j (x)q j (x) − q0(x),

and such that q1(x) + · · · + qp(x) = 1 for all x ∈ X.
Without loss of the generality, we can take c = 1, and we have shown that

min
x∈X

max
j=1,...,p

g j (x) > 0

if and only if there exist SOS polynomials (based on the feature vector ϕ) q0, . . . , qp
such that

∀x ∈ X, −1 =
p∑

j=1

(−g j (x))q j (x) + q0(x)
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Fig. 2 Minimization of the maximum of 3 trigonometric polynomials on [0, 1]: two-stage approach of [1]
(left), one-stage primal-dual approach (middle), functions v j , j = 1, 2, 3 from the two-stage approach
(right)

Fig. 3 Minimization of the maximum of a bivariate trigonometric polynomial with X = Y = [0, 1].
Two-stage approach of [1] (left), one-stage primal-dual approach (right)

and q1(x) + · · · + qp(x) is constant on X.
Without the last constraint, this turns out to be exactly the Putinar certificate for the

positivity of −1 on the set A = {x ∈ R
d , ∀ j ∈ {1, . . . , p}, −g j (x) ≥ 0}, and thus a

certificate for the emptiness of that set. Given that

min
x∈X

max
j=1,...,p

g j (x) ≤ 0 ⇔ ∃x ∈ X, ∀ j ∈ {1, . . . , p}, g j (x) ≤ 0 ⇔ X ∩ A �= ∅,

we obtained a feasibility certificate similar to the one obtained for Putinar. Note that
the original Putinar certificate does require an extra assumption, e.g., that one of the
sets {x ∈ R

d , −g j (x) ≥ 0} is bounded.
Note moreover that with our assumptions from Sect. 3.1, SOS-polynomials that are

PSD quadratic forms in ϕ have a slightly different meaning; that is, for example, for
the unit Euclidean ball, they correspond to (1 − ‖x‖22)u(x) + v(x), where u and v

are regular sums-of-squares. This leads to the following proposition (where we have
replaced g j by−g j to match classical certificates, and we have dropped the constraint
of summing to a constant, which is not necessary).
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Fig. 4 Minimization of the maximum 4 trigonometric polynomials on [0, 1]2, with the maximizer in red

Proposition 2 Let g1, . . . , gp be p multivariate polynomials on R
d . Then, the set

{x ∈ R
d , ‖x‖22 ≤ 1, ∀ j ∈ {1, . . . , p}, g j (x) ≥ 0}

is empty if and only if there exists polynomials u0, v0, u1, v1, . . . , u p, vp that are
sums-of-squares such that

∀x ∈ R
d , −1 =

p∑

j=1

g j (x)
[
(1 − ‖x‖22)u j (x) + v j (x)

] + (1 − ‖x‖22)u0(x) + v0(x).

It is weaker than Putinar’s certificate, which would not need u1, . . . , u p. Still, it could
be extended to continuous situations where the set Y (and the corresponding feature
map ψ) in our min–max formulation leads to tight SOS formulations, for example,
for polynomials in [−1, 1].

5 Experiments

In this section, we provide illustrative experiments where we obtain tight relaxations
on small problems. See https://www.di.ens.fr/~fbach/sos_min_max.zip for Matlab code repro-
ducing these experiments.

Minimizing the maximum of univariate trigonometric polynomials See Fig. 2, where
we obtain a tight relaxation with our one-stage approach (which always leads to lower
bounds in this situation), while the two-stage approach from [1] does not. Here, the
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one-stage approach from [8] (which always leads to upper bounds) can be applied and
is also tight because SOS relaxations are tight in dimension one.

We also plot the optimal function v j (x) = ϕ(x)�Tjϕ(x), j ∈ {1, . . . , p}, which
are non-negative and sum to one, and, at x∗, have non-zero values only for the j’s
attaining the maximum in max j∈{1,...,p} g j (x∗).
Maximizing the maximum of bivariate trigonometric polynomials See Fig. 4 for an
example with a tight relaxation, while the two-stage approach from [1] does not (here,
the one-stage approach of [8] cannot be applied).

Min–max optimization of a trigonometric polynomial on [0, 1]2. See Fig. 3 for an
example with a tight relaxation.

6 Conclusion

In this paper, we proposed an SOS formulation for min–max problems over polyno-
mials and provided a convergence proof when degrees of polynomials are allowed
to increase. This work opens up several avenues for future work, such as (a) infinite-
dimensional extensions for smooth functions by adding proper regularization like done
by [16] for plain minimization, (b) finding sufficient conditions for either finite con-
vergence or an explicit rate, and (c) exploring how the min–max approach relates to
the several Positivstellensatz from the literature.

Acknowledgements The comments and suggestions of the anonymous reviewers were greatly appreciated.

Appendix A Convergence rates of matrix-valued SOS

We extend the proof of [11, Theorem 1] to matrix-valued polynomials, using the same
technique as [21], and following the notations of [11] closely.

Proposition 3 Let r > 0 and s ≥ 3r , and ε(s) = [(
1 − 6r2

s2
)−d − 1

] ∼s→+∞ 6r2d
s2

.
For any multivariate matrix-valued trigonometric polynomial f of degree less than
2r , written f (x) = ∑

‖ω‖∞≤2r f̂ (ω)e2iπω�x ,

∀x ∈ [0, 1]d , f (x) � ε(s)
∑

‖ω‖∞≤2r , ω �=0

‖ f̂ (ω)‖op

⇒ f is a sum of squares of polynomials of degree s.

Proof We consider the following integral operator on 1-periodic matrix-valued func-
tions on [0, 1]d , defined as

Th(x) =
∫

[0,1]d
|q(x − y)|2h(y)dy, (A1)

for a well-chosen 1-periodic function q which is a trigonometric polynomial of
degree s. The function x �→ |q(x − y)|2 is an element of the finite-dimensional
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cone of SOS polynomials of degree s, thus, by design, if h has positive semi-definite
values, then Th is a sum of squares of matrix polynomials of degree less than s. We
will find h such that Th = f .

In the Fourier domain, since convolutions lead to pointwise multiplication and
vice-versa, we have for all ω ∈ Z

d , where q̂ ∗ q̂(ω) is a shorthand for (q̂ ∗ q̂)(ω):

T̂ h(ω) = q̂ ∗ q̂(ω) · ĥ(ω),

and thus, the candidate h is defined by its Fourier series, which is equal to zero for
‖ω‖∞ > 2r , and to

f̂ (ω)

q̂ ∗ q̂(ω)

otherwise. If we impose that q̂ ∗ q̂(0) = 1, we then have

f − h =
∑

ω∈Zd

f̂ (ω)
(
1 − 1

q̂ ∗ q̂(ω)

)
exp(2iπω�·)

=
∑

ω �=0

f̂ (ω)
(
1 − 1

q̂ ∗ q̂(ω)

)
exp(2iπω�·).

We then get:

sup
x∈[0,1]d

‖ f (x) − h(x)‖op ≤
∑

ω �=0

∥
∥ f̂ (ω)

∥
∥
op · max‖ω‖∞≤2r

∣
∣
∣

1

q̂ ∗ q̂(ω)
− 1

∣
∣
∣. (A2)

With the choice q̂(ω) = a
∏d

i=1

(
1 − |ωi |

s

)

+, with a a normalizing constant, we

get q̂ ∗ q̂(0) = 1 and max‖ω‖∞≤2r
∣
∣ 1
q̂∗q̂(ω)

− 1
∣
∣ ≤ ε(s) (see [11] for details). Thus,

for all x ∈ [0, 1]d , using Eq. (A2) and the assumption on f :

h(x) = f (x) − ( f (x) − h(x)) � ε(s)
∑

ω �=0

‖ f̂ (ω)‖op − ε(s)
∑

ω �=0

‖ f̂ (ω)‖op = 0,

which leads to the desired result. ��

Appendix B Alternating optimization for the two-stage approach

In this section, we explore briefly the possibility evoked in Sect. 4.1 of trying to mini-
mize Eq. (17) with respect to	 as well. This is a non-convex problem, and alternating
optimization has a particularly simple formulation. Indeed, in the kernelized version in
Eq. (18), this corresponds to replacingμ by the previous value of α and iterating. Since
the first upper-bound is minimized exactly, at the second iteration and all later ones,
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Fig. 5 Two-stage approach for trigonometric polynomials in one dimension, with alternating optimization
and r = 2, with 6 iterations

the matrix 	 corresponds to a Dirac measure, and the upper-bounding polynomial is
so that its value at this point is minimized. This is shown empirically in Fig. 5: even
in the good attraction basin, the alternating optimization does not lead to the global
optimum.
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