Learning on images with segmentation graph kernels

Zaïd Harchaoui *Telecom, Paris*

Francis Bach Ecole des Mines de Paris

May 2007

Outline

- Learning on images
- Kernel methods
- Segmentation graph kernels
- Experiments
- Conclusion

Learning tasks on images

- Multiplication of digital media
- Many different tasks to be solved
 - Associated with different machine learning problems

Image retrieval

Classification, ranking, outlier detection

<u>Web</u> Images <u>Groupes</u> <u>Actualités</u> <u>Desktop</u> plus »

Recherche d'images

Rechercher sur le Web Préférences

Images Afficher Toutes les tailles « Afficher tous les résultats de recherche pour london

We had very nice days (London ... 500 x 375 - 32 ko - jpg www.bestvaluetours.co.uk

www.myspace.com/samtl 300 x 317 - 62 ko - gif profile.myspace.com

Angleterre : Londres 1150 x 744 - 89 ko - jpg www.bigfoto.com

... the Tower of London. 830 x 634 - 155 ko - jpg www.photo.net

London | 06 janvier 2006 800 x 1200 - 143 ko - jpg www.blogg.org

PEARSON

London Tests of English

989 x 767 - 271 ko - jpg

www.alphalangues.org

Language Assessments AUTHORISED CENTRE

9. To beef or not to beef ... 555 x 366 - 10 ko - jpg jean.christophe-bataille.over-blog.coi

Hellgate : London Trailer 500 x 365 - 109 ko - jpg www.tnggz.info

Aéroport international de London 321 x 306 - 54 ko - jpg www.westjet.com

London dalek (Robot) posté le samediLondon dalek (Robot) posté le samedi TUBE 2 London (Symbian UIQ3)

640 x 445 - 232 ko - jpg rbot.blogzoom.fr

E 2 London (Symbian UIQ3) 320 x 320 - 12 ko - gif www.handango.com

Image retrieval

Classification, ranking, outlier detection

 Web
 Images
 Video
 News
 Maps
 Desktop
 more »

 paris
 Search
 Adv
 Adv

Moderate SafeSearch is on

 Desktop
 more »

 Search
 Advanced Image Search

 Preferences
 Preferences

Images Showing: All image sizes 💌

Paris: History

Monet, Claude: works about Paris

Paris au XIXème siècle

Paris

PARIS PLAGE

Paris Town Hall

Paris med KLM - SAS - Air France ...

Standard Paris Photos

200101-d30-paris

... Métro de PARIS - Paris Subway

Paris Hilton Pictures

Paris Hilton Pictures

Paris hotel Budget in St Germain ...

paris-figure4.JPG

is Photos

Image annotation Classification, clustering

Personal photos

Classification, clustering, visualisation

carmen0607_1.jpg

carmen0608_1.jpg

carmen0608_3.jpg

carmen0609_1.jpg

carmen0609_2.jpg

carmen0610_1.jpg

carmen0611_1.jpg

carmen0613_1.jpg

carmen0613_3.jpg

carmen0615_1.jpg

carmen0617_1.jpg

carmen0615_2.jpg

carmen0617_2.jpg

carmen0617_3.jpg

carmen0615_3.jpg

carmen0616_1.jpg

carmen0616_3.jpg

carmen0622_1.jpg

carmen0620 1.jpg

Learning tasks on images

- Multiplication of digital media
- Many different tasks to be solved
 - Associated with different machine learning problems
- Application: retrieval/indexing of images
- Common issues:
 - Complex tasks
 - Heterogeneous data links with other medias (text and sound)
 - Massive data

Learning tasks on images

- Multiplication of digital media
- Many different tasks to be solved
 - Associated with different machine learning problems
- Application: retrieval/indexing of images
- Common issues:
 - Complex tasks
 - Heterogeneous data links with other medias (text and sound)
 - Massive data

\Rightarrow Kernel methods

Kernel methods for machine learning

• Motivation:

- Develop modular and versatile methods to learn from data
- Minimal assumptions regarding the type of data (vectors, strings, graphs)
- Theoretical guarantees

Kernel methods for machine learning

• Motivation:

- Develop modular and versatile methods to learn from data
- Minimal assumptions regarding the type of data (vectors, strings, graphs)
- Theoretical guarantees
- Main idea:
 - use only pairwise comparison between objects through dot-products
 - use algorithms that depend only on those dot-products ("linear algorithms")

Kernel trick : linear \Rightarrow non linear

- Non linear map $\Phi: x \in \mathcal{X} \mapsto \Phi(x) \in \mathcal{F}$
- Linear estimation in "feature space" ${\cal F}$
- Assumption: results only depend on dot products $\langle \Phi(x_i), \Phi(x_j) \rangle$ for pairs of data points
- Kernel: $k(x, x') = \langle \Phi(x), \Phi(x') \rangle$
- Implicit embedding!

Kernel methods for machine learning

• Definition: given a set of objects \mathcal{X} , a positive definite kernel is a symmetric function k(x, x') such that for all finite sequences of points $x_i \in \mathcal{X}$ and $\alpha_i \in \mathbb{R}$,

 $\sum_{i,j} \alpha_i \alpha_j k(x_i, x_j) \ge 0$

(i.e., the matrix $(k(x_i, x_j))$ is symmetric positive semi-definite)

• Aronszajn theorem (1950): k is a positive definite kernel if and only if there exists a Hilbert space \mathcal{F} and a mapping $\Phi : \mathcal{X} \mapsto \mathcal{F}$ such that

$$\forall (x, x') \in \mathcal{X}^2, \ k(x, x') = \langle \Phi(x), \Phi(x') \rangle_{\mathcal{H}}$$

- $\mathcal{X} =$ "input space", $\mathcal{F} =$ "feature space", $\Phi =$ "feature map"
- Functional view: reproducing kernel Hilbert spaces

Kernel trick and modularity

- Kernel trick: any algorithm for finite-dimensional vectors that only uses pairwise dot-products can be applied in the feature space.
 - Replacing dot-products by kernel functions
 - Implicit use of (very) large feature spaces
 - Linear to non-linear learning methods

Kernel trick and modularity

- Kernel trick: any algorithm for finite-dimensional vectors that only uses pairwise dot-products can be applied in the feature space.
 - Replacing dot-products by kernel functions
 - Implicit use of (very) large feature spaces
 - Linear to non-linear learning methods
- Modularity of kernel methods
 - 1. Work on new algorithms and theoretical analysis
 - 2. Work on new kernels for specific data types

Kernel algorithms

- Classification and regression
 - Support vector machine, linear regression, etc...
- Clustering
- Outlier detection
- Ranking
- Integration of heterogeneous data

 \Rightarrow Developed independently of specific kernel instances

Kernels : kernels on vectors $x \in \mathbb{R}^d$

- Linear kernel $k(x,y) = x^{\top}y$
 - Linear functions
- Polynomial kernel $k(x,y) = (r + sx^{\top}y)^d$
 - Polynomial functions
- Gaussian-RBF kernels $k(x, y) = \exp(-\alpha ||x y||^2)$
 - Smooth functions
- Structured objects? Choice of parameters?

Kernels for images

- Most applications of kernel methods to images
 - Compute a set of features (e.g., wavelets)
 - Run an SVM with many training examples
- Why not design specific kernels?
 - Using natural structure of images beyond flat wavelet representations
 - Using prior information to lower the number of training samples

kernel methods for images

- "Natural" representations
 - Vector of pixels + kernels between vectors (most of learning theory!)
 - Bags of pixels: leads to kernels between histograms (Chapelle & Haffner, 1999, Cuturi et al, 2006)
 - Large set of hand-crafted features (e.g., Osuna and Freund, 1998)

Input picture

Wavelets

kernel methods for images

- "Natural" representations
 - Vector of pixels
 - Bags of pixels
 - Large set of hand-crafted features
- Loss of natural global geometry
 - Often requires a lot of training examples
- Natural representations
 - Salient points (SIFT features, Lowe, 2004)
 - Segmentation

SIFT features

Segmentation

- Goal: extract objects of interest
- Many methods available,
 - ... but, rarely find the object of interest entirely
- Segmentation graphs
 - Allows to work on "more reliable" over-segmentation
 - Going to a large square grid (millions of pixels) to a small graph (dozens or hundreds of regions)

Image as a segmentation graph

- Segmentation method
 - LAB Gradient with oriented edge filters (Malik et al, 2001)
 - Watershed transform with post-processing (Meyer, 2001)
 - Very fast!

Watershed

gradient

watershed

287 segments

64 segments

10 segments

Watershed

image

gradient

watershed

287 segments

10 segments

Image as a segmentation graph

- Segmentation method
 - LAB Gradient with oriented edge filters (Malik et al, 2001)
 - Watershed transform with post-processing (Meyer, 2001)
- Labelled undirected Graph
 - Vertices: connected segmented regions
 - Edges: between spatially neighboring regions
 - Labels: region pixels

Image as a segmentation graph

- Segmentation method
 - LAB Gradient with oriented edge filters (Malik et al, 2001)
 - Watershed transform with post-processing (Meyer, 2001)
- Labelled undirected Graph
 - Vertices: connected segmented regions
 - Edges: between spatially neighboring regions
 - Labels: region pixels
- Difficulties
 - Extremely high-dimensional labels
 - Planar undirected graph
 - Inexact matching

Kernels between structured objects Strings, graphs, etc...

- Numerous applications (text, bio-informatics)
- From probabilistic models on objects (e.g., Saunders et al, 2003)
- Enumeration of subparts (Haussler, 1998, Watkins, 1998)
 - Efficient for strings
 - Possibility of gaps, partial matches, very efficient algorithms (Leslie et al, 2002, Lodhi et al, 2002, etc...)
- Most approaches fails for general graphs (even for undirected trees!)
 - NP-Hardness results (Gärtner et al, 2003)
 - Need alternative set of subparts

Paths and walks

- Given a graph G,
 - A path is a sequence of distinct neighboring vertices
 - A walk is a sequence of neighboring vertices
- Apparently similar notions

Walk kernel (Kashima, 2004, Borgwardt, 2005)

- $\mathcal{W}^p_{\mathbf{G}}$ (resp. $\mathcal{W}^p_{\mathbf{H}}$) denotes the set of walks of length p in \mathbf{G} (resp. \mathbf{H})
- Given *basis kernel* on labels $k(\ell, \ell')$
- *p*-th order walk kernel:

Dynamic programming for the walk kernel

- Dynamic programming in $O(pd_{\mathbf{G}}d_{\mathbf{H}}n_{\mathbf{G}}n_{\mathbf{H}})$
- $k_{\mathcal{W}}^{p}(\mathbf{G},\mathbf{H},r,s) = \text{sum restricted to walks starting at } r \text{ and } s$
- \bullet recursion between $p-1\mbox{-th}$ walk and $p\mbox{-th}$ walk kernel

$$k_{\mathcal{W}}^{p}(\mathbf{G}, \mathbf{H}, r, s) = k(\ell_{\mathbf{G}}(r), \ell_{\mathbf{H}}(s)) \sum_{\substack{r' \in \mathcal{N}_{\mathbf{G}}(r) \\ s' \in \mathcal{N}_{\mathbf{H}}(s)}} k_{\mathcal{W}}^{p-1}(\mathbf{G}, \mathbf{H}, r', s').$$

Dynamic programming for the walk kernel

- Dynamic programming in $O(pd_{\mathbf{G}}d_{\mathbf{H}}n_{\mathbf{G}}n_{\mathbf{H}})$
- $k_{\mathcal{W}}^{p}(\mathbf{G},\mathbf{H},r,s) = \text{sum restricted to walks starting at } r \text{ and } s$
- \bullet recursion between $p-1\mbox{-th}$ walk and $p\mbox{-th}$ walk kernel

$$k_{\mathcal{W}}^{p}(\mathbf{G}, \mathbf{H}, r, s) = k(\ell_{\mathbf{G}}(r), \ell_{\mathbf{H}}(s)) \sum_{\substack{k_{\mathcal{W}}^{p-1}(\mathbf{G}, \mathbf{H}, r', s') \\ r' \in \mathcal{N}_{\mathbf{G}}(r) \\ s' \in \mathcal{N}_{\mathbf{H}}(s)}} k_{\mathcal{W}}^{p-1}(\mathbf{G}, \mathbf{H}, r', s')$$

- Kernel obtained as $k_T^{p,\alpha}(\mathbf{G},\mathbf{H}) = \sum_{r \in \mathcal{V}_{\mathbf{G}}, s \in \mathcal{V}_{\mathbf{H}}} k_T^{p,\alpha}(\mathbf{G},\mathbf{H},r,s)$
- NB: more flexible than matrix inversion approaches

Subtrees and tree patterns

- subtree = subgraph with no cycle
- tree-walks (or tree patterns)
 - natural extensions to subtrees to the "walk world"
 - α -ary tree-walk (a.k.a tree pattern) of \mathbf{G} : rooted directed α -ary tree whose vertices are vertices of \mathbf{G} , such that if they are neighbors in the tree pattern, they must be neighbors in \mathbf{G} as well

Treewalk kernel

- $\mathcal{T}^{p,\alpha}_{\mathbf{G}}$ (resp. $\mathcal{T}^{p,\alpha}_{\mathbf{H}}$) denotes the set of α -ary tree patterns of \mathbf{G} (resp. \mathbf{H}) of depth p
- $k_{\mathcal{T}}^{p,\alpha}(\mathbf{G},\mathbf{H})$ is defined as the sum over all tree patterns in $\mathcal{T}_{p,\alpha}(\mathbf{G})$ and all tree patterns in $\mathcal{T}_{p,\alpha}(\mathbf{H})$ (that share the same tree structure)

Dynamic programming

- Dynamic programming in $O(p\alpha^2 d_{\mathbf{G}} d_{\mathbf{H}} n_{\mathbf{G}} n_{\mathbf{H}})$
- NB: need planarity to avoid exponential complexity

$$k_{\mathcal{T}}^{p,\alpha}(\mathbf{G},\mathbf{H},r,s) = k(\ell_{\mathbf{G}}(r),\ell_{\mathbf{H}}(s)) \times \sum_{\substack{I \in \mathcal{I}_{\mathbf{G}}^{\alpha}(r) \ r' \in I \\ J \in \mathcal{I}_{\mathbf{H}}^{\alpha}(s) \ s' \in J}} \prod_{\substack{k_{\mathcal{T}}^{p-1,\alpha}(\mathbf{G},\mathbf{H},r',s').}} k_{\mathcal{T}}^{p-1,\alpha}(\mathbf{G},\mathbf{H},r',s').$$

$$k_{\mathcal{T}}^{p,\alpha}(\mathbf{G},\mathbf{H}) = \sum_{\substack{r \in \mathcal{V}_{\mathbf{G}} \\ s \in \mathcal{V}_{\mathbf{H}}}} k_{\mathcal{T}}^{p,\alpha}(\mathbf{G},\mathbf{H},r,s).$$

Planar graphs and neighborhoods

- Natural cyclic ordering of neighbors for planar graphs
- Example: intervals of length 2

Engineering segmentation kernels

- kernels between segments:
 - Chi-square metric: $d_{\chi}^2(P,Q) = \sum_{j=1}^N \frac{(p_i-q_i)^2}{p_i+q_i}$ - P_{ℓ} = the histogram of colors of region labelled by ℓ

$$k(\ell, \ell') = k_{\chi}(P_{\ell}, P_{\ell'}) = e^{-\mu d_{\chi}^2(P_{\ell}, P_{\ell'})}$$

- Segments weighting scheme $k(\ell, \ell') = \lambda A_{\ell}^{\gamma} A_{\ell'}^{\gamma} e^{-\mu d_{\chi}^2(P_{\ell}, P_{\ell'})}$ where A_{ℓ} is the area of the corresponding region

• Many (?) parameters:

Kernel	free param.	fixed param.
Histogram		μ
Walk	p	$\mu, \lambda, \alpha = 1$
Tree-walk	$p, \alpha > 1$	μ,λ
Weighted tree-walk	$p,\alpha>1,\gamma$	μ,λ

Multiple kernel learning

• Given set of basis kernels K_j , learn a linear combination

$$K(\eta) = \sum_{j} \eta_j K_j$$

- Convex optimization problem which jointly learns η and the classifier obtained from $K(\eta)$ (Lanckriet et al, 2004, Bach et al, 2004, 2005)
- Kernel selection
- Fusion of heterogeneous kernels from different data sources

Classification experiments

• Coil100: database of 7200 images of 100 *objects in a uniform background*, with 72 images per object.

Classification experiments

• Corel14 is a database of 1400 *natural images* of 14 different classes

Comparison of kernels

- kernels :
 - histogram kernel (\mathbf{H})
 - walk-based kernel (W)
 - tree-walk kernel (TW)
 - weighted-vertex tree-walk kernel (**wTW**)
 - combination of the above by multiple kernel learning (M)
- Hyperparameters selected by cross-validation
- Error rates on ten replications:

	Н	W	TW	wTW	М
Coil100	1.2%	0.8%	0.0%	0.0%	0.0%
Corel14	10.36%	8.52%	7.24%	6.12%	5.38%

Performance on Corel14 dataset

0.12 0.11 0.1 **Test error** 0.09 0.08 tree-0.07 0.06 MKL by 0.05 Н W ΤW wTW Μ Kernels

Performance comparison on Corel14

- histogram kernel (**H**)
- walk-based kernel (W)
- tree-walk kernel (**TW**)
- weighted-vertex walk kernel (wTW)
- combination (**M**)

Multiple kernel learning

• 100 kernels corresponding to 100 settings of hyperparameters

Kernel	free param.	fixed param.
Histogram		μ
Walk	p	$\mu, \lambda, \alpha = 1$
Tree-walk	$p, \alpha > 1$	μ,λ
Weighted tree-walk	$p,\alpha>1,\gamma$	μ,λ

• Selected kernels

$p, lpha, \gamma$	10, 3, 0.6	7, 1, 0.6	10, 3, 0.3	5, 3, 0.0	8, 1, 0.0
η	0.12	0.17	0.10	0.07	0.04

Semi-supervised learning

- Kernels give task flexibility
- Example: semi-supervised algorithm of Chapelle and Zien (2004)
- 10% labelled examples, 10% test examples, 10% to 80% unlabelled examples

Conclusion

- Learning on images with kernels on segmentation graphs
 - Based on a natural and still noisy representation of images
 - Prior information allows better generalization performances
 - Modularity
- Current work and natural extensions:
 - Non-tottering trick (Mahé et al, 2005)
 - Allows gaps (Saunders et al, 2001)
 - Shock graphs (e.g., Suard et al., 2005)
 - SIFT features
- Application to image retrieval