
Learning on images
with segmentation graph kernels
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Learning tasks on images
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– Associated with different machine learning problems
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Kernel methods for machine learning

• Motivation:

– Develop modular and versatile methods to learn from data

– Minimal assumptions regarding the type of data (vectors, strings,

graphs)

– Theoretical guarantees

• Main idea:

– use only pairwise comparison between objects through dot-products

– use algorithms that depend only on those dot-products (“linear

algorithms”)



Kernel trick : linear ⇒ non linear



Kernel trick : linear ⇒ non linear

Φ

• Non linear map Φ : x ∈ X 7→ Φ(x) ∈ F

• Linear estimation in “feature space” F

• Assumption: results only depend on dot products 〈Φ(xi),Φ(xj)〉 for

pairs of data points

• Kernel: k(x, x′) = 〈Φ(x),Φ(x′)〉

• Implicit embedding!



Kernel methods for machine learning

• Definition: given a set of objects X , a positive definite kernel is

a symmetric function k(x, x′) such that for all finite sequences of

points xi ∈ X and αi ∈ R,

∑
i,j αiαjk(xi, xj) > 0

(i.e., the matrix (k(xi, xj)) is symmetric positive semi-definite)

• Aronszajn theorem (1950): k is a positive definite kernel if and

only if there exists a Hilbert space F and a mapping Φ : X 7→ F

such that

∀(x, x′) ∈ X 2, k(x, x′) = 〈Φ(x),Φ(x′)〉H

• X = “input space”, F = “feature space”, Φ = “feature map”

• Functional view: reproducing kernel Hilbert spaces



Kernel trick and modularity

• Kernel trick: any algorithm for finite-dimensional vectors that only

uses pairwise dot-products can be applied in the feature space.

– Replacing dot-products by kernel functions

– Implicit use of (very) large feature spaces

– Linear to non-linear learning methods



Kernel trick and modularity

• Kernel trick: any algorithm for finite-dimensional vectors that only

uses pairwise dot-products can be applied in the feature space.

– Replacing dot-products by kernel functions

– Implicit use of (very) large feature spaces

– Linear to non-linear learning methods

• Modularity of kernel methods

1. Work on new algorithms and theoretical analysis

2. Work on new kernels for specific data types



Kernel algorithms

• Classification and regression

– Support vector machine, linear regression, etc...

• Clustering

• Outlier detection

• Ranking

• Integration of heterogeneous data

⇒ Developed independently of specific kernel instances



Kernels : kernels on vectors x ∈ R
d

• Linear kernel k(x, y) = x⊤y

– Linear functions

• Polynomial kernel k(x, y) = (r + sx⊤y)d

– Polynomial functions

• Gaussian-RBF kernels k(x, y) = exp(−α‖x − y‖2)

– Smooth functions

• Structured objects? Choice of parameters?



Kernels for images

• Most applications of kernel methods to images

– Compute a set of features (e.g., wavelets)

– Run an SVM with many training examples

• Why not design specific kernels?

– Using natural structure of images beyond flat wavelet

representations

– Using prior information to lower the number of training samples



kernel methods for images

• “Natural” representations

– Vector of pixels + kernels between vectors (most of learning

theory!)

– Bags of pixels: leads to kernels between histograms

(Chapelle & Haffner, 1999, Cuturi et al, 2006)

– Large set of hand-crafted features (e.g., Osuna and Freund, 1998)



Input picture



Wavelets



kernel methods for images

• “Natural” representations

– Vector of pixels

– Bags of pixels

– Large set of hand-crafted features

• Loss of natural global geometry

– Often requires a lot of training examples

• Natural representations

– Salient points (SIFT features, Lowe, 2004)

– Segmentation



SIFT features



Segmentation

• Goal: extract objects of interest

• Many methods available, ....

– ... but, rarely find the object of interest entirely

• Segmentation graphs

– Allows to work on “more reliable” over-segmentation

– Going to a large square grid (millions of pixels) to a small graph

(dozens or hundreds of regions)



Image as a segmentation graph

• Segmentation method

– LAB Gradient with oriented edge filters (Malik et al, 2001)

– Watershed transform with post-processing (Meyer, 2001)

– Very fast!



Watershed

image gradient watershed

287 segments 64 segments 10 segments
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Image as a segmentation graph

• Segmentation method

– LAB Gradient with oriented edge filters (Malik et al, 2001)

– Watershed transform with post-processing (Meyer, 2001)

• Labelled undirected Graph

– Vertices: connected segmented regions

– Edges: between spatially neighboring regions

– Labels: region pixels
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Image as a segmentation graph

• Segmentation method

– LAB Gradient with oriented edge filters (Malik et al, 2001)

– Watershed transform with post-processing (Meyer, 2001)

• Labelled undirected Graph

– Vertices: connected segmented regions

– Edges: between spatially neighboring regions

– Labels: region pixels

• Difficulties

– Extremely high-dimensional labels

– Planar undirected graph

– Inexact matching



Kernels between structured objects

Strings, graphs, etc...

• Numerous applications (text, bio-informatics)

• From probabilistic models on objects (e.g., Saunders et al, 2003)

• Enumeration of subparts (Haussler, 1998, Watkins, 1998)

– Efficient for strings

– Possibility of gaps, partial matches, very efficient algorithms

(Leslie et al, 2002, Lodhi et al, 2002, etc... )

• Most approaches fails for general graphs (even for undirected trees!)

– NP-Hardness results (Gärtner et al, 2003)

– Need alternative set of subparts



Paths and walks

• Given a graph G,

– A path is a sequence of distinct neighboring vertices

– A walk is a sequence of neighboring vertices

• Apparently similar notions



Paths



Walks



Walk kernel (Kashima, 2004, Borgwardt, 2005)

• Wp
G

(resp. Wp
H
) denotes the set of walks of length p in G (resp. H)

• Given basis kernel on labels k(ℓ, ℓ′)

• p-th order walk kernel:

k
p
W

(G,H) =
∑

(r1, . . . , rp) ∈ Wp
G

(s1, . . . , sp) ∈ Wp
H

p∏

i=1

k(ℓG(ri), ℓH(si)).

G

1

s3

2s

s 1r
2

3r
H

r



Dynamic programming for the walk kernel

• Dynamic programming in O(pdGdHnGnH)

• k
p
W

(G,H, r, s) = sum restricted to walks starting at r and s

• recursion between p − 1-th walk and p-th walk kernel

k
p
W

(G,H, r, s)=k(ℓG(r), ℓH(s))
∑

r′ ∈ NG(r)

s′ ∈ NH(s)

k
p−1
W

(G,H, r′, s′).

G
s

r

H



Dynamic programming for the walk kernel

• Dynamic programming in O(pdGdHnGnH)

• k
p
W

(G,H, r, s) = sum restricted to walks starting at r and s

• recursion between p − 1-th walk and p-th walk kernel

k
p
W

(G,H, r, s)=k(ℓG(r), ℓH(s))
∑

r′ ∈ NG(r)

s′ ∈ NH(s)

k
p−1
W

(G,H, r′, s′)

• Kernel obtained as k
p,α
T

(G,H) =
∑

r∈VG,s∈VH

k
p,α
T

(G,H, r, s)

• NB: more flexible than matrix inversion approaches



Subtrees and tree patterns

• subtree = subgraph with no cycle

• tree-walks (or tree patterns)

– natural extensions to subtrees to the “walk world“

– α-ary tree-walk (a.k.a tree pattern) of G : rooted directed α-ary

tree whose vertices are vertices of G, such that if they are neighbors

in the tree pattern, they must be neighbors in G as well



Subtrees



Tree patterns



Treewalk kernel

• T p,α
G

(resp. T p,α
H

) denotes the set of α-ary tree patterns of G (resp.

H) of depth p

• k
p,α
T

(G,H) is defined as the sum over all tree patterns in Tp,α(G)

and all tree patterns in Tp,α(H) (that share the same tree structure)

2s

s 1

r
2

3r

s4

4r

1

2

34

H

r

G

1

s3



Dynamic programming

• Dynamic programming in O(pα2dGdHnGnH)

• NB: need planarity to avoid exponential complexity

k
p,α
T

(G,H, r, s) = k(ℓG(r), ℓH(s)) ×
∑

I ∈ Iα
G
(r)

J ∈ Iα
H
(s)

∏

r′ ∈ I

s′ ∈ J

k
p−1,α
T

(G,H, r′, s′).

k
p,α
T

(G,H) =
∑

r ∈ VG

s ∈ VH

k
p,α
T

(G,H, r, s).



Planar graphs and neighborhoods

• Natural cyclic ordering of neighbors for planar graphs

• Example: intervals of length 2



Engineering segmentation kernels

• kernels between segments:

– Chi-square metric: d2
χ(P,Q) =

∑N

j=1
(pi−qi)

2

pi+qi

– Pℓ = the histogram of colors of region labelled by ℓ

k(ℓ, ℓ′) = kχ(Pℓ, Pℓ′) = e−µd2
χ(Pℓ,Pℓ′)

– Segments weighting scheme k(ℓ, ℓ′) = λA
γ
ℓ A

γ

ℓ′
e−µd2

χ(Pℓ,Pℓ′) where

Aℓ is the area of the corresponding region

• Many (?) parameters:

Kernel free param. fixed param.
Histogram µ

Walk p µ, λ, α = 1
Tree-walk p, α > 1 µ, λ

Weighted tree-walk p, α > 1, γ µ, λ



Multiple kernel learning

• Given set of basis kernels Kj, learn a linear combination

K(η) =
∑

j

ηjKj

• Convex optimization problem which jointly learns η and the classifier

obtained from K(η)

(Lanckriet et al, 2004, Bach et al, 2004, 2005)

• Kernel selection

• Fusion of heterogeneous kernels from different data sources



Classification experiments

• Coil100: database of 7200 images of 100 objects in a uniform

background, with 72 images per object.



Classification experiments

• Corel14 is a database of 1400 natural images of 14 different classes



Comparison of kernels

• kernels :

– histogram kernel (H)

– walk-based kernel (W)

– tree-walk kernel (TW)

– weighted-vertex tree-walk kernel (wTW)

– combination of the above by multiple kernel learning (M)

• Hyperparameters selected by cross-validation

• Error rates on ten replications:

H W TW wTW M

Coil100 1.2% 0.8% 0.0% 0.0% 0.0%

Corel14 10.36% 8.52% 7.24% 6.12% 5.38%



Performance on Corel14 dataset

• histogram kernel (H)

• walk-based kernel (W)

• tree-walk kernel (TW)

• weighted-vertex tree-
walk kernel (wTW)

• combination by MKL
(M) H W TW wTW M
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Multiple kernel learning

• 100 kernels corresponding to 100 settings of hyperparameters

Kernel free param. fixed param.
Histogram µ

Walk p µ, λ, α = 1
Tree-walk p, α > 1 µ, λ

Weighted tree-walk p, α > 1, γ µ, λ

• Selected kernels

p, α, γ 10, 3, 0.6 7, 1, 0.6 10, 3, 0.3 5, 3, 0.0 8, 1, 0.0

η 0.12 0.17 0.10 0.07 0.04



Semi-supervised learning

• Kernels give task flexibility

• Example: semi-supervised algorithm of Chapelle and Zien (2004)

• 10% labelled examples, 10% test examples, 10% to 80% unlabelled

examples
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Conclusion

• Learning on images with kernels on segmentation graphs

– Based on a natural and still noisy representation of images

– Prior information allows better generalization performances

– Modularity

• Current work and natural extensions:

– Non-tottering trick (Mahé et al, 2005)

– Allows gaps (Saunders et al, 2001)

– Shock graphs (e.g., Suard et al., 2005)

– SIFT features

• Application to image retrieval


